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Global wildfire activity has experienced a dramatic surge since 2017. From Chile [1]
to Indonesia [2], unprecedented fire behavior has occurred in many areas worldwide
including, but not limited to, Portugal [3], Siberia [4], Australia [5,6], the Amazon and
Orinoco basins [7], and the Western US [8]. This surge in global wildfire activity has led to
a dramatic raise in human fatalities, and in socio-economic and ecological losses.

Wildfires have been ravaging through both fire-prone and non-fire-prone ecosystems.
Although wildfires are regarded as a natural phenomenon in fire-prone ecosystems, and
are necessary for the successful establishment and regeneration of many species, their
positive effects are limited to instances in which the current fire regime resembles that
under which the affected species evolved [9]. As the components of the fire regime change
because of global change (including the frequency, intensity, and timing of forest fires),
many species will experience a novel disturbance regime and, consequently, we can expect
a reorganization in many ecosystems worldwide, potentially shifting towards an increase
in ruderal species (ruderalization) [10].

Wildfires have also become increasingly common in many non-fire-prone ecosys-
tems [11]. We have observed dramatic wildfires in the rainforests of the Amazon associated
with deforestation, land use change, and other processes [12]. Additionally, increasing
numbers of holdover fires beyond the Arctic circle, which resurface after burning under-
ground during the winter, have been linked to a proliferation of spring and summer surface
wildfires in the Arctic [4]. The effects of catastrophic wildfire on non-fire-prone ecosystems
will be even more dramatic than in fire-prone ecosystems.

The currently ongoing, global change-induced, intensification of the fire regime has
escalated from being primarily an ecological problem to also becoming a civil protection
issue. For example, in Southern Europe, the number of wildfire fatalities over the last 13
years (473 fatalities) [13,14] has exceeded the number of fatalities in terrorist attacks in
the entire European Union (448 victims) [15] (Figure 1). Wildfires also potentially pose
a security threat by directly threatening defense infrastructure and diverting defense
personnel to provide humanitarian assistance and disaster relief, as occurred during the
2019/2020 fire season in Australia [16].

Forests 2021, 12, 469. https://doi.org/10.3390/f12040469 https://www.mdpi.com/journal/forests
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Figure 1. The number of fatalities resulting from wildfires is now larger than the number of terrorism victims in the
European Union. We compiled data on people killed by terrorism in the EU since Europol TE-SAT reports [15] started in
2006 with data on wildfire fatalities for Southern Europe (Portugal, Spain, Greece, and Sardinia) [13,14].

Wildfires are also becoming an increasing public health issue. Smoke from wildfires
is currently estimated to be the direct cause of death of 339,000 people annually [17],
and there is a well-documented increase in hospital admissions due to smoke-enhanced
cardiovascular and respiratory conditions, amongst others [18]. In interaction with the
current pandemic, wildfire smoke could increase hospital admissions by 10% in areas
affected by large wildfire [19]. Wildfires could also act as vectors for transporting airborne
pathogens [20].

Extreme wildfires are also extending their impacts to an increasing range of sectors,
including agriculture, infrastructure, transport, and tourism, to name a few, resulting in
declines in consumer activity and large economic impacts [21].

Wildfires also alter the climatic system in a myriad of ways. Direct effects include
enhanced carbon emissions, currently estimated at ~10% of fossil fuel emissions [22].
However, other contributions are more difficult to quantify. Wildfires alter albedo, with
important consequences for the energy balance and fostering warming in tropical, but
cooling in boreal ecosystems [23]. Wildfires also affect the water balance [24], and the
capacity for future C sequestration in burned ecosystems may be reduced, relative to that
prior to fire, when wildfires induce large-scale land degradation [9].

All in all, it appears that we are simply witnessing the “preview” of the havoc that
climate change will bring for future fire regimes. In fact, a commonality across all the
changes in the fire regime previously mentioned was a very marked increase in vapor
pressure deficit, a very marked driver of fire activity [25,26], resulting from living in a 1 ◦C
warmer world. As climate projections for the end of the century converge into a likely 3 ◦C
warming scenario [27], we can expect, at least in the short term, a further intensification of
the fire regime.

Increases in fire danger induced by climate change call for a re-evaluation of current
approaches for assessing the likelihood of a catastrophic fire. Seasonal changes in wildfire
likelihood result from changes in fuel moisture and in fire weather that, when an ignition
source is provided, can lead to catastrophic wildfire if fuel build up is large enough [28].
The challenge lies in developing a quantitative and mechanistic understanding of fire
danger that is deep enough to allow accurate forecasting, yet simple enough that can be
used for operational purposes.

Traditional approaches for forecasting seasonal changes in fire weather relied on
developing fire weather and danger indices that, often, seek to estimate fuel moisture and
potential fire spread depending on past meteorological conditions. These indices have
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shown mixed success in predicting fire danger [29,30], and they have not been exempt from
criticism [31]. Developing an early warning system for catastrophic fire, which predicts
when and where critical wildfires will occur, as well as educating the populace on how to
interpret these predictions, has become an increasing necessity [3].

Understanding changes in fire danger requires integration across multiple spatial and
temporal scales: from leaves to regions, and from days to decades. This was the motivation
to put forward this Special Issue on Forest Fire Risk Prediction: to provide the tools for
improving fire danger forecasts in the 21st century. The Special Issue comprises 13 articles,
touching upon different aspects of fire danger along a continuum of scales.

Broadly speaking, the articles contained in this Special Issue can be grouped into four
topics. The first topic is the use of fire danger metrics and other approaches to understand
variation in wildfire activity. The opening article by Fernandes [32] examines the thresholds
in a widespread indicator of fire danger, the Fire Weather Index (FWI), associated with
wildfires of different sizes across Portugal. Varela et al. [33] use the FWI to identify future
vulnerability of archaeological and touristic sites in Greece. The study of Ma et al. [34]
presents a broad assessment on the drivers of wildfire activity in China using random
forest algorithms, and the study by Milanović et al. [35] additionally compares random
forest with logistic regressions to estimate fire probability in Serbia. Zong et al. [36] uses
a historical analysis of the drivers of forest fire in Central Asia to project changes under
climate change in the 21st century.

The second topic covered by this Special Issue is devoted to understanding changes in the
flammability of live fuel. Nolan et al. [37] review the mechanisms driving live fuel moisture
content and propose a novel model that moves the field forward. Balaguer–Romano et al. [38]
explore the hypothesis that needle senescence could affect wildfire behavior in Mediterranean
pine forests. How to provide regional estimates of live fuel moisture content is explored by Luo
et al. [39], who provide a case study for SW China. Della Rocca, et al. [40] address interactions
between pathogen infections and flammability. Also along these lines, Collins et al. [41]
address the effects of repeated fires on burn severity.

The third topic covered in this Special Issue is modeling dead fuel moisture content.
Zhang and Sun [42] compare two methods for estimating diurnal changes in fine litter
moisture. Log [43] further assesses moisture diffusion coefficients in Calluna vulgaris to
better inform prescribed fire practices.

Finally, the study of Ma et al. [44] compares the emission factors of Chinese tree
species ranging from Boreal to subtropical environments, and they present intriguing
evidence indicating that wildfires could acidify forest ecosystems because of emissions.
This varied collection of articles indicates that progress in fire danger predictions comes
from a multidisciplinary and varied approach.

The cradle of Western civilization lies in Ancient Greece. They laid the foundations
of science and democracy. As climate change intensifies worldwide, wildfires are even
threatening the archaeological remains from Ancient Greece [33]. In his work The Republic,
the Greek philosopher Plato wrote the Allegory of the Cave, where men living in the bottom
of a cave perceived reality only through shadows and they were afraid of reaching out of
the cave to see reality as it is. The only escapee from the cave who saw the actual world
was the one who embraced knowledge. If we have any chance to prevent the worsening
of the wildfire problem, we need now, more than ever, to resort back to logic and reason.
This Special Issue is a testament to the fact that we have the knowledge and technical
capability to anticipate the effects of global warming on wildfires. The challenge lies in
convincing policy makers, managers, stakeholders, and all the other actors involved to
follow through and take evidence-based decisions. The challenge lies in getting out of
Plato’s cave.

Author Contributions: Writing: V.R.d.D. and R.H.N. All authors have read and agreed to the
published version of the manuscript.
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Abstract: Forest fire management relies on the fire danger rating to optimize its suite of activities.
Limiting fire size is the fire management target whenever minimizing burned area is the primary
goal, such as in the Mediterranean Basin. Within the region, wildfire incidence is especially acute
in Portugal, a country where fire-influencing anthropogenic and landscape features vary markedly
within a relatively small area. This study establishes daily fire weather thresholds associated to
transitions to increasingly larger fires for individual Portuguese regions (2001–2011 period), using
the national wildfire and Canadian fire weather index (FWI) databases and logistic regression. FWI
thresholds variation in relation to population density, topography, land cover, and net primary
production (NPP) metrics is examined through regression and cluster analysis. Larger fires occur
under increasingly higher fire danger. Resistance to fire spread (the fire-size FWI thresholds) varies
regionally following biophysical gradients, and decreases under more complex topography and when
NPP and occupation by flammable forest or by shrubland increase. Three main clusters synthesize
these relationships and roughly coincide with the western north-central, eastern north-central and
southern parts of the country. Quantification of fire-weather relationships can be improved through
additional variables and analysis at other spatial scales.

Keywords: fire danger rating; fire management; fire regime; fire size; fire weather; Portugal

1. Introduction

Exposure to increasingly severe and anomalous fire weather makes fire disasters a growing global
concern, especially where flammable vegetation and developed areas intermingle [1]. Such is the case
of the Mediterranean Basin, where forest fires are prominent and an average of 360 kha burn every
year in the Iberian Peninsula, southern France, Italy, and Greece, with northern and central Portugal
being the hotspot of fire incidence [2]. Combination of an oceanic-influenced Mediterranean climate
favoring high plant productivity and fast fuel build-up, prevalence of flammable vegetation types,
rough terrain, and particularly high ignition density are credited to account for the high annual burn
rates (up to 6%) observed in Portugal [3].

Forest fire management comprises a suite of activities that seek to minimize the socioeconomic and
environmental impacts of fire, namely ignition prevention, fire detection, initial attack resource
deployment and dispatch, large fire management, strategic planning, and fuel management
(e.g., through prescribed burning) [4]. Fire danger rating supports all these activities [5] through
indices calculated from current and past weather that express the individual and combined effects
of atmospheric conditions and drought, as in the systems developed in Canada [6], the USA [7],
and Australia [8] that describe how easily a fire will ignite and spread, and how difficult its control will be.

The Canadian forest fire weather index system (CFFWIS) [9] is commonly used in research and
management applications across the world and consists of six fuel moisture and fire behavior indices
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calculated from ambient temperature, relative humidity, wind speed, and 24-h rainfall. Operational
fire danger rating in Portugal relies on the fire weather index (FWI) of the CFFWIS, calibrated to
indicate fire suppression difficulty as determined by fireline intensity in maritime pine (Pinus pinaster

Ait.) stands, and considers five classes, respectively low (FWI < 8.4), moderate (8.5 < FWI < 17.1),
high (17.2 < FWI < 24.5), very high (24.6 < FWI < 38.2), and extreme (FWI > 38.2) [10]. This approach
offers an objective and quantitative indication of fire potential, albeit generic as it does not consider
variation in fuel and terrain conditions. Consequently, outputs of fire weather systems benefit from
regional interpretation and statistical evaluation against historical fire activity that lead to probabilistic
assessments of fire likelihood and threshold values to define fire danger classes [5,11]. In Europe,
the CFFWIS has been calibrated to depict distinct fire activity levels [12–15] and has been used to
model fire activity (number of fires, burned area) across various spatiotemporal scales [16–23] and to
assess the likelihood and characteristics of large fires [24–28].

Fire management often seeks to minimize the area burned by unplanned fire, as it equates to
abating its environmental and societal negative impacts. Since fire size distribution is highly uneven,
most of the burned area is accounted for by a small fraction of the total number of fires, e.g., [29],
those that escape initial control efforts, are driven by extreme weather conditions, and can become
catastrophic if wildland-urban interfaces are impacted [1,30]. Fire size distribution is thus useful
to evaluate fire management policies and for strategic planning [31], and operational planning of
pre-suppression and suppression activities can be guided by fire danger rating such that individual
fires do not exceed predefined size targets [32]. Fire size depends of fire behavior characteristics,
namely rate of spread (determined by weather, topography, and fuel), landscape barriers, and fire
suppression effort and effectiveness, which are affected respectively by the amount of simultaneous
wildfires and fire behavior [31]. The relative importance of the numerous factors involved is variable
and can change depending on fire-size class or across the fire size continuum [24,26,27,33–35]. The need
for achieving progress on the understanding of fire weather (and other influences) roles on fire growth
to increasingly larger sizes is obvious, given the impacts associated to larger fires [36].

Fire activity and fire regimes, including fire-size distribution [31], vary along climatic and land
use gradients [37] and result from the interaction of biophysical and social factors, hence are subject
to substantial anthropogenic-induced change, through modified vegetation and ignition patterns
and fire suppression [37–39] capable of overriding background fire-climate [40] and fire-weather [41]
relationships. The regional scale context is thus relevant to better understand how fire activity
(including fire size) is connected to fire weather [21,42] and, more generally, to climate [40,43].

Marked spatial contrasts in fire activity in Portugal [44] and the concomitant influence of
biophysical and socioeconomic factors [45–47] motivates this study examination of regional fire activity
in relation to fire weather. I hypothesize that larger fire development in response to increasingly severe
fire weather is dependent on land use and vegetation, topography, and variables affecting human fire
initiation and control, which should be reflected in regionally variable fire size-weather relationships.

2. Materials and Methods

2.1. Data

This study relates to mainland Portugal (89,089 km2) and the 2001–2011 period, which is relatively
short but was selected to ensure consistency in record keeping standards and minimize variability
in fire management policies and land-use changes that could affect fire activity, e.g., [48]. The study
period includes both extremely high (2003, 2005) and extremely low (2007, 2008) fire years in terms of
burned area, ranging from 20.0 kha to 471.8 kha. Individual fire data (date, duration, location, and size)
was sourced from the Portuguese rural fire database [49] and comprised 333,378 records for 2001–2011,
corresponding to a burned area of 1671.4 kha (Figure 1a), according to the national fire atlas [50].
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Figure 1. Cumulative burned area in Portugal (2001–2011) overlaid on Google Earth imagery (map data
courtesy of©2018 Google) (a) and administrative regions (distritos) (b). Bold, italic, and underlined
lettering indicates regions belonging respectively to the North and Central West (NCW), North and
Central East (NCE), and South (S) supra regions.

Fire weather was described through the FWI of the CFFWIS, calculated daily from noon weather
observations acquired by the Portuguese Sea and Atmosphere Institute network of automatic weather
stations. Distrito (n = 18, Figure 1b) is the administrative regional scale that underpins fire preparedness
and suppression organization and decision-making in Portugal. The FWI at the region (i.e., distrito)
level was obtained by averaging the FWI values of the stations (between 2 and 7) located within each
region. The fraction of fire starts that attained or exceeded increasingly larger size thresholds were
calculated for each combination of region and day of the time series, respectively 0.01, 0.1, 1, 10, 100,
500, and 1000 ha. Those fractions were then recoded as 0 or 1, respectively for days with none and
one or more fires belonging to a given size class; no-fire days were also attributed 0. Thus, each fire
size-based partition divided the whole dataset in two subsets.

A number of variables expected to influence fire-weather relationships were calculated for
each region. Population density, as a strong determinant of ignition density [51], correlation with
unburnable land and road network density, and a relevant factor in fire control response time and
available resources, was obtained by averaging the 2001 and 2011 national census.

Topography and terrain characteristics influence ignition patterns, fire behavior, and fire
suppression operations and were derived from a 25-m resolution digital elevation model: Elevation,
slope, and the topographic ruggedness index (TRI) [52] that expresses the average elevation change
between any point on a digital grid and the surrounding area.

Net primary productivity (NPP, t C year−1) was used as a generic indicator of potential fuel load
and was calculated for each region from the gridded (0.25◦ resolution) spatial data product global
patterns in net primary productivity [53,54]. Data from the 5th National Forest Inventory [55] was used
to calculate the regional fractions of land covered by agriculture, shrubland, and forest. Additionally,
a “flammable forest” category was calculated as the fraction of forest cover comprised of maritime pine
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or eucalypt (mostly Eucalyptus globulus Labill.). These species tend to occupy large and continuous
tracts of the landscape, often in the form of naturally-regenerated and highly-flammable low and dense
stands [56], and are more prone to fire than any other forest type [57,58].

2.2. Data Analyses

Summary statistics were calculated for the regional variation of daily FWI and percentages of
days with fires ≥0.01, 0.1, 1, 100, 500, and 1000 ha. Most fires in Portugal are short-lived, as expected
in an anthropogenic landscape under a full fire suppression policy, e.g., only 4.1% of the fires in the
database lasted more than 8 h, and only 0.9% extended beyond 24 h; Table S1 gives percentiles of fire
duration for each of the binned fire-size classes. The duration of active fire spread is even smaller, as fire
duration in the database is the time elapsed between fire detection and fire extinction. Consequently,
I reasonably assumed that fire weather on the day a fire starts determines whether it will grow to a size
larger than the thresholds considered [59], which is further supported by the fact that in Portugal fires
larger than 2500 ha typically (interquartile range) attain 1000 ha in 2 h to 10 h [25].

Logistic regression [60] with the FWI of the fire-start day as the independent variable was employed
to model the daily likelihood of fires ≥0.01, 0.1, 1, 10, 100, 500, and 1000 ha at the regional level.
The χ2 likelihood ratio test was used to assess statistical significance (p < 0.05). Model classification
performance was assessed with the area under the receiver operating characteristic (ROC) curve (AUC)
and the misclassification rate (fraction of the observations incorrectly classified by the model) was
calculated. A probability of 0.5 was the cut-off assumed for a fire-day event and the corresponding
FWI was calculated from the fitted models for each region and fire size class. Correlations between
the FWI thresholds for the various fire size classes were inspected, as well as between those and the
regional median and 90th percentile of the FWI.

A correlation analysis was carried out between the variables expected to explain patterns in
fire-FWI relationships, i.e., population density and the biophysical variables previously described.
The regional variation in FWI thresholds allowing increasingly larger fires was examined as a function
of those variables, but only the classes more relevant for fire management were retained, i.e., ≥1, 100,
and 1000 ha, respectively FWI_1, FWI_100 and FWI_1000. Univariate least-squares regression analysis
was carried out on log-transformed variables, to achieve more Gaussian distributions and because
visual inspection indicated adequate fit by power functions. Residuals were checked for normality and
homoscedasticity. To aid in interpretation, and anticipating common fire-FWI relationships, the 18
regions were allocated to three higher-level regions, respectively North and Central West (NCW),
North and Central East (NCE), and South (S).

Combining the independent context variables with the FWI thresholds and applying hierarchical
cluster analysis enabled the identification of similar regions in respect to fire-FWI relationships; as fires
≥1000 ha were very scarce in some regions, the corresponding FWI threshold was excluded from
the analysis.

3. Results

Regional diversity in the putative factors related with fire activity in Portugal was manifest (Table 1).
In particular, variation in population density approached two orders of magnitude. The remaining
variables varied at least approximately two-fold (NPP and agriculture land cover) and up to 10- and
12-fold, respectively shrubland and flammable forest cover.
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Correlation analysis indicates that regions characterized by rougher terrain tended to have less
agriculture, more flammable forest, and, especially, more shrubland; forest and shrubland fractions were
negatively correlated; and the flammable forest fraction increased with NPP (Table S2). Northwestern
and southern Portugal were dissimilar in population density, terrain, NPP, and land cover patterns,
indicating potential enhancement of ignition density and fire spread and intensity in the former.

Inter-regional fire weather variability was relevant (Figure 2), given altitudinal differences and the
east to west and south to north gradients of increasing oceanic influence that moderates the fire-prone
Mediterranean climate. Northwestern Portugal regions (Viana do Castelo, Braga, Porto, Aveiro),
with more temperate climate, were characterized by lower FWI values and narrower FWI ranges in
contrast with the drier and warmer south of the country (Évora, Beja). Regardless of these differences,
and noting that annual fire activity concentrates on a short number of days [61], the 90th percentile
of the FWI was higher than the threshold for extreme fire behavior (FWI = 38) in all regions but one
(Viana do Castelo).

Figure 2. Boxplots (with outliers) of the fire weather index (FWI) daily variation for the regions (distritos)
of Portugal (2001–2011). The box spans the interquartile range and the whiskers extend to the 90th
and 10th percentiles. Black, blue, and grey boxplots correspond respectively to the NCW, NCE and S
supra regions.

Increasingly larger fires consistently occurred on an increasingly smaller number of days (Table 2).
Such a decreasing trend was particularly noticeable for fires surviving to ≥10 ha and ≥100 ha.
Comparatively with other regions, large fires (≥100 ha) were a greater portion (≥3%) of the total
number of fires in a few regions of the northern half of the country, namely Guarda, Vila Real,
Bragança, and Viseu. Increasingly larger fires corresponded to increasingly higher FWI values (Table 3).
The relative increase in FWI thresholds was especially relevant for fires ≥1 ha and ≥10 ha. Variation
in the FWI thresholds among regions was quite high up to 10–99 ha fires, ranging from 26 to 76,
but declined for the subsequent fire-size partition classes. While the FWI threshold for fires ≥1 ha
corresponded to quite mild fire weather conditions in some regions, particularly Viana do Castelo, Vila
Real, and Guarda, it increased to very high and extreme fire danger levels in others, namely Portalegre,
Évora, and Faro.
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Table 2. Regional percentages of days with fires ≥0.01, 0.1, 1, 100, 500, and 1000 ha during the study
period (2001–2011).

Region
Fire Size (ha)

0.01 0.1 1 10 100 500 1000

Aveiro 59.4 45.1 23.7 4.9 0.9 0.3 0.2
Beja 28.6 24.8 18.3 6.2 1.3 0.3 0.1

Braga 57.3 51.1 38.2 11.9 2.3 0.4 0.1
Bragança 51.3 47.7 36.6 11.7 3.3 0.8 0.4

Castelo Branco 44.5 36.0 24.1 5.9 2.3 1.1 0.7
Coimbra 45.2 32.1 14.9 3.3 1.3 0.6 0.4

Évora 23.9 20.8 13.5 4.1 1.0 0.3 0.2
Faro 34.3 23.3 13.8 2.6 0.9 0.4 0.3

Guarda 54.4 49.2 41.1 15.6 5.2 1.5 0.8
Leiria 50.2 36.3 18.0 3.4 1.2 0.5 0.2
Lisboa 62.8 47.6 35.6 3.6 0.5 0.1 0.1

Portalegre 25.9 20.9 13.1 3.2 0.7 0.3 0.2
Porto 62.0 51.3 35.5 9.4 1.9 0.5 0.1

Santarém 55.1 42.4 25.9 5.0 1.9 0.8 0.3
Setúbal 50.9 33.8 21.1 2.9 0.6 0.1 0.1

Viana do Castelo 51.0 44.8 34.4 11.5 2.6 0.6 0.2
Vila Real 58.3 48.4 40.9 13.1 3.9 1.1 0.4

Viseu 59.5 52.4 39.4 11.5 3.6 1.1 0.5

The probability of distinguishing between fire and no-fire days as per the AUC varied between
0.67 and > 0.99 among the fitted logistic models, and misclassification rates ranged from < 1% to 36%
(Table 3). AUC and misclassification rate tended to respectively increase and decrease with fire size,
primarily reflecting the increasingly higher prevalence of no-fire days.

All fire-size FWI thresholds were significantly (p < 0.05) correlated, but the strength of the
correlations diminished with fire-size dissimilarity (Table 4), e.g., r = 0.93 between the thresholds for
fires ≥1 ha and fires ≥10 ha, but only r = 0.50 between the former and the threshold for fires ≥1000 ha.
Nearly all FWI thresholds were strongly and positively coupled with the median FWI for all sample
days (both fire and no-fire days), more closely associated with the thresholds for fires <100 ha, and with
the 90th percentile of the FWI, better correlated with large-fire thresholds (Table 4).

The daily FWI threshold for fires ≥1 ha in size decreased with TRI, elevation, and the fractions
of shrubland, flammable forest, and forest in general, by decreasing order of importance (Table 5).
Flammable forest fraction had the strongest association with the FWI threshold for fires ≥100 ha,
followed by TRI, NPP, and population density, but the p-value for the latter was just 0.052; increases
in these variables implied lower thresholds. The FWI threshold for fires ≥1000 ha increased with
agricultural land cover and decreased with the fraction of flammable forest and with NPP, but the
amount of variation accounted for by these variables was inferior to what was attained for fires ≥1 ha
and ≥100 ha using the best univariate relationships. Figure 3 shows the best fitting relationships.

Three major groups of regions emerged from the cluster analysis that mostly conformed to the
a priori supra regions (Figure 4). Low FWI thresholds, the highest population density, NPP and
flammable forest fraction, and intermediate shrubland cover characterize the NCW cluster (n = 7).
The NCE cluster (n = 6) did not differ from the former regarding FWI_1 but fires≥100 ha occurred under
more severe fire weather conditions, in landscapes with lower NPP, intermediate cover of flammable
forest types and the highest incidence of shrubland. The uppermost FWI thresholds corresponded
to the S cluster (n = 5), in association with the lowest elevation, slope, TRI, NPP and fractions of
flammable forest types and shrubland, and the highest proportion of farmland. The bottom end of
the clustering hierarchy was composed of contiguous regions, with two exceptions (Lisboa, Porto;
and Castelo Branco, Faro).

13



Forests 2019, 10, 838

Figure 3. Selected relationships of the form y = a × x b between regional FWI thresholds for the
occurrence of fires ≥ 1 (FWI_1), ≥ 100 (FWI_100), and ≥ 1000 (FWI_1000) ha and biophysical variables,
with 95% confidence intervals. Models were fitted on log-transformed variables. Black, white, and grey
circles correspond to the NCW, NCE, and S supra regions of Portugal.

Figure 4. Regional clustering dendrogram as a function of FWI thresholds (≥1 ha, and ≥100 ha),
population density, and biophysical variables (TRI, elevation, NPP, land cover fractions of agriculture,
shrubland, forest, and flammable forest). Bold, italic, and underlined lettering indicates regions
belonging respectively to the NCW, NCE, and S supra regions of Portugal.
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Table 4. Correlation matrix (r values) between FWI thresholds for each fire size class, and between
the latter and the median and 90th percentile of the FWI (n = 18). All correlations are significant at
p < 0.001, except * (p < 0.05) and ** (p < 0.01).

Fire-Size Thresholds FWI

0.1 1 10 100 500 1000 Median 90th Perc.

0.01 0.902 0.819 0.789 0.794 0.673 ** 0.541 * 0.719 0.666 **
0.1 0.963 0.889 0.827 0.655 ** 0.483 * 0.853 0.620 **
1 0.928 0.851 0.677 ** 0.501 * 0.828 0.668 **
10 0.969 0.834 0.659 ** 0.875 0.859
100 0.922 0.786 0.819 0.888
500 0.879 0.697 ** 0.839
1000 0.525 * 0.717

Table 5. Univariate explanation (r2) of regional variability in daily FWI thresholds for fires attaining 1,
100, and 1000 ha through regional descriptors and relationships of the form log(y)= a+ b log(x). Missing
values indicate non-significant (p > 0.05) effects. Negative and positive influences are represented
respectively by (−) and (+).

Variable 1 ha 100 ha 1000 ha

Popul. density *0.22 (−)
Elevation 0.44 (−)

TRI 0.56 (−) 0.48 (−)
NPP 0.33 (−) 0.29 (−)

Land cover fractions
Agriculture 0.33 (+)
Shrubland 0.39 (−)

Forest 0.24 (−)
Flammable forest 0.32 (−) 0.54 (−) 0.32 (−)

* p = 0.052.

4. Discussion

4.1. FWI Thresholds for Increasingly Larger Fires and Fire Danger Rating

As expected, increasingly larger fires are gradually restricted to a lesser number of days (Table 2),
those characterized by increasingly higher FWI (Table 3). Ability of the fire danger classification [10] in
operational use in Portugal to match fire activity depends on whether its representation of fire behavior
can be reasonably generalized and, overall, to what extent it captures the compounded influences
involved. While regional FWI thresholds for the occurrence of fires ≥10 ha were either within the very
high or the extreme fire danger classes [10], all thresholds for fires ≥100 ha were within the extreme
class. This operational fire danger classification indicates fire control difficulty in case a fire occurs,
rather than whether it will occur and overall fire activity. Still, the current nationwide fire danger
thresholds were able to signal daily conditions for significant fires (≥10 ha) and, especially, for large
fires (≥100 ha), despite the existing regional variability in FWI thresholds. Lower relative differences
among regions were also found in the FWI thresholds required for the occurrence of large fires versus
fires <100 ha. Both findings might arise from an overriding effect of fire weather, through which
fire behavior is gradually equalized among the existing forest and shrubland vegetation types [62];
differential fire preference for vegetation types disappear [57]; and fire development to significant
dimensions is fast if the initial attack fails when fire behavior is above the extinction capacity, partially
cancelling interregional differences in ignition density, vegetation, and terrain.

Within-region discrimination between FWI thresholds was lower for fires≥100,≥500, and≥1000 ha
in comparison with smaller fires. This indicates that, within a given landscape context, the response
in large fire size is less than proportional to increasingly severe weather conditions reflected in the
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FWI. A limitation, as with any fire danger rating system, is that the FWI does not encapsulate all
weather influences on fire growth, namely atmosphere structure and stability [25,63] and rapidly
changing conditions or fine-scale variability resulting from thunderstorm outflows, frontal passages,
or wind–terrain interactions [59]. However, results align with previous work revealing control of fire
size by landscape structure [27,64]. This does not preclude weather-fuel synergies: Towards the upper
end of the fire size range the response to increased meteorological fire danger is greater when fuel
hazard is uniformly high across the landscape [25] and the largest fires coincide with extreme fire
weather coupled with high fuel build-up [65,66].

Contemporary fire-weather relationships have been extensively examined in Portugal and the
Mediterranean Basin, as described in the Introduction section. Nonetheless, there is a paucity of
operationally oriented work with straightforward application to fire management decision-making.
The FWI thresholds for the daily occurrence of fires of different sizes determined in this study can be
viewed as an initial step in the development of a predictive system tailored to regional specificities.
Additional variables are probably warranted for improved predictive performance in an operational
context, namely seasonal patterns of fire occurrence, a descriptor of fire load, i.e., the suppression effort
needed to tackle the fires occurring in a given region during a given time interval [4], and the ability to
predict short-duration strong winds [67]. I used distrito as the regional stratification unit, to conform to
the current and merely political fire-management zoning of the country, but usage of more coherent
land units, e.g., phytoclimatic zones [42] or ecoregions [65], would probably result in more robust
fire–weather relationships [20].

4.2. Regional Variation in Fire-Size Response to the FWI

Mainland Portugal offers an interesting opportunity to examine the interaction of natural and
anthropogenic influences in determining the fire regime, given their variability within a relatively
small area, roughly 600 km by 200 km. The substantial regional variation in fire weather thresholds
required for wildfire development to different sizes was consistent with gradients in biophysical factors
(Table 5, Figure 3). The FWI threshold for fire growth to a given size can be seen as the resistance of the
human-landscape system to fire spread. Thus, resistance to fire spread decreased under rougher terrain,
higher plant productivity, or higher coverage by shrubland, forest, and flammable forest, and was
enhanced by the extent of farming, with the relative relevance of these individual influences depending
on the fire-size partition considered. Generally, larger fires were fostered by the concomitance of more
and better-connected fuel in topographically complex landscapes; these features are correlated, and are
expected to match with less inhabited regions, but correlation analysis overlooks it (Table S2), possibly
because of substantial intra-regional variation in population density and human influence [47].

Decreased correlation between FWI thresholds for increasingly distant fire-size partitions (Table 4)
suggests that, as one example, changes in the relative importance of fire drivers across the fire size
range [68] that may be a consequence of interactions between population density and landscape
structure. The regions of Porto and Bragança offer clear-cut examples in this respect. Both have a low
FWI_1 threshold, in Porto due to extremely high population density within landscapes dominated
by wildland-urban interfaces (hence very high ignition pressure), in Bragança because of landscape
dominance by farmland and shrubland, which presumes the use of fire in land management. These
regions also share very high FWI_1000 thresholds, as the burnable landscape is either limited in extent
or is substantially fragmented and particularly large fires will only develop under particularly severe
and uncommon fire weather.

Data scatter in Figure 3, along with Table 1, allow some discussion on the relative role of
human versus natural influences on FWI thresholds. For example, the Faro distrito deviates from the
relationships between TRI and shrubland fraction with FWI_1, and from the FWI_100-TRI relationship,
exhibiting high resistance to fire in relation to what would be expected. Vila Real shares similar
NPP with Portalegre and Évora, but their respective FWI_100 are in the opposite extremes of the
distribution, respectively corresponding to low and high resistance to fire spread. Population density

17



Forests 2019, 10, 838

is the distinguishing factor in both cases, presumably conferring higher resistance to fire when it is
lower. Likewise, Viana do Castelo and Castelo Branco are similar in their fractions of flammable forest
but contrast in FWI_100, respectively denoting low and high resistance to fire, possibly because of
higher population density and marginally lower agricultural land use in the former. This suggests that
population density, as a surrogate for ignition density [45,51,69], contributes to distinguish FWI-fire
thresholds among similarly fire-prone landscapes.

The interaction of biophysical and human factors with the likelihood of weather conditions
conducive to significant fire activity should introduce further complexity and nuance in fire–weather
relationships. However, strong correlations between regional FWI thresholds and the corresponding
median and 90th percentile of the FWI (Table 4) suggest that regional distinctions in the prevalence
of more extreme fire weather (Figure 2) did not affect the fire-size FWI thresholds, likely because
in Mediterranean climates the NPP gradient controls how fire activity responds to fire-inducing
weather [70]. A study in southern France found that only 25% of the variation in wildfire spatial
patterns was attributed to spatial variation in fire weather [35].

Cluster analysis revealed three broad pyroregions (Figure 4), roughly corresponding to the NCW,
NCE, and S supra regions of the country, and representing differential resistance to fire spread, from low
to high, as determined by land use, topography, NPP, and population density. This supplements
previous analyses examining regional or spatial patterns of fire activity metrics that highlighted the role
of climate [44], recognized the existence of synergistic effects [69], and carried out explicit modeling [25].
However, within-cluster variation was substantial down to adjacent regions. Further advances in
understanding and systematizing fire-weather relationships from a fire management perspective and,
more generally, in typifying fire regimes, can be achieved by working at finer spatial scales and using
landscape-level metrics of fuel structure [27,71,72].

5. Conclusions

Fires grow in the landscape to increasingly large sizes as allowed by the composite influences
of atmospheric and fuel dryness conditions, which in this study were expressed by the FWI of the
Canadian forest fire weather index system. Larger fires require progressively more extreme fire
weather, which occurs on a limited set of days. However, fire–weather relationships, as expressed by
FWI-thresholds associated to the fire-size classes considered, show important regional variation in
Portugal, even if the operationally-used fire danger rating classification is satisfactory at discriminating
days with large fire (≥100 ha) occurrence. Relative differences between FWI thresholds for large
fire-size classes variants decreased both within and among regions as compared with smaller fires,
possibly signaling a greater control of fire spread exerted by landscape structure and a decrease in the
anthropogenic-related ability to restrain fire development, but also fire–atmosphere–terrain influences
and interactions unaccounted for by the analysis.

FWI thresholds as a function of fire size are an expression of resistance to fire spread. Such
levels of resistance followed biophysical gradients. Coincidence of higher NPP and flammable forest
fraction enabled fire development to larger sizes under comparatively mild fire weather. Decrease in
NPP and flammable forest cover and high shrubland cover signaled intermediate resistance. Finally,
decreased terrain roughness with less forest and shrubland and more agriculture corresponded with
the highest resistance to fire spread. Population density is both a source of ignitions and a facilitator of
fire suppression and its potential role warrants further research. Future improvements in fire-weather
relationships analysis will likely result from the inclusion of additional variables, examined at the
scales most coherent with the objective, i.e., fire management versus understanding of processes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/10/838/s1,
Table S1: Percentiles of fire duration (days) for fires ≥0.01, 0.1, 1, 100, 500, and 1000 ha during the study period
(2001–2011); Table S2: Correlation matrix between regional population density and biophysical variables among
Portugal regions.
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Abstract: This work introduces a methodology for assessing near-future fire weather pattern
changes based on the Canadian Fire Weather Index system components (Fire Weather Index (FWI),
Initial Spread Index (ISI), Fire Severity Rating (FSR)), applied in touristic areas in Greece. Four series
of daily raster-based datasets for the fire seasons (May–October), concerning a historic (2006 to 2015)
and a future climatology period (2036–2045), were created for the areas under consideration, based
on high-resolution climate modelling with the Representative Concentration Pathway (RCP), PCR 4.5
and RCP 8.5 scenarios. The climate model data were obtained from the European Coordinated
Downscaling Experiment (EURO-CORDEX) climate database and consisted of atmospheric variables
as required by the FWI system, at 12.5 km spatial resolution. The final datasets of the abovementioned
variables used for the study were processed at 5 km spatial resolution for the domain of interest after
applying regridding based on the nearest neighbour interpolating process. Geographic Information
Systems (GIS) spatial operations, including spatial statistics and zonal analyses, were applied on
the series of the derived daily raster maps in order to provide a number of output thematic layers.
Moreover, historic FWI percentile values, which were estimated for Greece in the frame of a past
research study of the Environmental Research Laboratory (EREL), were used as reference data
for further evaluation of future fire weather changes. The straightforward methodology for the
assessment of the evolution of spatial and temporal distribution of Fire weather Danger due to climate
change presented herewith is an essential tool for enhancing the knowledge for the decision support
process for forest fire prevention, planning and management policies in areas where the fire risk both
in terms of fire hazard likelihood and expected impact is quite important due to human presence and
cultural prestige, such as archaeological and tourist protected areas.

Keywords: fire danger; fire weather patterns; climate change; RCP; FWI system; SSR

1. Introduction

Fire plays an important role in ecosystems structure and function in forested and non-forested
lands worldwide and in the Mediterranean region as well, where the climate favours noticeable
ecological diversity and wildland fire occurrence. All over the Mediterranean areas, fuel moisture level
is expected to decrease due to climate change. Thus, the meteorological danger of wildland fires is
likely to increase as the region becomes drier [1] with extended low moisture areas northwards [2].
In addition, the presence of human population is intense in many of these areas, making fire hazard and
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risk management a major concern and priority. This need emanates from the fact that wildfire activity is
projected to increase under future climate conditions and in conjunction with ongoing land use change,
forest fires are becoming a reoccurring hazard of forested landscapes globally, posing significant risks
to local and regional communities [3,4].

Consequently, new territories start facing increased fire risk but the long term interactions
between environmental factors, the social context and the fire regime, as well as the changing fire
behaviour spatial patterns, are still largely unknown [5], despite that the relationship of wildfire
occurrence to physical and social factors is a widely-researched topic [6,7]. Usually, for the prediction of
wildfire occurrence, the factors considered include meteorological data [8,9] and physical indices from
fire-danger rating systems [9,10]. Such prediction forms the basis for costly wildfire pre-suppression
activities, such as aircraft fire detection flights and pre-fire distribution of firefighting means [11].

The potential for climate change to cause "novel" or "no analogue" environmental conditions in
some ecosystems presents new challenges for management, policy and planning [4]. In addition to
the day-by-day fire-danger mapping, spatial information related to the fire history and physiognomic
characteristics, such as maps of fire frequency, severity, size, and pattern, are useful for planning fire
and natural resource management at a strategic level for an area of interest. This type of information
can also be used for the assessment of risk and ecological conditions and for the study of fire regimes
and their changes as a function of the specific characteristics/features of a territory, such as climate,
topography, vegetation and land use [12].

Furthermore, Geographic Information Systems (GIS) can be used for the integration of spatial
layers of information for the identification and analysis of spatial patterns of wildfire occurrence and
for deriving fire risk at different scales. Different spatial analysis techniques can be applied to answer
the questions of “where” and “why” these wildfires are occurring [6,13]. It is also well known that the
comparison among regions (e.g., of different geographic orientation and context; northwest, southwest,
intermountain region), within regions (across biophysical settings), and across time is a powerful way
to understand the factors that determine and constrain the fire patterns [14–16].

It is clearly justified that the main causes of fire have to be minimized, a process which needs to
include the investigation of the social and economic factors that lead people to start fires, increasing
awareness of the danger, encouraging good behaviour and sanctioning offenders. In particular,
the importance of the wildland-urban interface in potentially catalysing fire impacts should be focused
on a context where wildfires are genuinely understood as a natural hazard and defensible space is
considered even from a social and policy perspective [7].

Montiel et al., 2016 [6], stated that zoning and characterizing a fire-prone territory require
special spatial units to analyse the variability of attributes previously defined as relevant to wildfires,
both structurally and dynamically. They proposed the use of landscape units obtained from landscape
character assessments as the most appropriate ones for a smaller scale approach and drainage basins,
which can then be easy to define using GIS, for a larger scale approach.

In addition to the above zoning approach, which is based on physical characteristics, the authors
of the current study consider that social and cultural aspects should not be underestimated for
the delineation of fire-prone territories and for the definition of respective fire management units.
According to Ryan et al., (2012) [17], a landscape approach provides the tools for organizing and
understanding intellectual and practical issues engaged by the topic of fire effects on cultural resources.

Any management decisions that affect cultural resources, also affect people and local
communities—sometimes in direct and damaging ways. Understanding fuels, fire behaviour, and heat
transfer mechanisms is a key to predicting, managing, and monitoring the effects of fire on cultural
resources. Cultural resources are important resources that bind those of us living today with our
ancestors, traditions, and histories. They are generally viewed as non-renewable resources. They are
often fragile tangible objects, susceptible to thermal damage during wildland fires (wildfires and
prescribed fires) and physical damage from management-related disturbances [17].
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Recognizing these particularities, as well as the necessity of both rational and effective fire
management in changing fire regime conditions in Greece due to climate change, the methodology for
the study of near-future fire weather changes, proposed in the current paper, focuses on specific areas
which cover a number of criteria that combine social and cultural aspects with fire regime and physical
characteristics. Greece has suffered from significant forest fires during the last few decades, which,
among others, has affected forested archaeological sites [18,19]. As these areas accept thousands of
tourists every year, their effective protection and management is essential and imperative.

A number of previous studies elaborated, most of them by using the FWI system indices, on the
impact of climate change on the fire regime in the Mediterranean region and particularly in Greece,
and indicated that fire danger and risk would increase in the near future in these areas [3,20–22].
Likewise, in a 2011 research work [23], where the FWI system indices and other climatic indices
were used with the the Intergovernmental Panel on Climate Change (IPCC) Special Report Emission
Scenarios (SRES), A1B, meteorological data and the Regional Atmospheric Climate Model (RACMO2)
version 2 of KNMI (Royal Netherlands Meteorological Institute: De Bilt, Netherlands) a substantial
increase was found in the number of fire risk days in the near future for a number of areas of agricultural
and touristic importance in Greece. Many of the abovementioned studies have used older versions
of climatic models, nowadays considered rather less accurate and reliable; however, all the research
results have clearly shown the tendency of fire danger and risk to increase in the region, highlighting
its importance on economical and societal domains. Moreover, they have put on the table the necessity
for studying the fire regime future projection in view of climate change, as an essential prerequisite
for fire management, in every area under consideration. Thus, the previous research works mainly
focused on the quantitative results obtained for the specific considered geographical region, as well
as on the grade of changes in fire danger and risk indices. The current study aims at the provision
of indicators and methodological tools for the quantitative assessment of fire weather in “Areas of
Interest (AoI)”, applicable in any geographical region, that can be considered as distinctive units in
terms of all levels of fire management. Accordingly, the AoI selected for Greece, consist of extended
areas of the Natura 2000 network, which include archaeological sites or sites of natural beauty with
intense touristic load. It is worth mentioning that, according to de Rigo et al., 2017 [5] for specific
typologies of forests, increasing the size of protected areas, such as Natura 2000 sites, might even be
considered as a potential option for adaptation if other strategies are considered in parallel.

2. Materials and Methods

In this section, the developed methodology to obtain the stated objectives of the study are
described. The research approach, based on ArcGIS 10.8 (Environmental Systems Research Institute
–ESRI: Charlotte, NC, USA), comprised a number of flow processes, which are depicted in the diagram
of Figure 1. In a first step, the fire weather calculation for the whole country was carried out, based
on the Canadian FWI system components and the input climate datasets of the studied historic and
future periods, for the two different emission scenarios. Then, a number of auxiliary thematic layers
were selected concerning the country, such as the Natura 2000 map, the bioclimatic map that was part
of the ESRI living Atlas and the FWI extreme class thresholds map as derived according to recent
past research of the authors [23], Varela et al., 2018. These thematic layers served to select the AoI,
taking into consideration a number of criteria, discussed later. In a next step, the selected AoI and
the thematic layers were used with GIS functions and tools (e.g., cell by cell analysis, zonal analysis
and statistics, spectral profile analysis) to derive the final products which were daily maps and spatial
datasets for a number of components of FWI that express the fire spread rate and fire danger. In the
sub-sections below, the applied methodology is presented in detail together with the datasets used and
the procedure for the analysis of the results.
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Figure 1. Flow process of the developed methodology for the derivation of fire weather patterns for
selected Areas of Interest (FWI—Fire Weather Index, ISI—Initial Spread Index, DSR—Daily Severity
Rating, SSR—Seasonal Severity Rating, RCP—Representative Concentration Pathway, GIS—Geographic
Information System).

2.1. Fire Weather Estimation and Climatic Data

The Canadian FWI System, apart from its classical use as a daily fire weather rating system,
is widely used for the projection and study of fire weather due to climate change [24,25]. The FWI
System is comprised of six components: five of them are intermediate outputs of the system, namely
the Fine Fuel Moisture Code, the DuffMoisture Code, the Drought Code, the Initial Spread Index and
the BuildUp Index. The final output is the Fire Weather Index (FWI). An extension of the FWI output is
the Daily Severity Rating (DSR) [24,25], which is averaged through a fire season for the calculation of
the Seasonal Severity Rating (SSR), allowing for the objective comparison of fire danger from year to
year and from region to region. It has been used for expressing the projection of Fire danger changes
by the European Environment Agency [26].

The parameters of the FWI system that are employed for the purposes of this study are:

• The Initial Spread Index (ISI) which expresses the expected rate of fire spread.
• The Fire Weather Index (FWI) as the main indicator of fire danger representing the potential fire

line intensity [14].
• The Daily Severity Rating (DSR) and fire season SSR, which represent the difficulty of controlling

fires and reflect the expected fire suppression expected efforts [27].

Daily meteorological values at noon (12:00) of near surface temperature, relative humidity
and 10-m wind speed, as well as 24-h cumulative precipitation, are used for the calculation of the
components of the system for the whole country. The values of FWI vary from 0 to above 100. The ISI
parameter is also used for operational purposes as an indicator of fire spread rate [28]. According
to Viegas et al., 1999 [10], ISI was found to be an interesting index for the prediction of extreme fire
conditions, as a result of an extended drought and strong wind conditions.

The above parameters of FWI system are classified into 46 classes for operation purposes,
using varying classification thresholds, depending on the area of application [23,24,29], and they are an
important and effective decision support tool used for forecasting the levels of preparedness needed
for an area, the determination of the appropriate mitigation measures, the definition of organizational
requirements and the support of fire control measures that are appropriate for the area [24].
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In the current study, the climatic data, used as input to the FWI system, were derived from the
state-of-the-art Global–Regional Climate modelling system ICHEC-EC-EARTH v2.3 /SMHI-RCA4
v4 (Irish Centre for High-End Computing (ICHEC)-European Consortium-Earth (EC-Earth) version
2.3/Swedish Meteorological and Hydrological Institute (SMHI)-Rossby Centre Atmospheric model
version 4) simulations [30] of the openly accessible SMHI archives of the European Coordinated
Downscaling Experiment (EURO-CORDEX) at spatial resolution of 12 km. The Regional Climate
Model (RCM) simulations were retrieved for the domain of Greece, for the historic (2006 to 2015)
and future (2036 to 2045) periods and for the latest IPCC RCP scenarios of climate forcing of 4.5 and
8.5 W/m2 [31,32]. The retrieved variables were values of temperature at 2 m, wind speed at 10 m
and relative humidity at 12:00 UTC (Universal Time Coordinated) as well as total precipitation on a
24 h basis.

The RCA4 model performance was evaluated for the recent past climate by Strandberg et al.,
2014 [33]. An uncertainty assessment due to systematic bias of the model future climate simulation
RCA4 has already been carried out by Sørland et al., 2018 [34]. The excellent performance of the
SMHI model has been assessed for Greece by comparing the SMHI-RCA4 EUROCORDEX historic
simulations with available meteorological data from the Hellenic National Meteorological Service
(HNMS), by Katopodis et al., 2019 [35].

2.2. Auxiliary Thematic Layers and Selection of AoI

As previously mentioned, specific thematic layers were used as auxiliary data for the derivation
of AoI and the analysis of the results. In particular, the thematic layers employed were the Natura
2000 map for Greece, the Bioclimatic World map and the FWI extreme class thresholds.

The Natura 2000 dataset consists of Special Areas of Conservation (SACs) and Special Protection
Areas (SPAs) designated, respectively, under the Habitats Directive and Birds Directive. The Habitats
Directive requires Sites of Community Importance (SCIs), which, upon the agreement of the European
Commission, become Special Areas of Conservation (SACs) to be designated for species other than
birds, and for habitat types (e.g., particular types of forest, grasslands, wetlands, etc.). In Greece,
202 areas have been registered as SPAs and 241 as SCIs. The area covered by the above 443 Greek
Natura 2000 areas, cover about 19% of the country [36].

The Bioclimatic World map is part of the ESRI living Atlas [37] and provides access to a 250 m
cell-sized raster with a bioclimatic stratification into classes based on factors that influence the
distribution of plants and animals [38]. This layer was used to select distribution across the country
AoI of various bioclimatic zones reflecting different fire prone areas.

The FWI extreme class thresholds map, according to the methodology of Varela et al., 2018 [23]
(Figure 2), was necessary for the analysis and interpretation of the results. According to this methodology,
the FWI classification takes into consideration the environmental variety of the country, which highly
influences the significance of FWI values and consequently their interpretation as reasonable and
functional fire danger classes. The classification approach, applied in the Greek Local Forest Service
Office (LFSO) areas, is based on Percentile Indices and provide suitably varying FWI boundaries of
classes based on the specific physical characteristics of the study area.

In compliance with the aim of the current study, the AoI were selected in order to satisfy a
combination of the following criteria:

• Forest Fire prone areas
• Areas with high cultural and/or touristic interest
• Areas with high ecological/environmental interest
• Distribution in a variety of Bioclimatic zones within Greece
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Figure 2. Map of Fire Weather Index (FWI) values thresholds for Extreme FWI class for each Forest Office Area.

Thus, the Natura 2000 network of areas was considered as a very important and appropriate
basis, since it covers a significant part of the country and includes areas with the above defined criteria.
A brief preliminary study of the Natura 2000 areas in conjunction with additional data regarding
archaeological sites and touristic load, taking into account the Bioclimatic zones, resulted in the final
list of the selected 19 areas (Table 1).

Table 1. Catalogue of the selected Natura 2000 areas.

CODE HECTARES NAME

GR1150012 17,592.2 Thasos (Ypsario Mountain and Seaside Zone) and Koinyra, Xironisi Islands
GR2130011 53,407.8 Central Zagori and Eastern Part Of Mitsikeli Mountain

GR4210005 27,696.2
Rodos Island: Akramytis, Armenistis, Attavyros, Streams and Seaside Zone
(Karavola-Ormos Glyfada)

GR1250001 19,139.5 Olympos Mountain
GR3000001 14,902.4 Parnitha Mountain
GR1270014 23,451.1 Sithonias Peninsula
GR4110011 14,787.9 Olympos Lesvou Mountain
GR2550009 48,785.9 Taygetos-Lagkada Trypis Mountain

GR4210029 13,441.9
Eastern Rodos Island: Profitis Ilias-Epta Piges-Ekvoli Loutani-Katergo, Stream
Gadoura-Lindou Stream-Pentanisa and Tetrapolis Islands, Psalidi Hill

GR3000013 5392.5
Kythira And Related Islands: Prasonisi, Dragonera, Antidragonera, Avgo,
Kapello, Koufo Kai Fidonisi

GR4340014 13,979.8 Samaria National Park-Trypitis Canyon-Psilafi-Koustogerako
GR2220006 20,715.2 Kefalonia Island: Ainos, Agia Dynati Kai Kalon Oros
GR2410002 34,384.0 Parnassos Mountain
GR1270003 33,567.8 Athos Peninsula
GR1430001 31,112.2 Pilio Mountain and Seaside Zone
GR2330004 314.8 Olympia
GR2550006 53,367.5 Taygetos Mountain
GR3000005 5374.3 Sounio-Patroklou Island and Seaside Zone
GR3000006 8819.2 Ymittos-Kaisariani Aesthetical Forest-Vouliagmenis Lake
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For the analytical and methodological purposes of the study, taking into account the extended
regime of the Fire Weather influence, as well as the spatial resolution of the climatic data, a buffer of
10 km was applied on the polygons of the selected NATURA areas to create the Areas of Interest (AoI).
The buffered areas which comprise the AoI are presented in Figure 3.

Figure 3. Map of the Areas of Interest (selected Natura 2000 areas buffered by 10 km).

2.3. Application of GIS Tools and Functions

The study of Fire Weather patterns and changes was elaborated using tools and functions of
ARC-GIS v.10.8 software [39].

The software applications, tools and functions adopted for the implementation of the methodology
are described below:

i. FWI System Raster Calculator

For the daily calculation of the FWI system map series, for the historic and future time period
the FWI_G.FMIS module of the proprietary software GeographicalFire Management Information
System—G.FMIS v.1, (Varela Vassiliki & Eftychidis Georgios, Attika, Greece), has been used [40,41].
The software is developed in C++ programming language, based on the structure and equations of
the Canadian FWI system [42] and supports the massive calculation of maps for all the FWI system
intermediate and final parameters in ARCGIS Grid ASCII format.

ii. Buffering

Euclidean buffers measure distance in a two-dimensional Cartesian plane, where straight-line or
Euclidean distances are calculated between two points on a flat surface (the Cartesian plane).

iii. Cell by cell analysis

This function is used for the calculation of per-cell statistics from multiple rasters. The statistics
used for the current study are maximum, mean, minimum, range and standard deviation.

iv. Zonal analyses and statistics

The Zonal tools allow for performing analysis where the output is a result of computations carried
out on all cells that belong to each input zone. A zone can be defined as being one single area, but it
can also be composed of multiple disconnected elements, or regions.
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With the Zonal Statistics tool, a statistic is calculated for each zone defined by a zone dataset,
based on values from another dataset (a value raster). A single output value is computed for every
zone in the input zone dataset. The Zonal Statistics as a Table tool calculates all—a subset or a single
statistic that is valid for the specific input but returns the result as a table instead of an output raster.

v. Spectral profile analysis

Spectral profile charts allow us to select areas of interest or ground features on the image and
review the spectral information of all bands in a chart format [43]. The boxes’ chart type of the
spectral profile analysis allows us to visualize and compare the distribution and central tendency
of the values of the set of pixels for each of the AoI, collected through their quartiles, which are a
way of categorizing the examined parameter values into four equal groups based on five key values:
minimum, first quartile, median, third quartile, and maximum. A quartile is a type of quantile that
divides the number of data points into four more or less equal parts, or quarters. This type of analysis
has been used as a supervisory method for the comparison of the distribution and frequency of the
values of SSR and ISI parameters within each of the AoI.

In order to study the Fire Weather patterns and their changes in the near future due to climate
change, a number of analyses were performed, using the above described GIS functions and operations,
for the selected FWI system parameters. The first phase of the work concerned a generic part of
application of the FWI system equations for the calculation of daily maps and the creation of the basic
spatial datasets. Then, different analyses were considered as appropriate for each parameter, for the
provision of easy to interpret and meaningful outputs to be used as quantitative indicators of the fire
weather characteristics and their future changes for the areas of interest.

Firstly, the calculation of daily maps for the selected FWI parameters (i.e., FWI, DSR, ISI) was
carried out for the historic and future periods for RCP 4.5 and RCP 8.5 scenarios for the AoI, using raster
calculation techniques and the algorithm and equations of the FWI system. Then, the FWI system’s
final spatial datasets were created for the studied periods of time for all the AoI, based on the above
daily calculated maps and using the GIS “cell by cell” analyses. More particularly, the groups of spatial
datasets that were created concerned:

(a) The Seasonal Severity Rating (SSR) for the historic and future fire periods for the climatic scenarios
RCP 4.5 and RCP 8.5;

(b) The mean values of Initial Spread Index for the historic and future fire periods for RCP 4.5 and
RCP 8.5;

(c) The number of days with extreme FWI, per fire period for the historic and future fire periods for
RCP 4.5 and RCP 8.5. The FWI thresholds for the extreme FWI class for the whole Greece were
defined by Varela et.al., 2018 [23].

For each group of the above spatial datasets, i.e., (a–c), further analyses were performed as
detailed below.

2.4. Analyses of SSR Spatial Datasets for the Historic and Future Scenarios

The Zonal Statistics GIS operation has been used for the calculation of Mean, Maximum, Minimum,
STD and Range of values of SSR within each of the AoI for the historic and future period and the
respective tables have been calculated. The tables with the calculated values for the historic and the
two future period scenarios are presented in Tables S1–S3.

In addition, combined Bar Charts were created for the presentation and comparison of the SSR mean
values within each of the AoI for the historic and future period scenarios (Figure 4). Moreover, Spectral
Profile Charts of SSR values distribution within each of the AoI, for the historic and future period climatic
scenarios were created. Indicative profile charts of two AoI are presented in Figures 5 and 6.
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Figure 4. Bar chart of historic Seasonal Severity Rating (SSR) value, RCP 4.5 SSR value and RCP 8.5
SSR value by Area of Interest (AoI).

Figure 5. Spectral Profile of Seasonal Severity Rating (SSR) values for GR2410002 (Delphoi), for: RCP
4.5 2036–2045 (left), historic period (centre), and RCP 8.5 2036–2045 (right).

Figure 6. Spectral Profile of Seasonal Severity Rating (SSR) values for: GR1250001 (Dion), for RCP 4.5
2036–2045 (left), historic period (centre), and RCP 8.5 2036–2045 (right).
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Finally, the mapping of SSR Range and Mean parameters of each of the AoI for the historic and
future time-periods, derived from the Zonal Statistics, were classified in categories (Figures 7 and 8).
The above selected parameters were considered as essential indicators of Fire weather diversity and
intensity for each of the AoI and their mapping provided an informative portrayal and comparison of
Fire Weather conditions.

Figure 7. Maps of coloured Areas of Interest (AoI) depicting classified Seasonal Severity Rating (SSR)
Mean values, for: (a) the historic period, (b) RCP 4.5 2036–2045, (c) RCP 8.5 2036–2045.

Figure 8. Maps of Seasonal Severity Rating (SSR) Range coloured classes within the Areas of Interest
(AoI) for: (a) the historic period, (b) RCP 4.5 2036–2045, (c) RCP 8.5 2036–2045.

2.5. Analyses of Mean ISI Spatial Datasets for the Historic and Future Scenarios

Similar to the above approach, the Zonal Statistics GIS operation was applied for the calculation of
the Mean, Maximum, Minimum STD and Range of values of ISI within each of the AoI for both periods
and respective tables have been calculated. The tables with the calculated values for the historic and
the two future scenarios are presented in Tables S4–S6.

The combined Bar Charts were then calculated for the presentation and comparison of the mean
ISI within each of the AoI, for the historic and future period scenarios (Figure 9). Finally, the Spectral
Profile Charts of ISI value distribution within each of the AoI, for the historic and future period
scenarios were created. Indicative profile charts of two AoI are shown in Figures 10 and 11.
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Figure 9. Bar chart of historic Initial Spread Index (ISI) Mean value, RCP 4.5 ISI Mean value and RCP
8.5 ISI Mean value by Area of Interest.

Figure 10. Spectral Profile of Initial Spread Index (ISI) values for GR2410002 (Delphoi), for RCP 4.5
2036–2045 (left), historic period (centre), and RCP 8.5 2036–2045 (right).

Figure 11. Spectral Profile of Initial Spread Index (ISI) values for: GR1250001 (Dion), for RCP 4.5
2036–2045 (left), historic period (centre), and RCP 8.5 2036–2045 (right).
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2.6. Analyses of “Extreme FWI Days” Spatial Datasets for the Historic and Future Scenarios

The mapping of the difference among the RCP 4.5 and RCP 8.5 future periods and the historic
period, of the maximum days with extreme FWI calculated in the cells within each area of interest
was performed. Two maps were created as a result of this analysis, each one corresponding to the
difference among RCP 4.5 and RCP 8.5 for 2036 to 2045 and the historic period, respectively (Figure 12).

Figure 12. Differences in the results of maximum number of days with extreme Fire Weather Index
(range depicted with colours) within the areas of interest between: (a) RCP 4.5 and historic data sets,
(b) RCP 8.5 and historic datasets.

3. Results

The results of this study, which are based on the methodology described above, are presented in
the form of tables, bar charts, box charts and maps, aiming to provide different views of fire weather
parameters, in order to allow their study both at a local and national level.

3.1. Seasonal Severity Rating (SSR) Mapping and Analysis

The tables with the calculated values derived from Zonal statistics analyses, which are described in
Section 2.4 (Tables S1–S3) in Supplementary Material), show that there is a variety of Seasonal Severity
Rating (SSR) values for all the statistical parameters, among the AoI for the historic and future periods.

The results indicate that the values of SSR increase everywhere under future scenarios, while this
increase is higher for RCP4.5 than for RCP8.5 for a number of areas. However, in three areas, SSR is
found to be lower for RCP4.5 than for the historical period. More particularly, the mean values vary
from 5.28 for GR1270003 up 18.78 for GR3000005 for the historic period, from 5.44 for GR1270003 up
20.33 for GR3000005 for the future RCP 4.5; and 5.28 for GR2220006 up 20.33 for GR3000005 for RCP
8.5. The range of SSR values within each of the AoI, which shows the diversity of fire weather within
the area, is found between 2.79 and 16.39 for the historic period, while for RCP 4.5 and RCP 8.5, SSR
values vary from 7.91 to 24.98 and from 6.83 to 24.16, respectively.

Figure 4, which represents the SSR mean values as a bar chart showcases in a more concise manner
the variety of the SSR values among the AoI and for the studied periods and scenarios. On the other
hand the box plot diagrams in Figures 5 and 6, which are based on Spectral Profile analyses for two
(2) selected AoI that were selected as an example for presenting this type of information, provide a
more detailed picture of the profile of the SSR values within each of the AoI for both fire periods.

Mapping of the mean and the range of SSR values in Figures 7 and 8, respectively, at the national
level, using color-coded classes, allow for visual comparison among the AoI and among the studied
time periods. The results show the variety in SSR among the AoI for the historical time, which are
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expected due to the diversity of the physical characteristics of the selected AoI, as well as the different
levels of changes due to the two future climate scenarios. As an example, in Figure 7, it is obvious that
the changes in fire weather due to climate change are more significant for three AoI in northern Greece,
which are classified in a higher class and their colour code changes from green to yellow, compared to
other AoI, which are classified in the same class as in the historic period map.

3.2. Initial Spread Index (ISI) Analysis

ISI parameter is an important intermediate parameter of FWI and similarly to the SSR parameter,
Tables S4–S6 (Supplementary Material) and Figures 9–11 provide different analysis views of this
parameter for the historical and future periods. The resulting values indicate that the values of ISI also
increase in all areas for both future scenarios, while this increase is higher for RCP 4.5 than for RCP 8.5
for most areas.

3.3. Difference of the Maximum Number of Days with Extreme Fire Weather Mapping and Analysis

The maps that were derived from the calculation of the difference of the maximum number of
days with extreme FWI between the future and historic periods are depicted in Figure 12. The results
obtained show quite clearly that, in some areas (i.e., blue, green colour coded AoI), the number of
extreme days slightly decreases or does not change significantly, while it is found to increase by more
than seven days in other areas (i.e., red, purple colour coded AoI). The greatest difference of more than
10 days is found in the case of RCP 4.5 (Figure 12a).

4. Discussion

The analysis described above, is proposed as a methodology for the provision of information
for all the areas of interest (AoI), in order to study the various perspectives of fire weather due to
climate change.

The resulting values of the fire weather parameters for the selected areas and for the historical and
future periods for two climate scenarios of the applied climate model, indicate that significant changes
are expected in fire weather due to climate change. Moreover, these changes also have an important
spatial variation, which needs to be highlighted, in order to be taken into account for rational fire
management adaptation.

The accuracy of the results in terms of the estimated values of fire weather parameters, depends
mainly on the inherent uncertainties of the input model climatic data. However, a further analysis on
these uncertainties as well on the specific resulting values obtained for the areas under consideration,
for the two future scenarios, are considered beyond the scope of the current study, which focuses on
the methodology for studying fire weather patterns for distinctive fire management entities. Thus,
the results obtained are discussed below mainly from the methodological point of view and the fire
management perspective.

Previous research results on climate change impact on forest fires presented the grade of changes by
applying a variety of available climate models on different geographical environments. Those studies
indicated clearly that climate change should be considered as an important factor affecting future fire
regime worldwide and thus as an essential subject for the adaptation of fire management policy and
actions [44]. On the other hand, fire management is a complex task, demanding a concise picture of
the situation at all operational levels—i.e., at national, sub-national and community (local) levels [45].
The analyses and indicators, which are proposed here, can be applied in local management units and, at
the same time, can provide meaningful and easily interpreted results at the sub-national (regional) and
national level in a consistent manner. For the presentation and evaluation of the proposed methodology,
two climatic models were chosen to be applied in the selected areas in Greece, which were considered
as discrete management units. The following discussion of the results aspires to stand out in terms of
the operational usefulness of the methodology.
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The areas of interest are faced not only as natural protected units but also as landscape entities
specifically characterized in terms of Fire Weather, which in turn is the main component of fire
danger and risk evaluation for each of the area, at the entity level. Moreover, at a higher level
of geographical/administrative analysis (i.e., regional, national), mapping of the classified entities
according to specific fire weather related variables, provides a concise portrayal of the spatial distribution
and interrelation of fire weather levels at a specific time “instance”.

The comparison among the historic and future time “instances”, which, in our study, were
represented by RCP 4.5 and RCP 8.5 climate change scenarios for the years 2036–2045, permitted the in
depth study of the fire weather patterns and their anticipated changes through time. The approach
followed included two levels of information, the first covering the needs of an extensive scientific
analysis (i.e., tables of variables, graphs) and the other made suitable for direct operational
purposes/application (i.e., single and simple Indicators, maps of classified areas of interest).

The basic climatic datasets for the application of the proposed methodology were based on two
IPCC RCP scenarios of 4.5 and 8.5 W/m2, from the openly accessible SMHI-RCA4 archives. The data
were spatially downscaled from 12 to 5 km resolution by applying a regridding method based on the
nearest neighbour interpolating process.

The zonal statistics for Seasonal Severity Rating (SSR) and Initial Spread Index (ISI) parameters are
presented in Tables S1–S6 (Supplementary material). The Range of Seasonal Severity Range (SSR) and
Initial Spread Index (ISI) values within each area of interest, as well as their Mean value and Standard
Deviation (STD) for the historic and the future scenarios were the descriptive indicators of these two
important parameters of fire weather. The calculated indicators allowed for both the comparison
among the areas for a specific time lapse and the study of fire weather evolution in time. From the
Range and STD values in these Tables S1–S6, it was deduced that some areas were characterized by
intrinsic homogeneity in both parameters (e.g., GR2220006, GR23300004) while others showed high
diversity in fire weather levels (e.g., GR1150012, GR 1250011).

The bar charts analyses of the Mean values of both parameters (SSR and ISI) for the areas of interest,
which were shown in Figures 4 and 9, respectively, constituted a comprehensive means of presentation
and comparison of the level of historic and future fire weather for the areas. According to this analysis,
both future scenarios lead to an increase in the two parameters in all the areas under examination.

Furthermore, spectral profiles of each of the area of interest (Figures 5, 6, 10 and 11) could provide
additional information about the distribution of mean and extreme values of parameters within each
of the area for all the time periods, and could be used in conjunction with the bar charts.

This type of information, which is available at the “area of interest” level of analysis, can be useful as
a decision support background for the fire management actions of the agency that is responsible for the
area (i.e., local forest office, management body), as it provides a brief overview of the current and future
fire weather conditions within the area. In addition to the above outputs, classification and mapping of the
areas of interest according to historic and future SSR Mean and SSR Range (Figures 7 and 8), can provide
a comprehensive and informative view for operational purposes at a regional or national level. It is worth
mentioning at this point that, for the classification thresholds and the number of classes for SSR and ISI
parameters, further research is essential for the definition of appropriate values, customized at a regional
or national level.

The classification thresholds of these two indicators, for the purposes of the current paper,
were defined based on the range and distribution of values that were obtained for the examined
areas in the historic period in a way to accommodate a satisfactory for the analysis number of classes.
The classification of the mean SSR values lead to a map of six classes of areas of interest. For the
future scenarios, the classes were found to change for some of the areas of interest. More particularly,
for RCP4.5 in total six areas of interest were found at a higher class and two areas of interest at a lower
class, while for RCP 8.5, seven areas of interest were shown at a higher class.
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Similarly, the classification for the SSR range of the historic period lead to five classes of areas of
interest. For the future RCP 4.5 scenario, three areas changed to a higher class and one areas to a lower
class, while for RCP 8.8, four areas were found at a higher class.

The estimation and mapping of the difference of the maximum number of days with extreme fire
weather between historic and future periods (Figure 12) is another informative output of the proposed
methodology, to be used for operational purposes, as it is a valid indicator of the potential changes of
the preparedness planning actions.

Further information can be figured out about the patterns of changes. For example, some areas
that are characterized by humid and cold climate (e.g., GR21300011, GR2410002) are expected to
suffer significant changes in the number of extreme fire weather days, while others which belong to
the classical Mediterranean zone show very slight changes (e.g., GR3000013, GR43400014). This is
considered an interesting finding, since it indicates that climate change tends to affect, more severely,
areas less adapted to forest fires. In those areas, ecosystems are less resilient on wildland fires and the
recovery after a fire occurrence will take much longer or even may not occur at all. Future research on
specific characteristics of the areas in terms of the climatic zone and other physical descriptors may
provide interesting conclusions about the fire regime due to climate change aspects.

The above output indicators and physical descriptors of the methodology presented as maps and
tables for the selected areas in Greece, are easily applicable to other geographical areas, either at a local
or at a national level, since they are based on classical GIS functions. Besides, the mapping of FWI
system parameters for the study of current and future fire weather, which constitutes the underlying
dataset for the development and application of the methodology in any geographical area, is a common
practice for all the categories of relevance to forest fire stakeholders. Moreover, as implied above,
the introduced methodology can be the basis for further enhancement of indicators and descriptors
related to forest fire regimes, aiming to facilitate fire management to a greater extent.

5. Conclusions

A straight forward methodology was presented for the estimation of fire weather indicators of the
current fire weather and for the near future for areas which are considered as management units in
terms of fire management. The proposed methodology, easy to apply using simple GIS functionality,
can be used as an informative decision support tool for operational purposes in any geographical
area, at a local and national level. The application of the methodology provided interesting, easy to
interpret results for the area of Greece for the anticipated changes in fire weather danger, due to near
future climate changes. The outcomes of the methodology, which are provided both as indicators
for individual areas and as maps at a regional or national level, could be used in conjunction with
other thematic layers and information for the areas of interest. The combination and mapping of the
various indicators provide a concise view of the fire weather characterizing each area and also allow
for comparison among the management units and the extraction and study of spatiotemporal patterns.
This in turn constitutes a valid approach for providing in depth knowledge of the current and future
fire weather regime which would not be obvious otherwise.
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Abstract: Reasonable forest fire management measures can effectively reduce the losses caused by
forest fires and forest fire driving factors and their impacts are important aspects that should be
considered in forest fire management. We used the random forest model and MODIS Global Fire Atlas
dataset (2010~2016) to analyse the impacts of climate, topographic, vegetation and socioeconomic
variables on forest fire occurrence in six geographical regions in China. The results show clear
regional differences in the forest fire driving factors and their impacts in China. Climate variables
are the forest fire driving factors in all regions of China, vegetation variable is the forest fire driving
factor in all other regions except the Northwest region and topographic variables and socioeconomic
variables are only the driving factors of forest fires in a few regions (Northwest and Southwest
regions). The model predictive capability is good: the AUC values are between 0.830 and 0.975, and
the prediction accuracy is between 70.0% and 91.4%. High fire hazard areas are concentrated in the
Northeast region, Southwest region and East China region. This research will aid in providing a
national-scale understanding of forest fire driving factors and fire hazard distribution in China and
help policymakers to design fire management strategies to reduce potential fire hazards.

Keywords: forest fire driving factors; forest fire occurrence; random forest; forest fire
management; China

1. Introduction

Forests are ecosystems with rich biodiversity [1–3], and they play an important role in soil
and water conservation, climate regulation, the carbon cycle and other aspects [4,5]. Fire, which
affects the biodiversity, species composition and ecosystem structure of forest ecosystems, is the
dominant disturbance factor in many forest ecosystems [6–9]. Moreover, fire also affects human
lives, regional economies and environmental health [10–12]. In short, forest fires threaten the
sustainable development of modern forestry and human security [13]. Therefore, as an important
component of global environmental change, forest fires have become the focus of forestry and ecological
research [14,15]. An important aspect of forest fire management and prevention is studying forest fire
driving factors and their impacts, which can help fire prevention departments to accurately assess
forest fire hazards and effectively implement forest fire prevention strategies [11,16]. Forest fires are
affected complexly by many driving factors, so it is very important to select appropriate forest fire
driving factors and prediction models.

Forest fire driving factors have generally been divided into four types, namely, climate, vegetation,
topography and socioeconomic [17,18], which vary at different temporal and spatial scales [19].
Regarding impact modes, climate factors control the accumulation and water content of forest
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fuels [20,21], which are usually considered as the major determinants of forest fire occurrence [22].
Vegetation is a source of forest fuel and directly affects the ignition capacity [23,24]. Topography can
affect the structure and distribution of vegetation, thus affecting the possibility of forest fires as well as
the spread speed and direction of forest fires [25]. Socioeconomic factors affect forest fire occurrence via
building expansion, traffic network construction and human-related activities, which increase pressure
on wildlands, bringing ignition sources close to forests [23,26]. In terms of impact scope, climate affects
forest fires on a larger scale while the vegetation, topography and socioeconomic factors affect forest
fires on a smaller scale [27]. In terms of impact relationship, there are nonlinear relationships and
thresholds between forest fire driving factors and forest fire occurrence [28–30]. Random forest is a
machine learning algorithm, which can automatically select important variables and flexibly evaluate
the complex interaction between variables. In recent years, random forest has been used in the study
of forest fire driving factors and has shown better prediction ability than multiple linear regression [31]
and logistic regression [18].

Previous studies have analysed forest fire distribution, forest fire frequency and burnt area at
the national scale in China. Tian [32] analysed the spatial and temporal distribution characteristics of
wildfires for 2008–2012 in mainland China. Chang [33] explored the environmental factors influencing
the spatial variation in the mean number of fires and mean burned forest area from 1987 to 2007 at
a provincial level using cluster analysis and redundancy analysis. Zhong [34] analysed the changes
in fire frequency and burnt area during 1992–1999 in China. Lu [35] analysed the impacts of annual
temperature and precipitation on the burnt area dynamics in China. Ying used ground-based data to
analyse the environmental and social factor contributions to the spatial variation of forest fire frequency
and burnt area summarized at a county level during 1989–1991 in China [36]. However, previous
studies have used models to analyse the driving factors and their impacts of forest fire occurrence in
China, mainly at the provincial scale, such as in Fujian province [18], Heilongjiang province [29,37]
and Shanxi province [38]. There is still a lack of nationwide research on forest fire driving factors and
their influence on recent forest fires. The value of this study lies in conducting the nationwide research
which can provide a detailed analysis and practical information of the forest fire hazard and would
help governments to formulate more accurate forest fire prevention strategies and allocate resources
rationally. In this study, we used the random forest model and forest fire ignitions for 2010~2016
(obtained from MODIS Global Fire Atlas dataset) to evaluate the impact of four types of forest fire
driving factors and the regional differences of these factors in China. This study has three objectives:
(1) to determine the forest fire driving factors in various geographical regions of China and analyse
how they affect forest fire occurrence; (2) to map the likelihood of forest fire occurrence in China and
(3) to discuss forest fire prevention strategies in different geographical areas of China.

2. Materials and Methods

2.1. Study Area

The study area covered mainland China (Hong Kong, Macao and Taiwan were not analysed due
to a lack of data). The driving factors of forest fires and their effect were analysed in 6 geographical
regions: Northeast region (NE), North China region (N), East China region (E), Northwest region
(NW), Southwest region (SW) and Mid-south region (MS). Each region is an aggregation of provinces
with adjacent locations and similar topography, economy and climate. The details of each region are
shown in Figure 1 and Table 1.
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Figure 1. Six geographical regions in China.

2.2. Data Preparation

2.2.1. Dependent Variables

We identified 17,466 forest fires (ignitions) between 2010 and 2016 across mainland China with the
Global Fire Atlas dataset (downloaded from the Oak Ridge National Laboratory (ORNL) Distributed
Active Archive Center (DAAC), https://daac.ornl.gov) and Chinese land-use type dataset (downloaded
from the Resource and Environment Data Cloud Platform, http://www.dsac.cn). The timing and
location of the fire ignitions were provided by the Global Fire Atlas, which is a global dataset that
records the daily dynamics of individual fires based on the Global Fire Atlas algorithm and estimated
burn dates from the Moderate Resolution Imaging Spectroradiometer (MODIS) [41]. A Chinese
land-use type dataset provided the forest land range in mainland China for 2015 at a 1000-m spatial
resolution. According to this range, we identified Chinese forest fire ignitions for 2010–2016 from the
Global Fire Atlas dataset in ArcGIS10.2 software (Environmental Systems Research Institute, RedLands,
CA, USA). Figure 2 shows the distribution of the forest fire ignitions for six geographical regions
in China.
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Figure 2. Distribution of the number, proportion and location of forest fire ignitions in six geographical
regions from 2010 to 2016.

Modelling forest fire occurrence requires a binary target variable, so a certain percentage of control
points (nonfire points) were generated randomly according to three principles: (1) the ratio of forest
fire ignition points to control points was 1:1.5 [29], (2) the control points were located within the forest
land range in mainland China and (3) the points were random in both time and space. ArcGIS10.2
software was used to randomly generate the control points, and the dates of the control points were
randomly selected during 2010–2016 to meet the randomness of time.

2.2.2. Explanatory Variables

A total of 21 variables, grouped into climate, topography, vegetation and socioeconomic categories,
were selected as the initial forest fire driving factors (Table 2). All variables were integrated in
ArcGIS10.2 software and extracted to the forest fire ignition points and control points.
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Climate Variables

Climate variables affect fuel accumulation and moisture which largely determine the time, location
and occurrence probability of forest fires [31]. In this study, the initial climate variables include annual
variables and daily variables. The annual variables are precipitation and soil moisture. As climate
factors in the period before the fire can also affect vegetation accumulation and the fuel moisture content,
precipitation and soil moisture in the year before individual forest fire ignition during 2010–2016 were
also taken into consideration [29,31]. We downloaded precipitation data with a 1-km spatial and
monthly temporal resolution [42] and soil moisture data with a 0.25◦ spatial and monthly temporal
resolution from the National Earth System Science Data Sharing Infrastructure, National Science &
Technology Infrastructure of China (http://www.geodata.cn). Based on these data, we calculated the
annual cumulative precipitation and the annual average soil moisture for 2009–2016.

The daily initial climate variables include daily average temperature, daily average ground surface
temperature, daily average relative humidity, daily minimum relative humidity, daily precipitation,
daily average atmospheric pressure, sunshine hours, daily average wind speed and daily maximum
wind speed. The daily humidity, precipitation, wind speed and sunshine hours affect the possibility of
forest fire occurrence by reflecting fuel moisture. Daily temperature is the key condition triggering fire
ignition. Atmospheric pressure can affect the oxygen content in the air, and the pressure obviously
differs due to significant altitude differences and the complex terrain in China; therefore, atmospheric
pressure was also considered as an initial climate variable. Daily climate data were obtained from
the Daily Data Set of China’s Surface Climate Data (V3.0) of the National Meteorological Information
Centre (http://data.cma.cn), and we included daily data from 824 national weather stations in China.
The daily climate variable values for each fire ignition and control point were provided by the weather
station nearest that point.

Topographic Variables

Topography influences the possibility of forest fire occurrence by affecting the vegetation
composition and distribution and local microclimate [25]. In this study, the initial topographic
variables include elevation, slope and aspect. Data for these variables were extracted from digital
elevation model (DEM) data in China with 90-m spatial resolution (obtained from Geospatial Data Cloud
site, Computer Network Information Center, Chinese Academy of Sciences, http://www.gscloud.cn).
Aspect was divided into 8 categories according to the criteria in Table 3.

Table 3. Aspect classification criteria.

Aspect Azimuth (◦)

North 337.5~22.5
Northeast 22.5~67.5

East 67.5~112.5
Southeast 112.5~157.5

South 157.5~202.5
Southwest 202.5~247.5

Vegetation Variable

The initial vegetation variable is the fractional vegetation cover (FVC), which is the percentage of
the vertical projection of vegetation area to the ground surface within a unit area [48] and can well
represent the amount of forest fuel [18,29]. The normalized difference vegetation index (NDVI) is
significantly better than other vegetation indices in estimating FVC [49,50], so we calculated FVC based
on the annual NDVI dataset for 2010–2016. The calculation formula is as follows:

FVC = (NDVI −NDVIsoil)/
(
NDVIveg −NDVIsoil

)
(1)
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where NDVIsoil is the NDVI of bare soil and NDVIveg is the NDVI of dense vegetation canopy.
The annual NDVI dataset for 2010–2016 was from the Resource and Environment Data Cloud Platform
(http://www.resdc.cn), and the resolution was 1 km [51].

Socioeconomic Variables

Socioeconomic variables affect the probability of forest fire occurrence by affecting human activities.
Human travel and engaging in production activities in or around forests will increase the occurrence
probability of forest fires. In this study, the initial socioeconomic variables include the distance to
the road and railway, the distance to the settlement, gross national product (GDP) and population
density. Collectively, these variables can reflect the accessibility of a forest and the possibility of people
engaging in fire-prone behaviours in forests [23,26]. The road, railway and settlement datasets were
from the National Basic Geographic Database of 1:1 million, which was published on the National
Catalogue Service for Geographic Information website (http://www.webmap.cn). The distance between
the forest fire ignitions and control points to the nearest road and railway and settlement areas was
calculated using the ArcGIS 10.2 “near analysis tool.” The population density dataset and GDP dataset
were downloaded by the National Earth System Science Data Center (http://www.geodata.cn), and the
resolution was 1 km.

2.3. Model

The random forest model was used to identify the forest fire driving factors and their corresponding
impacts on forest fire occurrence in 6 geographical regions of China and the whole study area. Random
forest is an ensemble learning technique that is derived from classification or regression trees (CARTs).
Random forest has a high prediction accuracy and high tolerance to outliers and “noise,” and it has
shown good prediction ability in forest fire forecasting [30,52]. The random forest model is composed
of a combination of various classification trees, which are individually generated by bootstrap samples.
Two-thirds of the data are used to train the random forest model and one-third of the data (the
out-of-bag samples, OOB) for model validation [53]. Variable importance can also be measured by
OOB, which compares increases in OOB error with that variable randomly permuted and all others
unchanged [54,55]. The importance score of a variable is as follows [56]:

VI
(
Xj
)
=

1
ntree

∑
t

(
err′OOB

j
t − errOOB

j
t

)
(2)

where Xj is the jth variable, ntree is the number of trees, errOOB
j
t is the OOB error of each tree t and

err′OOB
j
t is the OOB error when Xj is permuted, while all other variables remain unchanged among

OOB data. For regression, the OOB error is the mean square error; meanwhile, for classification, the
OOB is misclassification probability.

In this study, RF was used for classification, which divided dependent variables into two categories:
forest fire occurrence and forest fire nonoccurrence. When using an RF model, the number of trees
to run (ntree) and the number of variables to try at each split (mtry) need to be defined. According
to previous experience [56,57], the value of mtry was set as

√
number o f variables and the value of

ntree was set to 2000. The varSelRF package in R statistical software was applied to select significant
variables from the initial variables. Then, we measured and ranked the variable importance of these
variables. The partialPlot function was used to draw partial dependence plots which can describe the
relationship between the dependent variables and explanatory variables.

To eliminate bias, in each study region and the whole study area, we selected 80% of the original
dataset (training dataset) to build the model, and the remaining 20% of the original dataset (independent
validation dataset) was used to assess the performance of the final model. Each training dataset was
divided into an inner training dataset (60%) and an inner validation dataset (40%) randomly [52]; this
procedure was repeated 5 times, and 5 random subsamples of data in each study region and the whole
study area were obtained. Each subsample contained an inner training dataset and an inner validation
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dataset, and each subsample generates an intermediate model. The variables that were selected as
significant variables in at least 3 of the 5 intermediate model were considered as the forest fire driving
factors in a region. In each region, the driving factors and training dataset were used to build a final
model, and the independent validation dataset was used to validate the model [30].

2.4. Prediction Accuracy of the Models

The receiver operating characteristic (ROC) curve, a coordinate schema analysis method, was
applied to measure the predictive capability of the RF models using the area under the curve
(AUC) [28,58,59]. The AUC values ranged from 0.5 to 1, with values closer to 1 indicating a relatively
higher accuracy, while an AUC value of >0.8 usually indicates good predictive capability [18,60].
We used the Youden criterion, calculated according to the sensitivity and specificity of ROC (Youden
criterion = sensitivity + specificity − 1) [28,61], to determine the cut-off point, which was the threshold
for judging whether a fire occurred in the models [62]. If the predicted probability was higher than the
cut-off point, it was assumed that a forest fire had occurred and vice versa. The prediction accuracy of
the model was calculation based on the cut-off point.

2.5. Mapping Forest Fire Occurrence Likelihood

Based on the fire occurrence probability calculated by the random forest model for fire ignitions
and nonfire points, we used ordinary kriging interpolation to map the forest fire occurrence likelihood
in mainland China in ArcGIS 10.2 [30].

3. Results

3.1. Identification of Forest Fire Driving Factors and Their Importance Ranks

Table 4 and Figure 3 show the forest fire driving factors and their importance rank in six regions
and the whole study area. Table A1 and Figure A1 show the significant variables and their importance
rank of each intermediate model.

Figure 3. Importance rankings of the forest fire driving factors according to the mean decrease accuracy
in six geographical regions and the whole study area. The abbreviated variable names are the same as
in Table 4.
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Table 4. The results when identifying the forest fire driving factors in six geographical regions and the
whole study area.

Variable Type Variable NE N NW SW MS E The Whole Study Area

Climatic

Pre_year0 +

Pre_year1 +

Soil_mois0 + +

Soil_mois1 / / / + / / /

Tem_avg + + + +

GST_avg / / / / / / /

RH_avg + +

RH_min + + +

Pre_daily
Pres_avg +

SSD
Win_avg
Win_max +

Topographic
DEM + +

Aspect
Slope

Vegetation FVC + + + + + +

Socioeconomic

Dis_road +

Dis_sett
Pop +

GDP +

VIF (variance inflation factor) was used to measure the amount of multicollinearity in the explanatory variables.
When VIF > 10, then collinearity in the explanatory variable exists and is excluded in the random forest model. “+”
indicates that the variable was identified as being a forest fire driving factor in a given region, and “/” indicates that
the variable is excluded due to multicollinearity. NE: Northeast region; N: North China region; NW: Northwest
region; SW: Southwest region; MS: Mid-south region; E: East China region; Pre_year0: annual precipitation in the
year before the fire; Pre_year1: annual precipitation in the year of the fire; Soil_mois0: annual soil moisture in the
year before the fire; Soil_mois1: annual soil moisture in the year of the fire; Tem_avg: daily average temperature;
GST_avg: daily average ground surface temperature; RH_avg: daily average relative humidity; RH_min: daily
minimum relative humidity; Pre_daily: daily precipitation; Pres_avg: daily average air pressure; SSD: sunshine
hours; Win_avg: daily average wind speed; Win_max: daily maximum wind speed; DEM: elevation; FVC: fractional
vegetation cover; Dis_road: the distance to road and railway; Dis_sett: the distance to settlement; Pop: population
density; GDP: gross national product.

3.2. Influence of the Forest Fire Driving Factors on Forest Fire Occurrence in Different Regions

Partial dependence plots of each forest fire driving factor in each region were drawn to analyse
the variables’ influence intervals and trends on the probability of forest fire occurrence, where x is
the variable value and y is logit of the probability of forest fire occurrence/2 [30]. The markers on the
x-axis show the data distribution, where fewer marks indicate less training data and inaccurate model
predictions; therefore, only the impact trends within the dense data range are discussed in this study.

Figure 4 shows a nonlinear relationship between each forest fire driving factor and the probability
of forest fire occurrence. The vegetation variable shows the same influence trend on the forest fire
occurrence probability in each region, and the overall trend is fluctuating. When the fractional
vegetation cover is approximately 0.9, the probability of forest fire occurrence shows a peak value and
then shows a sharp decline trend, while the probability is lowest when the fractional vegetation cover
is approximately 0.98. The impact of climate variables is complex. The daily average temperature
shows the same influence trend in the Northeast region and Southwest region: it was positively
correlated with the probability of forest fire occurrence initially and negatively correlated after the
values exceeded thresholds (12 ◦C in the Northeast region and 21 ◦C in the Southwest region). However,
it shows another influence trend in the Mid-south region and East China region: the probability of
forest fire occurrence is stable at higher values within 20 ◦C and decreases sharply when the daily
average temperature exceeds 20 ◦C. The average daily relative humidity and the minimum daily
relative humidity are generally negative correlated with the probability of forest fire occurrence in the
respective regions. The annual soil moisture shows different influence trends in the North China and
Southwest regions: in the North China region, it shows a fluctuating trend, while in the Southwest
region, the probability of forest fire occurrence increases initially and then decreases as the annual soil
moisture increases. For other climate variables, annual precipitation in the year before the fire and the
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year of the fire, daily average air pressure and daily maximum wind speed were generally positively
correlated with the probability of forest fire occurrence. The elevation shows similar influence trends in
the Northwest region and Southwest region and is negatively correlated with the probability of forest
fire occurrence. Among socioeconomic variables, the probability of forest fire occurrence decreases
with increasing distance from roads and increases initially and then declines with increasing population
density and GDP.

Figure 4. Cont.
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Figure 4. Partial dependence plots of each forest fire driving in six geographical regions and the whole
study area.

3.3. Model Prediction Accuracy in Different Regions

The AUC values of each final model and intermediate model are greater than 0.85, and the
prediction accuracy is between 70.0% and 91.4% (Table 5), which indicates that the model predictive
capability is good. In the final models, the AUC (0.974) and prediction accuracy (91.4% for training and
89.3% for testing) in the East China region were the highest. The AUC (0.871) and prediction accuracy
(81.75% for training and 70.52% for testing) in the Northwest region were the lowest, which may be
due to the too-few fire ignition in the Northwest region.
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3.4. Likelihood of Forest Fire Occurrence

Figures 5 and 6 show that the areas with high probability of forest fires are concentrated in the
Northeast and Mid-south regions as well as the south of East China region and the northwest of
Northwest region. To compare the results of the national model and the regional model, we drew a
map of the difference in the likelihood of forest fire occurrence calculated based on the whole study
area model and the regional models (Figure 7). The map shows that the probability of the whole model
was higher than those of the regional models in most areas of the Southwest region and North China
region and in the centre of Northwest region and lower than those in most areas of the Northeast,
Northwest, East China and Mid-south regions and in the north of Northwest region.

Figure 5. Map of the likelihood of forest fire occurrence in China obtained from the regional models.

Figure 6. Map of the likelihood of forest fire occurrence in China obtained from the whole study
area model.
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Figure 7. Map of the likelihood of forest fire occurrence obtained from the whole study area model
minus that obtained from the regional model.

4. Discussion

4.1. Forest Fire Driving Factors and Their Influence

Previous studies have found regional and scale differences in forest fire factors [18,36,63]. This study
also confirmed this point. We found that due to the differing geographical and social conditions in
China from region to region, the forest fire driving factors vary in different regions, and the same
variables also operate differently depending on the region and the scale of analysis, which illustrates
the spatial applicability of forest fire research and the importance of formulating forest fire management
systems based on regional characteristics. All final models included a smaller number of variables
selected from the initial set. Previous studies have also shown that the simplified model is more stable.
Previous studies have also noted that a parsimonious model would be more stable [28,49].

In this study, all final models included climate variables, which are considered the dominant factors
affecting forest fires [64–66]. Among climate variables, daily average temperature was the forest fire
driving factor in the most regions (Northeast, Southwest, Mid-south, East China and the whole study
area). Previous studies [29,30] have shown thresholds and complex nonlinear relationships between
temperature and forest fire occurrence probability, and our study confirms this point. The probability of
forest fire occurrence initially increases or stabilizes at a higher value with the increase in temperature.
When the temperature exceeds a certain threshold (12 ◦C in the Northeast region, 21 ◦C in the Southwest
region and 20 ◦C in the Mid-south region and East China region), the probability shows a sharp
downward trend. There may be two reasons for this situation. (1) Although high temperatures can
increase plant evaporation, thereby reducing the moisture content of forest fire fuels [67], most parts
of China experience a monsoon climate (Table 1), and rainfall and heat are synchronous. Therefore,
high-temperature weather is often accompanied by high relative humidity levels, which have opposite
effects on forest fires, so there were impact thresholds. (2) At high temperatures, forest fire prevention
departments are vigilant, implementing strict fire prevention systems and limiting the occurrence of
forest fires [68]. Relative humidity is also one of the main forest fire driving factors. In this study,
relative humidity showed a similar influence trend in the respective regions, and it was negatively
correlated with the occurrence probability of forest fires despite some moderate fluctuations. This is
because high relative humidity increases the moisture content of combustible materials and reduces the
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possibility of fire [64]. It is noteworthy that the daily minimum relative humidity was also selected as
the forest fire driving factor in the whole study area, which indicates that this variable operates at both
regional and large scales. Air pressure affects the oxygen content and fuel ignition temperature, and a
relatively lower pressure will lead to a lower oxygen content and higher ignition temperature, thus
reducing the possibility of forest fire occurrence [69]. However, in the Southwest region, when the daily
air pressure is higher than 860 hPa, the probability of forest fire occurrence shows a small decrease,
which indicates that there is also an impact threshold of air pressure. The daily maximum wind speed
is also one of the driving factors of forest fires in southwest China. The wind will increase evaporation
capacity, and the higher the wind speed, the smaller the water content of forest combustibles; hence, the
wind speed has a positive correlation with the occurrence probability of forest fires, which is consistent
with the research results of Guo [18] in Fujian province of China. The soil moisture in the year of the
fire directly affects the water content of forest combustibles [31], so this variable is negatively correlated
with the occurrence probability of forest fire. Annual precipitation promotes the accumulation of plant
fuels, thus having a positive impact on the occurrence probability of forest fires.

Among the topographic factors, elevation is a forest fire driving factor in the Northwest region and
Southwest region, and it is negatively correlated with the occurrence probability of forest fires in both
regions. We suspect that this is because the surface of these two areas fluctuates greatly; the elevation in
most areas is 500~5000 m in the Northwest region and 500~6000 m in the Southwest region. As elevation
increases, human activity decreases, and its impact on weather conditions, vegetation and soil moisture
is also not conducive to forest fire occurrence [49,70,71]. Tian’s research [32] also showed that forest
fires mainly occurred at low elevations in China.

The vegetation variable (fractional vegetation cover) is a forest fire driving factor in all regions
except the Northwest region, and its importance ranked first in four regions (Northeast region,
Southwest region, East China region and the whole study area). Previous studies have also shown that
vegetation cover has an important impact on forest fires [29,67]. Generally, the higher the vegetation
coverage, the more fuel is available, so high vegetation coverage leads to a high forest fire rate. However,
in this study, fractional vegetation cover showed a complicated influence trend: when the fractional
vegetation cover is between 0.8 and 0.97, the occurrence probability of forest fires fluctuates at a higher
value, and then it drops rapidly, reaching a minimum value when the fractional vegetation cover
is approximately 0.98. We suspect that this is because in forest land with high vegetation coverage,
canopy occlusion will lead to some small fires that are not easily detected by MODIS [67].

Compared with other variables, socioeconomic variables are the forest fire factors in few regions
(Northwest region and Southwest region), with low degrees of importance (Figure 4). Distance
from the road is negatively correlated with the probability of forest fires in the Northwest region
because the forests close to the road are vulnerable to traffic accidents and human activities (i.e.,
smoking and picnics) [26,61]. GDP and population density show similar influence trends, and
they have a positive impact on the occurrence probability of forest fires initially and then have a
negative impact after exceeding a certain threshold (GDP of 200 RMB/km2 and population density
of 100 number/km2). This may be because within a certain range, the increase in population density
and GDP will increase human activity in forests, thereby promoting forest fire occurrence [51,72,73].
However, in economically prosperous and high-population-density areas, the forest coverage rate is
low and there are few forest-related production activities conducted by humans, so the occurrence
probability of forest fires decreases [18,29,32].

4.2. Implications for Forest Fire Prevention

There are differences in the forest fire driving factors (Figure 3 and Table 4) and the prediction
results (Figures 5–7) between the regional models and the whole study area model. Therefore, it is
necessary to study forest fire driving factors based on geographical regions, and regional differences
should also be fully considered in forest fire management. Forest fire management departments should
formulate forest fire prevention strategies according to the differences in forest fire driving factors and
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impact thresholds in different regions. E.g., in the Northwest region, elevation has the greatest impact
on forest fire occurrence, and the probability of forest fires is higher in low-elevation areas. Therefore,
the Northwest region forest fire management departments should strengthen forest fire monitoring in
low-elevation areas, such as setting up more forest fire observation towers and forest fire brigades [30].
In the North China region, soil moisture has the greatest impact, so changes in soil moisture should
be taken into account when developing a forest fire prevention strategy. In the Northeast region and
East China region, when the daily average temperature reaches the impact threshold, the occurrence
probability of forest fires reaches a maximum; hence, forest fire management departments should be
more vigilant in the corresponding weather. In the Southwest region, there are 13 forest fire driving
factors. These factors should be integrated into the local assessment index systems of forest fire hazard,
and the influence of these factors should be considered comprehensively when judging the forest
fire hazard. In the Mid-south region, forest fire management departments should pay attention to
monitoring the daily minimum relative humidity.

The map of the likelihood of forest fire occurrence is also crucial to forest fire management [74].
Understanding the distribution of forest fire occurrence likelihood can help to determine the location
and number of fire observation towers [28], contributing to more effective use of financial and human
resources. Figure 5 shows that areas with a high probability of forest fires are concentrated in the
Northeast and Mid-south regions as well as the south of East China region and the northwest of
Northwest region; thus, more stringent forest fire prevention systems should be implemented in
these areas.

4.3. Strengths and Limitations

Previous forest fire research has usually been based on eco-geographical areas or forest
types [29,75,76]. However, these zoning methods ignore administrative boundaries, and forest
fire management strategies are often formulated by administrative areas. Therefore, we chose a zoning
method that takes administrative divisions into account, trying to provide a more practical reference for
China’s fire prevention department. Our research is based on geographical regions in China, a division
method that considers both administrative divisions and natural conditions that has been used in
some forestry analysis [77,78]. Each region is an aggregation of provinces with adjacent locations and
similar topography, economy and climate. However, this zoning method has its shortcomings. First,
if a province has complex topography and different climate and vegetation types (such as Tibet in the
Southwest region), it must also be included in one region. We think that this may have led to far higher
number of forest fire driving factors in the Southwest region than in the other regions. The second
point is about the model. To reveal the nonlinear relationship and influence threshold between forest
fire driving factors and forest fire occurrence probability, we used the random forest model, which
has shown good prediction ability in previous studies on forest fire [18,30,31]. However, behaving
as a “black box,” this method cannot calculate regression coefficients or confidence intervals [63,79].
Based on these two points, in future research, we will try to use geographically weighted regression,
a spatially explicit technique that would overcome the necessity of building predetermined regions,
to analyse forest fire driving factors to address these limitations.

5. Conclusions

We used the random forest model to analyse the forest fire driving factors in different geographical
regions in China for 2010 to 2018. The model predictive capability is good, with a prediction accuracy
between 70.0% and 91.4%. Furthermore, we mapped the probability of forest fire occurrence in China
based on the results of the model. In China, there are obvious regional differences in the types of
forest fire driving factors and their impacts. Climate variables (especially temperature and humidity)
have major impacts on forest fires occurrence, and the vegetation variable is secondary. Topographic
variables and socioeconomic variables are only the forest fire driving factors in the Southwest and
Northwest regions. There is a nonlinear relationship and influence threshold between forest fire driving
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factors and forest fire occurrence probability. High fire hazard areas are concentrated in the Northeast
and Mid-south regions as well as the south of East China region and the northwest of Northwest
region. This research will aid in providing a national-scale understanding of forest fire driving factors
and fire hazard distribution in China and help policymakers to design fire management strategies and
allocate resources reasonably to reduce potential fire hazards.
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Appendix A Appendix

Table A1. The results when identifying the significant variables in each intermediate model in six
geographical regions and the whole study area.

Variable Type Variable
Intermediate Models

Selected Frequency
1 2 3 4 5

(a) Northeast region

Climatic

Pre_year0 0
Pre_year1 0
Soil_mois0 0
Soil_mois1 / / / / / /

Tem_avg + + + + + 5
GST_avg / / / / / /

RH_avg 0
RH_min 0
Pre_daily 0
Pres_avg 0

SSD 0
Win_avg 0
Win_max 0

Topographic
DEM 0

Aspect 0
Slope 0

Vegetation FVC + + + + + 5

Socioeconomic

Dis_road 0
Dis_sett 0

Pop 0
GDP 0

(b) North China region

Climatic

Pre_year0 0
Pre_year1 0
Soil_mois0 + + + + 4
Soil_mois1 / / / / / /

Tem_avg + + 2
GST_avg / / / / / /

RH_avg 0
RH_min 0
Pre_daily 0
Pres_avg + 1

SSD 0
Win_avg 0
Win_max 0

Topographic
DEM + 1

Aspect 0
Slope 0

Vegetation FVC + + + + + 5

Socioeconomic

Dis_road 0
Dis_sett 0

Pop + 1
GDP 0
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Table A1. Cont.

Variable Type Variable
Intermediate Models

Selected Frequency
1 2 3 4 5

(c) Northwest region

Climatic

Pre_year0 0
Pre_year1 + 1
Soil_mois0 0
Soil_mois1 / / / / / /

Tem_avg 0
GST_avg / / / / / /

RH_avg + + + 3
RH_min 0
Pre_daily 0
Pres_avg + + 2

SSD 0
Win_avg + 1
Win_max 0

Topographic
DEM + + + + 4

Aspect + 1
Slope 0

Vegetation FVC 0

Socioeconomic

Dis_road + + + 3
Dis_sett 0

Pop 0
GDP + 1

(d) Southwest region

Climatic

Pre_year0 + + + + + 5
Pre_year1 + + + + + 5
Soil_mois0 + + + + + 5
Soil_mois1 + + + + + 5
Tem_avg + + + + + 5
GST_avg / / / / / /

RH_avg + + + + + 5
RH_min + + + + + 5
Pre_daily 0
Pres_avg + + + + + 5

SSD 0
Win_avg + + 2
Win_max + + + 3

Topographic
DEM + + + + + 5

Aspect 0
Slope 0

Vegetation FVC + + + + + 5

Socioeconomic

Dis_road 0
Dis_sett 0

Pop + + + + + 5
GDP + + + + + 5

(e) Mid-south region

Climatic

Pre_year0 + + 2
Pre_year1 + 1
Soil_mois0 + 1
Soil_mois1 / / / / / /

Tem_avg + + + + + 5
GST_avg / / / / / /

RH_avg + 1
RH_min + + + + + 5
Pre_daily + 1
Pres_avg + 1

SSD 0
Win_avg 0
Win_max 0

Topographic
DEM 0

Aspect 0
Slope 0

Vegetation FVC + + + + + 5

Socioeconomic

Dis_road 0
Dis_sett 0

Pop 0
GDP + 1
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Table A1. Cont.

Variable Type Variable
Intermediate Models

Selected Frequency
1 2 3 4 5

(f) East China region

Climatic

Pre_year0 0
Pre_year1 0
Soil_mois0 0
Soil_mois1 / / / / / /

Tem_avg + + + + + 5
GST_avg / / / / / /

RH_avg 0
RH_min 0
Pre_daily 0
Pres_avg 0

SSD 0
Win_avg 0
Win_max 0

Topographic
DEM 0

Aspect 0
Slope 0

Vegetation FVC + + + + + 5

Socioeconomic

Dis_road 0
Dis_sett 0

Pop 0
GDP 0

(g) The whole study area

Climatic

Pre_year0 0
Pre_year1 0
Soil_mois0 0
Soil_mois1 / / / / / /

Tem_avg 0
GST_avg / / / / / /

RH_avg 0
RH_min + + + + + 5
Pre_daily 0
Pres_avg 0

SSD 0
Win_avg 0
Win_max 0

Topographic
DEM 0

Aspect 0
Slope 0

Vegetation FVC + + + + + 5

Socioeconomic

Dis_road 0
Dis_sett 0

Pop 0
GDP 0

VIF (variance inflation factor) was used to measure the amount of multicollinearity in the explanatory variables.
When VIF > 10, then collinearity in the explanatory variable exists and is excluded in the random forest model. “+”
indicates that the variable was identified as being a forest fire driving factor in a given region, and “/” indicates
that the variable is excluded due to multicollinearity. Pre_year0: annual precipitation in the year before the fire;
Pre_year1: annual precipitation in the year of the fire; Soil_mois0: annual soil moisture in the year before the fire;
Soil_mois1: annual soil moisture in the year of the fire; Tem_avg: daily average temperature; GST_avg: daily
average ground surface temperature; RH_avg: daily average relative humidity; RH_min: daily minimum relative
humidity; Pre_daily: daily precipitation; Pres_avg: daily average air pressure; SSD: sunshine hours; Win_avg: daily
average wind speed; Win_max: daily maximum wind speed; DEM: elevation; FVC: fractional vegetation cover;
Dis_road: the distance to road and railway; Dis_sett: the distance to settlement; Pop: population density; GDP:
gross national product.
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Figure A1. Cont.
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Figure A1. Importance rankings of the significant variables according to the mean decrease accuracy
in each intermediate model in six geographical regions and the whole study area. The abbreviated
variable names are the same as in Table A1.
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Abstract: Forest fire risk has increased globally during the previous decades. The Mediterranean
region is traditionally the most at risk in Europe, but continental countries like Serbia have experi-
enced significant economic and ecological losses due to forest fires. To prevent damage to forests and
infrastructure, alongside other societal losses, it is necessary to create an effective protection system
against fire, which minimizes the harmful effects. Forest fire probability mapping, as one of the basic
tools in risk management, allows the allocation of resources for fire suppression, within a fire season,
from zones with a lower risk to those under higher threat. Logistic regression (LR) has been used
as a standard procedure in forest fire probability mapping, but in the last decade, machine learning
methods such as fandom forest (RF) have become more frequent. The main goals in this study were
to (i) determine the main explanatory variables for forest fire occurrence for both models, LR and RF,
and (ii) map the probability of forest fire occurrence in Eastern Serbia based on LR and RF. The most
important variable was drought code, followed by different anthropogenic features depending on
the type of the model. The RF models demonstrated better overall predictive ability than LR models.
The map produced may increase firefighting efficiency due to the early detection of forest fire and
enable resources to be allocated in the eastern part of Serbia, which covers more than one-third of the
country’s area.

Keywords: occurrence of forest fire; machine learning; variable importance; prediction accuracy

1. Introduction

Forest fires, as global phenomena, present numerous forms of threats to many coun-
tries around the world, from Canada and Siberia through to Indonesia, Australia, Africa,
and the Amazonia. Although statistics show that the frequency of fires, alongside the
total burnt area, have been decreasing from year to year globally [1], several regions will
experience larger and more intense fires [2–4]. The Mediterranean region is traditionally
the most at risk in Europe [5], but in recent years, forest fires have also become an important
issue in Central Europe [6]. Among other European countries, Serbia experienced increased
fire activity during the last two decades [7].

The increasing risk and associated damage caused by fires are usually linked to
climate changes [8]. Considering the current climate scenario [9], which predicts an average
temperature rise of 4–6 ◦C by the end of this century [10,11], and a decrease in total rainfall
with an uneven distribution throughout the year in the south of Europe featuring long
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periods of drought in summer, an increased risk of forest fire is expected in Europe [5].
The greatest changes in Europe are expected in the transition between the Mediterranean
and Euro-Siberian regions [12], where the Balkan Peninsula is situated. The most dominant
oak and beech forest may be replaced by evergreen Mediterranean vegetation [13,14],
which is more prone to forest fire. Therefore, a further increase in forest fire risk can be
expected due to changes in the fuel type.

Aside from the direct damage in terms of wood loss, which is obvious and easy to
quantify, many other risks may appear following forest fires, due to the slow process of
regeneration, especially in conifer forests [15]. Secondary pests, such as bark (Coleoptera:
Curculionidae: Scolytinae) and ambrosia beetles (Coleoptera: Buprestidae) and diseases,
that attack physiologically weakened trees may reach an outbreak population level and
affect a much larger area than forest fire alone [16]. To minimize the harmful effects of forest
fires, it is necessary to create an effective protection system against fire. According to San-
Miguel-Ayanz [17], forest fire risk is defined as the probability of a fire happening and its
consequences. Therefore, any increase in fire probability or its consequences directly results
in an increase in fire risk. Our research has focused on forest fire occurrence probability
mapping as a component of the future system for forest fire risk assessment. Forest fire
probability mapping is a basic tool in risk management [18,19] and allows the allocation of
resources for fire suppression, within a fire season, from zones with a lower risk to those
under higher threat. Also, in the long run, mapping fire occurrence probability is a very
valuable tool in forest management planning that improves forest resilience to fire through
the implementation of various types of fire preventive silvicultural measures [20–23].

Among traditional methods, logistic regression (LR) is the most common when dealing
with binary outcomes, like the presence or absence of fire [24]. Conversely, machine learn-
ing (ML) methods, as a form of artificial intelligence, are widely used in wildfire science
and management, with more than 300 articles published on this topic since the 1990s [25].
Random forest (RF) belongs to the decision trees branch of the same group of ML meth-
ods [26]. Our study had the following objectives: (1) to map the probability of forest fire
occurrence in Eastern Serbia based on LR and RF; (2) to determine the main explanatory
variables for forest fire occurrence for both models.

2. Materials and Methods

2.1. Study Area

The study area is in the eastern and southern parts of Serbia (Figure 1). It has a total
land area of 30,235.5 km2. Broadleaved, conifer, and mixed forest cover 12,587.5, 170.7,
340.6 km2, respectively. Natural grasslands, transitional woodland-shrub, and sparsely
vegetated areas cover 925.7, 2949.5, and 48.0 km2, respectively, while other areas represent
agricultural, urban, or other non-wood areas. The elevation ranges from 28 to 2169 m.
It has been observed that durations of extremely hot weather last longer and periods of
extremely cold weather are shortened compared to the reference period of 1960–1990 [27].
These trends of extreme temperature conditions are most pronounced in the summer sea-
son [27]. A decrease in spring precipitation has been detected over the central and eastern
parts of Serbia [28]. The annual quantity of rainfall is often insufficient, and droughts are
evident in eastern and south-eastern parts of Serbia [28]. Scenarios where the monthly
quantity of precipitation falls in only a few days of the month are expected to become more
frequent, which will lead to more extreme weather events such as floods and droughts [29].
Serbia has two peaks in its fire season [30]. The first peak occurs in March, which is asso-
ciated with 25% of the annual burnt area, while the second and largest peak appears in
August [31]. In August 2012, more than 40 large fires were recorded, including two fires
that were more than 1000 ha in size [32]. More than 16,000 ha of forest land were destroyed
in 2007, with the value of the wood lost was estimated at 40 million euros [33].
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Figure 1. The geographic position of study area, Eastern Serbia, is marked in gray (latitudes 42.27–
44.82◦ N and longitudes 20.90–23.01◦ E) with the layer of forest fire hotspots obtained by NASA’s
Fire Information for Resource Management System (FIRMS) (MODIS fire hotspot) for the period of
2001–2018.

2.2. Data Preparation

2.2.1. Dependent Variable

Data regarding the fire location were obtained from NASA’s Fire Information for
Resource Management System (FIRMS), which distributes near real-time fire products from
Moderate Resolution Imaging Spectroradiometer (MODIS) from the Terra and Aqua plat-
forms with a spatial resolution of 1 km (https://firms.modaps.eosdis.nasa.gov). Each po-
sition of a MODIS-identified active fire represents the center of a 1 × 1 km pixel that is
labeled by the algorithm as containing one or more fires inside the pixel. Only fire pixels
with a confidence higher than 80% for the period from January 2001 to December 2018
were considered for further analysis, because in certain cases the product underestimates
the occurrence of fire [34].

2.2.2. Independent Variables

Independent variables were grouped into four categories: topography, vegetation,
anthropogenic factors, and climate. Specific variables within categories were selected
based on previous studies on forest fire occurrence [24,34–39]. Detailed information on
preselected variables is presented in Table 1.
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Table 1. Independent variables considered for forest fire occurrence models with codes, units,
source and calculated variable inflation factors (VIFs).

Variable Code Units Source VIF

Vegetation

Broad-leaved forest BF m2

CORINE
2012

4.121
Coniferous forest CF m2 1.160

Mixed forest MF m2 1.224
Natural grasslands NG m2 2.114

Transitional
woodland-shrub

TWS m2 2.482

Sparsely vegetated area SVA m2 1.066
1 Total forested area TFA m2

Anthropogenic

Distance to Municipality DisM m
OpenStreetMap

1.576
Distance to Road DisRo m 1.117
Distance to Rail DisRa m 1.224

Population Density PopD N/km2 CIESIN 1.147
Distance to Arable Land DisAL m CORINE

2012
1.012

Distance to Agricultural
Land

DisAgL m 1.619

Topographic

Distance to Water DisW m OpenStreetMap 1.804
Slope Degree Classes * SD.C

DEM
1.606

Aspect Classes * A.C4 2.132
2 Elevation Classes* E.C2 1.009

Climatic

Drought code DC RHMS 1.365
1 excluded from further analysis due to high Spearman’s rho correlation coefficient with the distance
to agricultural land (DAgL). 2 included as matching criterion in propensity-score matching and
therefore excluded in further analyses * categorical explanatory variable.

Topographic parameters, elevation, slope, and aspect, were derived from the dig-
ital elevation model (DEM) with a precision of 3 arcsec previously downloaded from
the United States Geological Survey (http://landsat.usgs.gov//landsatcollections.php).
Average values of elevation, slope, and dominant aspect were calculated for each polygon
in a 1 × 1 km grid using ArcGIS software (ESRI, Redlands, CA, USA). Obtained values of
the slope and dominant aspect were divided into classes according to Carmo et al. [35],
while elevations were divided into classes of 200 m (Figure 2).

Vegetation and land cover data were obtained from the CORINE 2012 data set
(https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012). The vector layer
was intersected with polygon grid data. Objects in this vector layer were filtered for the
following CORINE 2012 land cover classes (CLCs): broad-leaved forest (BF), coniferous for-
est (CF), mixed forest (MF), natural grasslands (NG), transitional woodland-shrub (TWS),
and sparsely vegetated areas (SVA) (Figure 2). Intersecting the polygon grid data with
the polygon CLC layer filtered this way, a new polygon layer with a table of attributes
containing a polygon grid Object ID, CLC class ID with its description, and an area of CLC
class that falls into the respective grid polygon were generated.

70



Forests 2021, 12, 5

Figure 2. Categorical predictors related to forest fire in Eastern Serbia. (a) Classes of elevation;
(b) aspect classes; (c) slope categories; (d) land cover categories obtained by CORINE 2012.

Data on drought code (DC), as a component of the Canadian Forest Fire Weather In-
dex [40], were obtained from the Republic Hydrometeorological Service of Serbia
(http://www.meteoalarm.rs/eng/fwi_osm.php) as tables with coordinates of meteoro-
logical stations with values on the drought code for each day in the observed period
(2012–2018). Each of these tables was then converted into a spatial point layer with points
representing meteorological stations and a respective table of attributes with values of
the drought code. The layer was then used for interpolation using the ordinary kriging
method [41], resulting in raster layers whose pixels represent values of drought code.
This way, we were able to calculate zonal statistics of drought code for each day and
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each polygon of a grid layer for raster layers that represent the observed period. Finally,
average values for each cell in the grid cells were calculated based on all of the drought
code data for the observed period.

Layers of roads, populated places, railroads, and agricultural land were used for the
calculation of the distance from each object of a 1 × 1 km grid to the nearest object of the
respective layer, so the attribute table of the generated point and polygon grid layer was
extended with distances to the nearest populated place, road, railway and agricultural land
(https://www.openstreetmap.org).

Population data were obtained from a raster dataset available for download in Geo-
TIFF format at the Center for International Earth Science Information Network (CIESIN),
Columbia University (http://dx.doi.org/10.7927/H4639MPP). The sum of the number of
people per polygon grid was also calculated by a zonal statistic tool.

At the end of the GIS portion of the analysis, Boolean values (Yes/No) were assigned
to the elements of the grid by using the Spatial Join tool. Values of Yes were assigned to the
elements for which the historical wildfire(s) occurred, and values of No were assigned to
those for which it did not.

Each cell with at least one historical record of a fire event from 2001 to 2018 was classi-
fied as a fire cell and coded as one (1). In total, 429 cells were selected as a fire cell for Eastern
Serbia. The use of binary LR alongside RF classification assumes that the predicted variable
is dichotomous. Therefore, necessary non-fire cells were sampled based on the propensity
score matching (PSM) method [42] and coded as zero (0). In general, a propensity score
analysis reduces the effect of confounding in observational (nonrandomized) studies and
can be used for matching, stratification, inverse probability of treatment weighting, and co-
variate adjustment, all based on the propensity score [43]. Thus, PSM forms matched sets
with equal ratio of treated and untreated subjects [44], in our case, of fire and non-fire cells,
who share a similar value of propensity score. Matching without replacement [45] was
applied for the selection of non-fire cells in this study. Namely, non-fire cells can be selected
only once as a match for a given fire cell. Among greedy and optimal matching procedures
of PSM, the latter was used in this study. Both approaches choose the same sets of controls
for the overall matched samples, but optimal matching does a better job of minimizing the
difference in propensity score value within each pair [46]. PSM was conducted in the R
package ‘MatchIt’ v 3.02 [47].

As it was important to avoid the selection of non-fire cells in the vicinity of the fire
cells, because of the similar environmental conditions, we tested distances among created
pairs of cells. The distance between pairs of fire and non-fire cells varied from 2.2 to
268.1 km, with an average of 134.2 km. Additionally, to validate the created models,
whole paired samples were randomly divided into two equal subsamples, training and
validation, with the same number of fire and non-fire cells [24,39,48,49].

One of the basic assumptions that must be met before applying LR is the absence of
high correlations (multicollinearity) among the explanatory variables (predictors) included
in the model. Explanatory variables were checked for multicollinearity by the variance
inflation factor (VIF) and Spearman’s rho correlation [50]. Only variables with VIF≤ 10
and a Spearman’s rho coefficient lower than 0.7 [51] were considered for model building.

2.2.3. Forest Fire Occurrence Frequency across Categorical Predictors

Forest fire distribution across categorical predictors was analyzed for all events
in the 15 years. Observed versus expected frequencies were analyzed and compared.
Observed frequencies represented the number of forest fires that occurred within the
explanatory variable category, while the expected frequencies were represented by the
surface covered by the respective variable category in the study area [24]. Comparisons
between observed and expected frequencies were based on chi-square statistics [52] at
a significance level of 0.001. Mean values were calculated for each class of categorical
predictors, and histograms were created accordingly.
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2.3. Modeling Procedures

Based on collected and generated data, the model of probabilities for forest fire occur-
rences was generated for each cell of the polygon grid for the territory of Eastern Serbia.

2.3.1. LR Models

The algorithm obtained by the LR calculates the conditional probability of the fire
event occurring from one or more input variables [53]. Also, LR can be used for estimating
the contribution and significance of each variable by the Wald test [54], and afterwards
can select a combination of variables that can be introduced in more complex models [55].
To estimate forest fire occurrence probability in Eastern Serbia by LR, the following equation
was applied:

Pi =
1

1 + e− (α+β1Xi1+β2Xi2+···+βpXip)
(1)

with “Pi” as the probability of the forest fire occurrence, “α” as a constant, “β” as a
coefficient from regression, and “X” as original values of variables.

2.3.2. RF Models

This method uses a large number of decision trees, which produce their predictions
and combine them into a single, more accurate, prediction [56]. RF has gained popularity
in recent years, as it has been proven to perform better than LR according to several
studies [39,57,58]. Specifically, it considerably outperforms LR in the accuracy measured,
as well as the Brier score and area under curve (AUC) [59–61], on large and diverse datasets.
Thus, considering the similarity of forest fire probability prediction to other risk-assessment
applications, we considered RF as a strongly supported model of choice worth investigation.
Similar to LR, the RF method is also good at handling both categorical and continuous
types of explanatory variables.

The method proposed by Ye et al. and Genuer et al. [37,62] was applied for the variable
selection. Each variable was included in the model N − 1 times, where N represents the
number of variables considered as a predictor. RF models were run 16 times and an
additional variable was excluded in each iteration. The variable importance obtained from
each iteration was used for the calculation of relative variable importance, which represents
an average value for a specific variable ranked from 0 to 1. All variables were scored
from 1 to 16, according to the average importance. The variable with the highest average
importance was scored as 1, and the variable with the lowest importance was scored as
16. Then, a RF model with each of the 15 highest ranked variables was generated for
comparison with LR models. RF analyses were conducted by the default value of mtry (4),
which represents the number of variables at each split and the 100 trees in the forest (ntree).

2.4. Model Validation

Model evaluation was conducted by a receiver operating curve (ROC) analysis,
calculating the proportion of fire cells, classified as fire (sensitivity), and non-fire cells,
classified as non-fire (specificity), for the obtained models. A ROC curve plots the values
that represent sensitivity versus values that represent 1—specificity for the range of possi-
ble cut points [63]. AUC values between 0.5–0.7 indicate poor precision, values between
0.7–0.8 indicate acceptable precision, values between 0.8–0.9 indicate excellent precision,
and values higher than 0.9 indicate outstanding model precision [63]. Additional eval-
uation of the models was conducted by 2 × 2 classification tables based on the overall
accuracy. Thus, the tables are a result of the cross-classification of the dichotomous out-
come variable, whose values are derived from the predicted and observed probabilities.
Also, to compare the predictive capacity of the models produced, the distribution of fire
cells of the validation group across classes of forest fire occurrence probability was ana-
lyzed. Due to the limited size of data, the k-fold cross-validation (CV) method was also
applied to compare obtained models. Analysis was conducted in the R package ‘Caret’
v 6.0–86 [64] using “glm” and “rf” methods for LR and RF, respectively. ROC analysis,
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accuracy, and Kappa values obtained from CV were used to compare models, with k-value
set as 10.

To designate each cell as fire or non-fire, an optimal cutoff point must first be defined.
For the models selected by the LR and RF procedures, based on the ROC analysis and
prediction accuracy obtained under the training subsets, the optimal cutoff point was
determined by the sensitivity equals specificity method [65] using the easyROC web-
tool [66]. Then, the estimated probability for each cell was compared to the optimal cutoff
point. If the estimated probability for the particular cell exceeded the optimal cutoff point,
then that cell was designated as a fire cell. Conversely, if the estimated probability was
lower than the optimal cutoff point, a particular cell was designated as a non-fire cell.
Cutoff values were applied within selected models to both training and validation subsets.

2.5. Variable Importance Analysis

The quantification of variable importance is used for variable selection in many applied
studies. To assess the importance of individual variables selected by the LR procedure,
Wald statistics were applied to the models [67]. Variable importance in RF classification
could be assessed by the permutation importance indices [68] or by the Gini impurity
function for a classification problem [69]. For RF, the variable importance measures are
summed across all trees in the forest and scaled in the same manner so that the most
important variable has a value of 1.

2.6. Mapping Forest Fire Occurrence Probability

Forest fire occurrence probability calculated by the LR or RF models for fire cells and
non-fire cells was used to map the forest fire occurrence probability in Eastern Serbia in
ArcGIS 10.2. According to Nhongo et al. [34], the produced map was classified into five
categories: very low (0.01−0.20), low (0.21−0.40), medium (0.41−0.60), high (0.61−0.80),
and very high (0.81−1.00).

All statistical analyses related to LR and RF were conducted using the software
Statistica 13 (TIBCO Software Inc., Palo Alto, CA, USA).

3. Results

3.1. Forest Fire Occurrence Frequency

Forest fire distributions across the categorical explanatory variables are displayed
in Figure 3. An almost normal distribution of forest fires was recorded across elevation
classes, with higher frequencies at elevations between 200 and 1000 (with a less pronounced
peak in the class of 600−800 m), and with lower frequencies below and above this range
(Figure 3a). The frequencies of forest fire across elevation classes highly correspond to
surface area covered by the respective classes (χ2 =39.83, p < 0.001). This connection was
not significant between forest fire occurrence and aspect classes (χ2 = 1.11, p < 0.774).
Regarding aspect, the highest frequencies of fires occurred on southern aspects, then
almost equally eastern and western aspects, while the lowest frequency was recorded on
northern aspects (Figure 3b). The highest frequency of forest fire was recorded on the slopes
with an inclination between 10◦ and 19.99◦, then between 5◦ and 9.99◦, while the lowest
frequency was recorded at the lowest inclination (0−4.99◦). No fire was recorded at the
highest inclination of over 30◦ (Figure 3c). Forest fires were influenced by slope (χ2 = 47.54,
p < 0.001). Also, land cover type had a significant influence on forest fire occurrence
(χ2 = 107.89, p < 0.001). More than 55% of forest fires occurred in broad-leaved forests, and
almost 29% and 14% occurred in the transitional woodland-shrubs and natural grasslands
respectively, while less than 2% of forest fires occurred in the mixed forest and coniferous
forests. No forest fire was recorded in the sparsely vegetated area (Figure 3d).

74



Forests 2021, 12, 5

Figure 3. Frequencies of forest fires and areas covered by categorical variables: (a) elevation
classes, (b) aspect classes (exposure), (c) slope degree classes, and (d) vegetation classes obtained
from CORINE land cover 2012 that are present in Eastern Serbia: BF: broad-leaved forest; CF:
coniferous forest; MF: mixed forest; NG: natural grasslands; TWS: transitional woodland-shrubs,
and SVA: sparsely vegetated areas.

3.2. Models of Forest Fire Occurrence

In the first step, the total forested area (TFA) variable was excluded for further analysis
due to the high correlation (R = 0.84) with distance agricultural land (DAgL), as displayed
in Figure S1 (see the Supplementary Materials). The remaining 16 explanatory variables
met the conditions of VIF ≤ 10 and were considered for the future models. After several
iterations, the final models were created by LR and RF procedure for 15 variables. The high-
est impact on fire probability had a drought code, followed by distance to municipality,
distance to water, distance to railway, and distance to arable land, while a relative contri-
bution of mixed forest had the lowest impact in the RF model. Also, in the LR models,
the highest impact on fire probability had a drought code, while a relative contribution of
coniferous forest had the lowest impact on forest fire occurrence (Table 2).

The overall prediction accuracy of the LR and RF models, calculated by using an
optimal cut-off value, was 86.7 and 87.7%, respectively (Table 3). Moreover, the LR and RF
models display AUC values of 94.2% and 94.5%, respectively, affirming a high predictive
power (Figure 4b).
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Table 2. Explanatory variable importance evaluation based on Wald statistics for linear regression
(LR) and Gini impurity for random forest (RF) models.

LR RF

Variable Wald Variable Gini Impurity

Drought Code 44.968 *** Drought Code 1

Distance to Rail 36.085 ***
Distance to

Municipality
0.697

Distance to
Agricultural Land

19.407 *** Distance to Water 0.688

Distance to Water 18.851 *** Distance to Rail 0.658

Natural Grasslands 17.136 ***
Distance to Arable

Land
0.544

Transitional
Woodland-Shrub

13.054 *** Broad-Leaved Forest 0.503

Distance to Arable
Land

7.080 **
Distance to

Agricultural Land
0.461

Broad-Leaved Forest 4.182 *
Transitional

Woodland-Shrub
0.365

Population Density 3.944 * Natural Grasslands 0.324
Distance to

Municipality
3.694 ns Population Density 0.283

Slope Degree Classes 3.226 ns Distance to Road 0.272
Distance to Road 1.914 ns Slope Degree Classes 0.204
Aspect Classes 1.868 ns Aspect Classes 0.185
Mixed Forest 1.313 ns Coniferous Forest 0.093

Coniferous Forest 0.034 ns Mixed Forest 0.085
ns not-significant, * significant at p < 0.05, ** significant at p < 0.01, *** significant at p < 0.001.

Table 3. Classification tables for the training and validation sets of data based on LR and RF models,
with applied cut off values, according to the sensitivity equals specificity method.

Model Cutoff

Predicted

Training Validation

0 1 % Correct 0 1 % Correct

LR 0.483
Observed 0 186 28 86.9 0 187 28 87.0

1 29 185 86.4 1 29 186 86.5
Overall % 86.7 86.7

RF 0.460
Observed 0 196 18 91.6 0 192 23 89.3

1 19 195 91.1 1 30 185 86.0
Overall % 91.4 87.7

Figure 4. Receiver operating curve (ROC) for LR and RF models: (a) training data set,
(b) validation data set.
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3.3. Relative Importance of Variables

In the LR models, drought code was the most important variable for fire occurrences,
followed by the distance to rail and agricultural land. Conversely, the lowest importance
of the forest fire occurrence was associated with the contribution of coniferous and mixed
forest, and also aspect classes (Table 2). In the RF models, drought code was the most
important variable followed by the distances to municipality, water, rail, and arable land.
Similarly, to the LR models, contribution of mixed and coniferous forest as well as aspect
classes had the lowest impact on the RF models (Table 2). Interestingly, distance to munici-
pality was recognized by RF as very important model variable, while in the LR models this
variable did not have a statistically significant effect on model performance.

3.4. Spatial Modeling of Probability of Fire Occurrence

Zones with a very high probability of forest fire occurrence were situated in the
southeastern part of the study area in both models and vary from 19.7% (LR) to 18.9%
(RF) of the forested area. Zones with a very low probability of forest fire occurrence were
situated in the northwestern part of the study area and range from 21.1% (LR) to 22.2%
(RF) of the forested area (Figure 5).

Figure 5. Maps of forest fire probability based on (a) LR models, (b) RF models.

3.5. Model Validation

LR models performed better in the very low fire distribution class, compared to the
RF models, identifying lower forest fire incidence in the validation set of data. On the
other hand, RF models performed better in high and very high classes than LR models,
identifying a higher number of forest fire events in the same set of data (Table 4). If the
two lowest classes (low and very low) classes are compared among models, then there is a
very slight difference between the LR and RF models (e.g., 23.3% vs. 23.7%, respectively).
On the other hand, the RF models classified 58.6% of forest fire events in the two higher
classes (high and very high), while the LR models classified 54.0% in the same classes of the
validation set of data. The overall prediction accuracy of the LR and RF models, based on
10-fold cross validation, was 86.5 (kappa = 0.7296) and 91.7% (kappa = 0.8345), respectively.
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Moreover, the LR and RF models display AUC values of 92.4% and 97.5%, respectively,
after 10-fold cross validation.

Table 4. Forest fire distribution (%) across different probability classes based on LR and RF models
for the validating set of data.

Forest Fire Probability Percentile Forest Fire Probability Class LR RF

0–20 Very low 4.7 8.4
20–40 Low 18.6 15.3
40–60 Moderate 22.8 17.7
60–80 High 21.4 22.3

80–100 Very high 32.6 36.3

4. Discussion

There has been a huge gap in forest fire risk assessment in Serbia without any system
for forest fire risk assessment at the national or even regional scale [70]. Within this study,
the first step has been made on that course by producing maps with forest fire occurrence
probability that cover more than one-third of the state territory. To map the forest fire
probability in Eastern Serbia, the area that has been the most affected by forest fires in the
past [32], two different methods were applied, LR and RF. Both methods have been widely
used in forest fire risk assessment within the past few decades, with the dominance of LR at
the beginning of this century [24,35,50,55,71], while the RF method has prevailed since the
last decade [25,37,58,60,70]. The RF models had slightly better performance than the LR
models in the training and validation sets. Better performance of the RF models over the LR
models in fire occurrence prediction is consistent with similar studies in our region [72,73]
and other regions [39,58]. The LR models shift performance from outstanding in training
data sets to excellent in validation data sets, while in the RF procedure this shift is less
pronounced according to applied model classification [63]. Based on the results obtained
within this study and literature survey, we can strongly recommend the use of the RF
method for the forest fire occurrence mapping of the entire territory of Serbia.

The propensity-score matching method was used to select non-fire events for known
fire events. This method was adopted from the field of medical sciences [74–77], like many
others, and it was used for the first time in natural hazard risk assessment by Hud-
son et al. [78] for evaluating the effectiveness of flood damage mitigation measures. We used
this method for the first time in forest fire risk assessment to pair historical fire event data
obtained from the NASA FIRMS with non-fire events using elevation as matching criteria.

Elevation had a significant and positive effect on forest fire occurrence probability,
with higher frequencies observed between 200 and 1000 m. The fire season is shorter at
higher elevations due to snow melting later, leading to a lower fire frequency [79]. Also,
a higher relative humidity due to a decrease in temperature of 1 ◦C per 100 m rise in eleva-
tion reduces chances for fuel ignition [80]. However, the rapid decrease in fire frequency at
altitudes over 1000 m, observed by Ramón González et al. [71], was not recorded in our
study. It is more likely that climate changes will influence a positive effect of the elevation
on forest fire frequency in the future, as has already been shown by Schwartz et al. [81].
Southern, intermediate slopes between 5◦ and 20◦ experienced increased fire activity in
our study due to the lower moisture of combustible material being exposed to the sun
radiation more than other aspects with milder and steeper slopes [34,81,82]. All topo-
graphical features strongly affect vegetation and its burn ability [83]. Forest fire frequency
was much higher in the broad-leaved forests than in the coniferous forests. The negative
effect of the distance to water on forest fire occurrence probability may be linked to the
NASA sensor’s ability to detect only larger forest fires, while a smaller fire is suppressed
easily when it is in the vicinity of the water bodies and the early phase of development are
thereby not detected. Conifers cover less than 1% of the study area and were scattered in
the higher mountains within the bigger broad-leaved forest complex and therefore were
lesser exposed to anthropogenic activity, explaining the negative effect of its proportion
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on fire activity. Transitional woodland-shrubs are usually situated in the zone between
forests and agricultural or arable land. Both types of land cover are connected to spring and
autumn burning activity, and therefore transitional woodland-shrubs had increased fire fre-
quency. Forests near human settlements and infrastructures that are densely populated are
more prone to small fires due to negligence and/or accidental ignitions [84], while distant
locations are prone to often larger, but less frequent, forest fires [85]. Therefore, an expected
decrease in the population density in rural areas in the southern part of the study area [86]
may result in lower fire activity in the future. Conversely, the expansion of urbanized areas
and road cover with an associated increase in population density due to migration from
south to north can be expected to lead to higher fire activity in the northern part of the
study area.

Zones with the highest probability for forest fire occurrence are located in the south-
eastern part of the study area in all models, which correspond to the more pronounced
drought periods during summer [27,28]. A higher drought code (higher temperature
and lack of precipitation) leads to the lower moisture of fuel and makes an area more
susceptible to ignition. It is well known that higher temperatures [87] reduce fuel moisture,
making the fuels highly susceptible to ignition. Additionally, a study by Chang et al. [88]
described low precipitation as a determinant factor for ignition. Drought code was the
most important variable, followed by anthropogenic features, in both the LR and RF
models. These results were consistent with other studies on determinant factors for the
occurrence of wildfire where climatic and anthropogenic predictors had a higher influence
on the fire occurrence probability [70,89–92]. All those models were efficiently applied
at a smaller scale (such as national parks or protected areas), while our models showed
similar efficacy at a larger scale. The produced maps can be used by firefighting services
for strategic and operative planning. Defined zones with higher forest fire occurrence
probability, in the southeast of the study area, should be intensively monitored during the
fire season, especially during the second peak in August [30], when the largest forest fires
can be expected [31]. Intense monitoring allows early detection of forest fires and leads to
rapid response. All of these measures, along with enhanced equipment for fire suppression,
can significantly decrease the burnt area in Eastern Serbia. Also, silvicultural measures
that reduce fire risk [23] can be applied under zones with a higher forest fire occurrence
probability according to the created maps. Thus, in the fire prone zone, less flammable tree
species [93] should be selected for afforestation. Additionally, to prevent the transfer of
ground fire to the crown, the introduction of silvicultural measures, such as pruning of the
lower branches, should be obligatory in order to reduce fire hazard in the vulnerable zones.
Other fuel reduction treatments, such as thinning, prescribed burning, and fuel breaks,
can be useful tools to achieve these objectives at the landscape level [20,21].

5. Conclusions

The overall accuracy of the RF models was higher than those of the LR models.
Both types of model identified drought code and anthropogenic features as the most
important forest fire predictors. The models displayed a very high predictive ability,
but the RF models were slightly more efficient and could be recommended for forest fire
occurrence mapping in the eastern part of Serbia. The obtained maps could improve the
efficacy of forest fire suppression in the study area in several ways. First, the fire probability
map could be used for position optimization of the devices used in the early detection of
forest fires. Also, firefighting resource allocation could be planned and applied in a manner
consistent with the fire frequency. Finally, forest management planning and silvicultural
measures should be adapted in terms of the forest fire risk reduction, based on the obtained
maps.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-4
907/12/1/5/s1: Figure S1: Correlation plot for all preselected variables based on Spearman’s rho
coefficient; Table S1: Tables of contingency for training and validation sets of data for the tested
random forest models.
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et al. Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe.
Biogeosciences 2020, 17, 1213–1230. [CrossRef]

7. Costa, H.; de Rigo, D.; Libertà, G.; Durrant, T.; San-Miguel-Ayanz, J. European Wildfire Danger and Vulnerability in a Changing Climate:

Towards Integrating Risk Dimensions; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-16898-0.
8. Moritz, M.A.; Parisien, M.-A.; Batllori, E.; Krawchuk, M.A.; van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions

to global fire activity. Ecosphere 2012, 3, art49. [CrossRef]
9. Räisänen, J.; Hansson, U.; Ullerstig, A.; Döscher, R.; Graham, L.P.; Jones, C.; Meier, H.E.M.; Samuelsson, P.; Willén, U.

European climate in the late twenty-first century: Regional simulations with two driving global models and two forcing
scenarios. Clim. Dyn. 2004, 22, 13–31. [CrossRef]

10. Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability
in European summer heatwaves. Nature 2004, 427, 332–336. [CrossRef]

11. Fronzek, S.; Carter, T.R.; Jylhä, K. Representing two centuries of past and future climate for assessing risks to biodiversity in
Europe. Glob. Ecol. Biogeogr. 2012, 21, 19–35. [CrossRef]

12. Thuiller, W.; Lavorel, S.; Araújo, M.B.; Sykes, M.T.; Prentice, I.C. Climate change threats to plant diversity in Europe. Proc. Natl.

Acad. Sci. USA 2005, 102, 8245–8250. [CrossRef] [PubMed]
13. Brewer, S.; Cheddadi, R.; de Beaulieu, J.L.; Reille, M. The spread of deciduous Quercus throughout Europe since the last glacial

period. Ecol. Manag. 2002, 156, 27–48. [CrossRef]
14. Hernández, L.; Sánchez de Dios, R.; Montes, F.; Sainz-Ollero, H.; Cañellas, I. Exploring range shifts of contrasting tree species

across a bioclimatic transition zone. Eur. J. Res. 2017, 136, 481–492. [CrossRef]
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Abstract: This study analyzed fire weather and fire regimes in Central Asia from 2001–2015 and
projected the impacts of climate change on fire weather in the 2030s (2021–2050) and 2080s (2071–2099),
which would be helpful for improving wildfire management and adapting to future climate change in
the region. The study area included five countries: Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan,
and Turkmenistan. The study area could be divided into four subregions based on vegetation type:
shrub (R1), grassland (R2), mountain forest (R3), and rare vegetation area (R4). We used the modified
Nesterov index (MNI) to indicate the fire weather of the region. The fire season for each vegetation
zone was determined with the daily MNI and burned areas. We used the HadGEM2-ES global climate
model with four scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) to project the future weather and fire
weather of Central Asia. The results showed that the fire season for shrub areas (R1) was from 1 April
to 30 November, for grassland (R2) was from 1 March to 30 November, and for mountain forest (R3)
was from 1 April to 30 October. The daily burned areas of R1 and R2 mainly occurred in the period
from June–August, while that of R3 mainly occurred in the April–June and August–October periods.
Compared with the baseline (1971–2000), the mean daily maximum temperature and precipitation,
in the fire seasons of study area, will increase by 14%–23% and 7%–15% in the 2030s, and 21%–37%
and 11%–21% in the 2080s, respectively. The mean MNI will increase by 33%–68% in the 2030s and
63%–146% in the 2080s. The potential burned areas of will increase by 2%–8% in the 2030s and
3%–13% in the 2080s. Wildfire management needs to improve to adapt to increasing fire danger in
the future.

Keywords: climate change; fire weather; MNI; fire season

1. Introduction

Wildfires are a dominant disturbance in most forests and are strongly influenced by climate [1].
Climate warming has recently caused changes in the fire regime in the Northern Hemisphere [2],
which has experienced extreme wildfire seasons and fire frequency increases in forests. Notably,
high-intensity fires have occurred in summer in some regions. During the summer of 2010, climate
warming caused several hundred wildfires and burned areas of approximately 5 million ha in Russia [3].
In the summer of 2017, British Columbia, Canada, experienced the worst wildfire, which caused a
burned area of 1.2 million ha [4]. In addition, in the boreal forest of North America, climate warming has
led to greater and more severe wildfire activity, increased fire frequency and fire sizes, and longer fire
seasons [5]. The large-scale wildfires in the United States in 2019 and Australia from 2019–2020 attracted
the attention of global society. Central Asia is located in the arid and semiarid zone, which includes
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Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, and Turkmenistan [6]. Wildfires caused great losses in
forest resources and properties in the region. The region is an important region for global biodiversity
and has important species, such as snow leopards and brown bears [7]. Currently, Central Asian
countries are in a critical period of economic and social transformation and are important components
of “the Belt and Road”. The countries in the region have made great efforts to increase the forest
coverage rate and enhance biodiversity [8]. It is important to protect the existing forest resources to
improve the ecological environment in Central Asia, which would be helpful for improving the living
environment of local residents and promoting economic development.

Climate change will increase fire danger, and potential wildfires will increase significantly around
the world in the future [9,10]. Additionally, climate change has increased wildfires in northern Europe
and Greenland [11–13]. The fifth assessment report of the IPCC indicated that future wildfire risk
would increase and that the fire season would become longer in southern Europe [14]. Compared to
the present scenario, the annual burned area was projected to increase three to five times under the A2
scenario by 2100 [14]. The frequency of fires will increase to 25% by 2030 and 75% by the end of the 21st
century in Canada, under the Canadian Climate Centre GCM (general circulation models) scenarios,
and fire occurrence will increase by 140% under the Hadley Centre GCM scenario [15]. The higher
number of wildfires resulted in an increased budget for fire management. In Russia, increasing wildfire
frequency is expected to cause the total cost of forest fire management to increase by 211,114 and
248,956 thousand rubles (approximately 286.6–340 million US$) by the end of the 21st century [16].
Therefore, the study of future fire weather under different climate scenarios for the region would be
the basis for adapting to future climate change.

There are many wildfires each year in Central Asia, especially in Kazakhstan [17]. Wildfires
frequently occurred and damaged forest resources in these countries due to less fire management.
The annual average burned forest area was 4000 ha in Kazakhstan during the 1985–1990 period and
increased to 20,000 ha during the 1996–2000 period. In 1997, the annual burned area was 200,000 ha [18].
However, there were just 486 forest fires and 3915 ha of burned areas in 2012 in Kazakhstan [19].
Grassland fires occur frequently in Central Asia [20]. The mean annual burned areas of grasslands in
the broader steppe-dominated region was 15 million ha during the 2001–2009 period, which mainly
occurred in August and September [21]. Potential wildfires in the future will increase due to climate
warming and may cause more burned areas and environmental pollution [9,22]. There have been some
studies on the fire risk of Kazakhstan [23,24], but little research has been conducted on the fire regime
of Central Asia. Therefore, it would be interesting to study the fire weather and fire regime in Central
Asia and further evaluate fire danger under future climate scenarios.

The Fire Weather Index can effectively describe the relationship between weather and fire
danger [25]. Bedia et al. found that the FWI (Fire Weather Index) in the grasslands of Kazakhstan
was higher than that in other regions during the 1981–2000 period [26]. However, they only analyzed
fire danger on a global scale by using WFDEI data. The FWI calculation requires inputs of noon
temperature, relative humidity, wind speed, and 24-h accumulated precipitation. It is difficult to
obtain enough weather observation data covering the vegetation areas in Central Asia. Some fire
weather indices developed in the former Soviet Union, such as the Nesterov index (NI) [27], Zhdanko
index (ZhI) [28], and Modified Nesterov index (MNI) [29], are widely used in Russia and countries
in Central Asia [30–33]. These indices are calculated with mid-day temperature, dew point deficit,
and precipitation and need fewer inputs than the FWI.

The objective of this study was to analyze fire weather by using MNI and fire regimes for each
vegetation zone in Central Asia. We will define the fire seasons for each vegetation zone based on the
process of the daily fire weather index and burned area and evaluate the potential fire danger in the
2030s and 2080s under future climate scenarios.

86



Forests 2020, 11, 802

2. Methods

2.1. Study Area

Central Asia is located in central Eurasia and is adjacent to China in the west and the Caspian Sea
in the west. Its geographical range is 35◦08′–55◦25′ N, 46◦28′–87◦29′ E. The total area is approximately
3970 million ha. It has a temperate continental climate and uneven distribution of rainfall. The annual
precipitation ranges from 100–400 mm, and it can be more than 500 mm in high mountain areas and
less than 200 mm on plains [7].

The forest coverage rate in the study area was 1.6%, which was mainly distributed in the northeast.
Shrubs were mainly distributed in the western and central parts of the study area, with a coverage rate
of 22.4%. Grassland and farmland accounted for 23.8% and 20.3%, respectively (Figure 1).

Figure 1. Location of the study area and vegetation types.

2.2. Data Sources

Land cover data (2001–2015, 300 m spatial resolution) were downloaded from the land cover
state products of the European Space Agency (https://www.esa-landcover-cci.org, accessed on
17 January 2020), which include forest, grassland, shrub, and water. The historical daily meteorological
data (2001–2015) came from the global historical meteorological network (https://data.nodc.noaa.gov),
including eighteen weather stations located in the forest and grassland. The daily data included the
maximum temperature, minimum temperature, 24 h precipitation, and dew point. MODIS-MCD64A1
products (2001–2015, 500 m spatial resolution and daily resolution in temporal) were obtained from
NASA (https://earthdata.nasa.gov, accessed 17 January 2020).

The simulated climate data (1971–2099, 0.5◦ × 0.5◦ resolution) of the HadGEM2-ES global climate
model with four climate scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) (GCM) were downloaded from
the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) (https://www.isimip.org/, accessed
17 January 2020). The daily climate data included maximum temperature, minimum temperature,
and precipitation.

2.3. Climate Data Processing

For the missing temperature and dew point temperature in historical observation data for the
2001–2015 period, we used the sliding average of the before and after five days to replace the missing
data. Due to the lack of daily precipitation data, data from neighboring meteorological stations
were used.
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The precipitation frequency from the historical climate data was used to correct the simulated
precipitation frequency of the simulated climate data. We assumed that the daily precipitation
frequencies of the simulated data were identical to the historical data (2001–2015). We obtained
the precipitation threshold based on its frequency and set the data less than the threshold to zero.
Then, we used the coefficient between the simulated annual precipitation and reserved data to correct
the daily precipitation.

The mid-day temperature was replaced with the maximum temperature minus the average
difference (2 ◦C). The dew point temperature was calculated from the daily minimum temperature.
The calculation formula was developed with the dew point temperature above 0 ◦C and the daily
minimum temperature in each month of the historical observation data.

2.4. Fire Weather Indices Calculation

The modified Nesterov index was calculated with the following equation [29]:

MNI(n) = (MNI(n − 1) + T × d) × K(n) (1)

where MNI(n − 1) and MNI(n) are the fire weather index on days n − 1 and n, respectively. T is the
mid-day temperature, d is the dew point temperature, K(n) is a scale coefficient that controls the index
change when precipitation occurs on day n [33] (Table 1).

Table 1. The corresponding relationship between coefficient K and daily precipitation.

Rain/mm 0 0.1–0.9 1.0–2.9 3.0–5.9 6.0–14.9 15.0–19.9 ≥20.0

K 1.0 0.8 0.6 0.4 0.2 0.1 0

2.5. Vegetation Zone

The study area can be divided into four zones based on the vegetation types, which include shrub
(R1), grassland (R2), mountain forest (R3), and rare vegetation zone (R4) (Figure 2). This paper focuses
on zones with vegetation, such as R1, R2, and R3.

Figure 2. Vegetation zones and weather stations in the study area.

2.6. Burned Areas

The fire season and land cover data were used to filter the false burned areas of the
MODIS-MCD64A1 products. Then, we obtained the daily burned areas of each vegetation zone.

2.7. Data Processing

SPSS software was used to analyze the correlation between the fire weather index and burned
area. The MNI of each zone was interpolated with the kriging method.
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3. Results

3.1. Fire seasons for Each Vegetation Zone

The daily MNI of each vegetation zone was roughly normally distributed. The MNI increased
slowly for 90 days and decreased rapidly from the peak. The MNI of R1 increased from the 95th day
(Julian day), reached a maximum on the 280th day, and remained at a very low level after the 325th day
(Figure 3(a1)). In R2, the MNI increased from the 95th day (peak on the 283rd day) and was maintained
at a very low value after the 342nd day. In R3, the MNI increased from the 125th day and decreased to
a very low value after the 300th day (maximum on the 248th day).

Figure 3. Mean daily modified Nesterov index (MNI), precipitation, and burned areas for the three
vegetation zones from 2001–2015. (a1) the mean daily MNI and precipitation for vegetation zones
R1; (a2) the mean daily MNI and precipitation for vegetation zones R2; (a3) the mean daily MNI and
precipitation for vegetation zones R3; (b1) the mean daily burned areas in R1; (b2) the mean daily
burned areas in R2; (b3) the mean daily burned areas in R3.
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The fire season of each vegetation zone could be defined by the fire weather index and the daily
burned areas. The daily burned areas for R1, R2, and R3 showed apparent changes during the periods
of days 150–280, 140–300, and 90–305, respectively (Figure 3(b1–b3)). However, there were some grass
fires during days 60–140. The dates of the increases in daily burned areas were earlier than that of
the increases in MNI. In early spring, the fuels are dry and cured grass, which can burn at low MNI
conditions. The date when the daily burned areas decreased to zero was also earlier than the date
when the MNI reached a very low value. The MNI only indicates fire weather, which does not reflect
the seasonal status of live fuel. Although daily burned areas showed a relationship with the MNI
(r > 0.23), their changes were not completely consistent.

The fire season of each zone was defined based on the process of daily MNI and burned areas,
which were 1 April–30 November for R1, 1 March–30 November for R2, and 1 April–31 October for R3.

During the period from 2001–2015, the mean MNI in the R1 fire season was 10,213. The high
MNI values were distributed in the central areas, especially in the middle part near R2 (MNI > 12,000)
(Figure 4). The mean MNI of R2 was 12,104, and the high MNI values were distributed in the
northwestern and south-central parts. The mean MNI of R3 was 10,769 (Figure 4).

Figure 4. MNI distribution in three vegetation zones for the 2001–2015 period.

3.2. Distribution of Burned Areas in the 2001–2015 Period

The mean annual burned area was 87,812 ha in R1 during the 2001–2015 period. The burned areas
in 2002, 2004, and 2005 were significantly higher than the average of the period (α = 0.05), and the
burned areas were significantly lower in 2001, 2003, 2011, 2012, and 2013 (Figure 5(a1)). The monthly
maximum burned areas occurred in May, with 26,603 ha, and the minimum occurred in November,
with 250 ha (Figure 5(b1)). The mean annual burned area in R2 was 389,020 ha, which was much higher
than that in the other zones. The maximum monthly burned area was 133,452 ha in August, and the
minimum was 1211 ha in November. The mean annual burned area in R3 was 150 ha. The months in
the fire season with the maximum and minimum burned areas were September and June, respectively
(Figure 5(b3)).

The monthly burned areas and MNI in the fire season for R1 and R3 did not show a strong
correlation (r = 0.36), but they showed a strong correlation for R2 (r = 0.6) as follows:

B(n) = 2.4683MNI(n) + 13, 101 (R2 = 0.32) (2)

where, B(n) and MNI(n) are the burned areas and mean MNI in month n.
Grass fires and shrub fires mainly occurred in the period from June to September, and they were

usually distributed in the plains and hilly areas with elevations less than 500 m. There were no wildfires
in the areas with elevations greater than 2000 m. The fires in mountain forests mainly occurred in the
April–June and September–October periods and were usually distributed the areas with low elevation
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(<500 m). A few wildfires also occurred in high-altitude areas (>1500 m ASL) during July and August
(Figure 6).

Figure 5. Annual and monthly burned areas for three vegetation zones during the 2001–2015 period.
(a1) the mean annual burned areas in R1; (a2) the mean annual burned areas in R2; (a3) the mean
annual burned areas in R3; (b1) the mean monthly burned areas in R1; (b2) the mean monthly burned
areas in R2; (b3) the mean monthly burned areas in R3.
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Figure 6. Burned area distribution in the study area during the 2001–2015 period.

3.3. Climate Change in the 2030s and 2080s

The mean daily maximum temperature in the fire season of R1 was 23.2 ◦C during the baseline
period. It will be 26.4 ◦C band 28.2 ◦C in the 2030s and 2080s, respectively, which will be an increase of
14% and 21% compared with the baseline (p = 0.00). The precipitation in the fire season of R1 was
180 mm at the baseline and will be 219, 174, 198, and 180 mm under the RCP2.6, RCP4.5, RCP6.0,
and RCP8.5 scenarios in the 2030s, respectively. The precipitation will increase by 7% to 193 mm in the
2030s. However, the increase was not significant (F-test, p = 0.12). In the 2080s, the precipitation will
be 215, 195, 178, and 214 mm under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively.
The mean precipitation will significantly increase by 11% to 200 mm in the 2080s (F-test, p = 0.04)
(Figure 7).

Figure 7. Precipitation and temperature in the fire season for three vegetation zones in the baseline,
2030s, and 2080s. (a) the precipitation during the fire season in the R1; (b) the precipitation during the
fire season in the R2; (c) the precipitation during the fire season in the R3; (d) the mean daily maximum
temperatures of the fire season in the R1; (e) the mean daily maximum temperatures of the fire season
in the R2; (f) the mean daily maximum temperatures of the fire season in the R3.
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The mean daily maximum temperature in fire season of R2 was 15.7 ◦C in the baseline period.
It will significantly increase by 21% and 34% in 2030s and 2080s, respectively (p= 0.00). The precipitation
in fire season of R2 was 226 mm at the baseline, and it will be 293, 206, 256, and 284 mm in the 2030s
under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively. The mean precipitation will
increase 15% in 2030s (p = 0.00). In addition, the precipitation in the fire season will significantly
increase by 21% in 2080s (p = 0.00), and the precipitation will be 294, 231, 260, and 303 mm under the
RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively.

In R3, the mean daily maximum temperature in fire season was 14.3 ◦C in baseline. It will increase
by 23% to 17.7 ◦C in 2030s, when the temperature will be 17.3, 18.2, 17.2, and 18.2 ◦C under the
RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively. In 2080s, the mean daily maximum
temperature will significantly increase to 19.6 ◦C (p = 0.00), which will be 17.2, 19.4, 20.0, and 21.9 ◦C
under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively. The precipitation in fire
season was 646 mm at the baseline and will be 743, 696, 718, and 817 mm under RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 scenarios in the 2030s, respectively. In 2080s, the mean precipitation will increase
significantly to 784 mm (p = 0.00), representing an increase of 21% from the baseline.

3.4. MNI Changes in the 2030s and 2080s

The mean MNI in the fire season of R1 was 3812 at the baseline, and it will increase by 33% and
63% in the 2030s and 2080s, respectively (p = 0.00) (Figure 8). In R2, the mean MNI of the fire season
was 1759 at baseline, and it will increase by 42% in the 2030s and 73% in the 2080s (p = 0.00). The mean
MNI of the fire season for R3 was 713 at baseline, and it will increase to 1195 in the 2030s and 1752 in
the 2080s (p = 0.00).

Figure 8. Mean MNI of fire season for three vegetation zones in different period. (a1) mean MNI of fire
season in baseline; (a2) mean MNI of fire season in 2030s; (a3) mean MNI of fire season in 2080s.

Most areas of R1 showed low MNI values (<4691) at the baseline, and only southern areas had
high MNI values (8735–17,156) (Figure 9(a1)). In the 2030s, the MNI values in western and northern
R1 showed a slight increase but will increase from 23%–30% in central areas and 37%–59% in the
south. The mean MNI will increase by 19%, 28%, 20%, and 33% in the 2030s under the RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 scenarios, respectively. The MNI will increase obviously under scenarios RCP4.5
and RCP8.5, and the maximum increase will reach 68% and 82%, respectively (Figure 9(b3,b5)). In the
2080s, MNIs will increase by more than 37% in central and southern R1, while MNIs in western R1 will
increase by only 15% (Figure 9(c1)). The mean MNI will increase by 15%, 39%, 46%, and 64% over the
baseline under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively. Under the RCP2.6
scenario, the MNI will increase significantly in the south, while the MNI will increase in the central
and southern regions significantly under the other scenarios.
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Figure 9. Distribution of MNI in the fire season for each vegetation zone. (a) Baseline; (b) the mean
MNI increase in the 2030s; (d), (e), (f), and (g) are MNI increases under the RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 scenarios in the 2030s, respectively; (c1) the mean MNI increase in the 2080s;
and (h), (i), (j), and (k) are MNI increases under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios in
the 2080s, respectively.

The MNI values in western R2 were high at baseline. The mean MNI will increase by 23%, 35%,
26%, and 42% in the 2030s under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively.
The increase is significant for the RCP4.5 and RCP8.5 scenarios. The MNI in the southern area will
increase clearly (+50%), but the values in the western areas will increase by only 10%–38% in the 2030s.
The MNI will increase by 20%, 51%, 61%, and 73% in the 2080s under the RCP2.6, RCP4.5, RCP6.0,
and RCP8.5 scenarios, respectively. The MNI values in the western and southern R2 will increase
significantly under RCP2.6 scenario, and the values will increase significantly in the western, central,
and southern areas under the other scenarios.

The MNI values were high in the northwest of R3 (1163–1353) and low in the southeast (322–599)
at the baseline. The mean MNI will increase by 49%, 77%, 49%, and 68% in the 2030s over the baseline
under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively. In the 2080s, the mean MNI
will increase by 32%, 84%, 127%, and 146% under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios,
respectively. A greater increase in MNI will be distributed in the northwestern and central areas under
the RCP2.6 scenario, while MNI will increase clearly in the northwest of R3 under the other scenarios.

4. Discussion

The MNI can effectively reflect drought weather and fuel moisture in Central Asia [33]. In the
study area, there was less precipitation and higher temperatures from June–September, and the MNI
reached its peak in August or September. Burned area is the most important indicator of fire regime.
We used the daily burned areas from 2001–2015 from MODIS data to describe their distributions
spatially and temporally [34]. There have been some studies on wildfires in Central Asia based on
remote sensing data in recent years [21,35,36]. We determined the fire season for each vegetation
zone according to the MNI and daily burned areas. We considered the characteristics of fire regime
and fire weather. The defined fire season would be an important indicator of fire dynamics and fire
management in the region.
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Grassland fire and shrub fire mainly occurred in summer (June–September), and the largest
burned areas in grassland usually occurred in August or September [21]. The fires in mountain
forests in the low altitude regions mainly occurred in spring (April–June) and autumn (September
and October). Nevertheless, the fires mainly occurred in summer (July and August) for the forests
at high-altitude areas (>1500 m ALS). Fires in mountain forests are usually distributed in areas near
farmland or towns, which indicates that human activities impact these occurrences. The references
indicated that most forest fires were ignited by humans in low-altitude areas and fires in high-altitude
areas in summer were mainly caused by lightening [4,18].

Although both the temperature and temperature in the fire season of the vegetation zones will
increase in the 2080s under future climate scenarios, their MNIs will still increase clearly over the
baseline. This indicates that fire danger will increase in the future, which is consistent with the results
of Liu et al. [9]. They also believed that the mean daily maximum temperature and fire danger rating of
Central Asia (HadCM3 model with A2a scenario) would increase from 2071–2100, but they projected
that the annual precipitation would decrease.

Climate change will also affect the vegetation of the study area. In the study we did not simulate
the vegetation change resulting from the future climate change. Vegetation distribution was affected
by many factors, such as climate, anthropic activities, and natural disturbances. In fact, forest and
grassland decreased during the period 1992–2003 and increased slightly during 2003–2015. However,
vegetation types and their spatial distribution was no changed clearly in the period [37]. We assumed
that the vegetation will not signification change in the coming decades. This point will not have
influences on the judgment of fire weather changes under the future climate scenarios.

The fewer meteorological stations (18) available from 2001–2015, and their uneven spatial
distribution, may affect the interpolated results of fire weather. However, each meteorological factor
and fire weather index showed very similar processes in those years. The influence would not affect
the reliability of the results.

Fire weather affects ignitions and fire spread. The MNI showed a positive correlation with the
monthly burned areas (r < 0.3). Based on the correlation, we projected that the potential burned areas
would increase in the future. The potential burned areas of R1, R2, and R3 in the 2030s will increase by
4%, 8%, and 2% over the baseline and will increase by 6%, 13%, and 3%, respectively, in the 2080s.

The wildfires were mainly distributed in shrub and grassland areas. The annual burned area has
generally declined since 2010. This trend reflects the role of fire management activities. The governments
in Central Asia established fire agencies and promulgated laws and regulations on wildfire management
in this century [38]. The wildfires were still serious in some years (such as 2011). The vegetation
in the study area plays an important role in the regional ecological environment and biodiversity
protection [39]. It is necessary to strengthen wildfire management in the region to adapt to future
climate change.

5. Conclusions

Fire seasons are different for each vegetation zone. Grassland has the longest fire season,
and mountain forests have the shortest fire season. The fire seasons of grassland, shrub, and mountain
forest are 1 March–30 November, 1 April–30 November, and 1 April–31 October, respectively.
Most wildfires in the study area mainly occurred in shrub and grasslands. Most shrub and grass fires
occurred in the period from June–September, and fires in mountain forests occurred mainly in the
April–June and September–October periods.

The MNI index is a good indicator of fire danger for Central Asia. In the 2030s, the mean daily
maximum temperature in the fire season for vegetation areas will increase significantly over the
baseline, and the precipitation will increase by 7%–15%. The MNI will increase by 33%–68% for
vegetation areas in the 2030s. The mean daily maximum temperature, precipitation and MNI of
vegetation areas will increase significantly in the 2080s. The MNI will increase by 63%–146%, and the
potential areas will increase by 3%–13% for each vegetation zone.
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Abstract: Globally, fire regimes are being altered by changing climatic conditions. New fire regimes
have the potential to drive species extinctions and cause ecosystem state changes, with a range
of consequences for ecosystem services. Despite the co-occurrence of forest fires with drought,
current approaches to modelling flammability largely overlook the large body of research into plant
vulnerability to drought. Here, we outline the mechanisms through which plant responses to drought
may affect forest flammability, specifically fuel moisture and the ratio of dead to live fuels. We present
a framework for modelling live fuel moisture content (moisture content of foliage and twigs) from
soil water content and plant traits, including rooting patterns and leaf traits such as the turgor loss
point, osmotic potential, elasticity and leaf mass per area. We also present evidence that physiological
drought stress may contribute to previously observed fuel moisture thresholds in south-eastern
Australia. Of particular relevance is leaf cavitation and subsequent shedding, which transforms
live fuels into dead fuels, which are drier, and thus easier to ignite. We suggest that capitalising on
drought research to inform wildfire research presents a major opportunity to develop new insights
into wildfires, and new predictive models of seasonal fuel dynamics.

Keywords: drought; flammability; fuel moisture; leaf water potential; plant traits; wildfire

1. Introduction

Fire has played an important role in determining the composition and distribution of ecosystems
almost since the emergence of the first land plants [1]. In many regions, the frequency of wildfires is
projected to increase under climate change due to changes in fuel (i.e., biomass) production, accelerated
aboveground biomass turnover rates and fuel drying [2]. This increase in wildfire frequency has
the potential to drive species extinctions and cause ecosystem state changes [2]. Indeed, conversion
of forests to shrublands or grasslands due to increased fire frequency is already occurring in the
Mediterranean Basin [3], the western United States [4] and south-eastern Australia [5]. The role of
wildfires in the terrestrial carbon cycle [6], and subsequent feedbacks into the climate system, as well
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as potential implications for precipitation [7], highlight an urgent need to increase our understanding
of the climate–fire–vegetation interactions underlying global fire regimes. At the same time, predicting
the likelihood of wildfire at shorter time scales (weeks–months) is required for land managers to
target suppression resources in order to protect people, property and infrastructure, as well as
fire-sensitive ecosystems.

Large fires generally coincide with periods of high soil water deficit and atmospheric water
demand in most forests and woodlands [8]. In these ecosystems, spatially continuous arrays of fuel
(e.g., litter, foliage, twigs) are usually present, except for immediately after fire. However, these fuels
are usually too wet to propagate fire. During drought or seasonal dryness, the moisture content of
these fuels declines [8,9]. Low fuel moisture content increases the probability of ignition, rate of fire
spread and fire intensity [10–12]. While low fuel moisture content is likely to be important for the
probability of ignition and initial rate of spread, other factors such as fuel load, wind and terrain can be
of greater importance for subsequent fire behaviour [13]. Thus, dry fuels are a prerequisite for large
forest fires, along with weather and ignition sources ([14]; Figure 1).

Figure 1. Conceptual model illustrating linkages between drought-related plant traits and the likelihood
of wildfire. The 4-switch model is outlined in Bradstock [14].

In addition to causing declines in fuel moisture content, drought or seasonal dryness can also cause
changes in the ratio of dead to live fuels [15,16]. Drought stress and subsequent mortality is potentially
an important mechanism driving large wildfires, since the moisture content of dead fuels can decline
far below that of live fuels (e.g., ~7–30% for dead fuels and ~50–200% for live fuels; [9]). For example,
following drought-induced dieback in the Jarrah forests of south-western Australia, Ruthrof et al. [15]
observed a large increase in surface fine fuel loads (i.e., litter). Additionally, tree mortality was
associated with a more open canopy, which affected the microclimate of the forest floor, increasing
temperature and vapour pressure deficit, and hence the rate of drying of the understory and litter
fuels [15]. These changes in forest structure resulted in a 30% increase in predicted fire spread rates [15].
Thus, drought events can increase the probability of wildfire through multiple mechanisms, including
changes to understory microclimate, fuel moisture, forest structure, the ratio of dead to live fuels in the
canopy, and the amount of litter on the forest floor.

As drought events become more severe, there is increasing attention being paid to drought-induced
tree mortality. This concern is driving a wave of research into plant vulnerability to drought and plant
water relations under stress [17,18]. However, despite the co-occurrence of forest fires and drought,
and recognition of the role of plant physiology and phenology in governing the moisture content of
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live fuels [8], current approaches to modelling fuel attributes, such as live fuel moisture content or
the ratio of dead to live fuels (i.e., foliage), generally do not explicitly incorporate plant physiological
responses to water stress (but see [19–22]).

There is a tremendous opportunity to capitalise on recent advances in drought research to inform
our understanding and prediction of fuel attributes such as live fuel moisture content and dead:live
fuel ratios. Currently, live fuel moisture content (LFMC, moisture content of foliage and twigs) is
monitored through satellite remote sensing (e.g., [9,23]) or inferred from drought indices that require
species-specific calibrations (e.g., [24,25]). However, remote sensing can at best only estimate LFMC in
near real-time, and cannot be used to predict flammability under future (novel) climatic conditions.
Drought indices lack the physical basis required to reliably quantify flammability outside of the
ecosystems for which they were calibrated. Similarly, while there is recognition of the importance of
dead to live fuel ratios on fire behaviour [26,27], these ratios are currently only inferred from drought
indices (e.g., in the United States National Fire Danger Rating System, [28]), if at all.

Here, we demonstrate how drought-related research can be used to advance our understanding of
forest flammability. We use the term “flammability” to refer to the general ability of vegetation to burn,
following Gill and Zylstra [29]. We particularly focus on the potential applications of drought-related
research to inform the prediction of live fuel moisture content and changes to the ratio of dead to
live fuels in the forest canopy. These fuel attributes are fundamentally important constraints of
wildfire [14,30,31] and underpin many fire behaviour models for forests. For example, many of the
fire behaviour models used in Australia and North America require inputs of fuel load, particularly
of surface fuels (i.e., litter) and fuel moisture content, which is often approximated by drought
indices [32,33]. Here, we (i) present a conceptual model illustrating the links between plant responses
to drought and critical fuel properties limiting the probability of landscape-scale fire (specifically
live fuel moisture content and dead: live fuel ratios); (ii) demonstrate that established relationships
between leaf water content and leaf water potential (pressure-volume curves) can be adapted to model
live fuel moisture content; (iii) present a framework for modelling live fuel moisture content from soil
water content and drought-related plant traits; and (iv) examine potential links between physiological
drought stress, including leaf cavitation and shedding, and fuel attributes. We do this via a combination
of literature review and analyses from a common garden experiment presented here as a case study.
Our goal is to stimulate joint research on plant responses to drought and forest flammability.

2. Linking Fire with Drought: A Conceptual Model

For landscape-scale fires to occur, four conditions need to be met: (i) the presence of spatially
contiguous fuel; (ii) that fuel being dry enough to burn; (iii) weather conditions favourable to the spread
of fire; and (iv) an ignition source (e.g., lightning; [14]). These conditions have been characterised as
switches, with all four needing to be activated for wildfires to occur ([14]; Figure 1). We posit that the
second switch (fuel dryness) is influenced by plant responses to drought, which in turn are governed
by plant traits (Figure 1). The first switch (fuel load) is also likely affected, to some extent, by plant
responses to drought (Figure 1). For live fuels, moisture content is a function of soil water availability
across the root zone, and the osmotic and elastic adjustments that determine the relationship between
leaf water content and leaf water potential [34]. Moisture content is also a function of leaf structural
properties, which set the limit on maximum water content [35].

For fuel load, we suggest that both the quantity and spatial arrangement are modified by
drought-related plant traits. For example, during extreme drought which results in canopy dieback,
there may be a large, temporary transformation of live fuels into dead fuels. When this senescing
foliage is finally shed from plants, the density of live fuels in the canopy will decrease. At the same
time, the influx of litter into the surface fuel layer will be relatively uncompacted, and thus well-aerated,
and therefore more readily available to burn [36]. These relationships between plant responses to
drought and fuel properties are conceptualised in Figure 1. We now explore these linkages between
plant responses to drought and forest flammability in detail.
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3. Common Garden Case Study

We use a common garden experiment as a case study to examine the hypothesised linkages
between drought-related plant traits and wildfire risk outlined in Figure 1. Eight Eucalyptus tree
species originating from across a strong gradient in rainfall (250–1125 mm), temperature (10–21 ◦C)
and moisture index (0.2–1.1; ratio of mean annual precipitation to potential evapotranspiration) across
New South Wales, Australia, were grown in a common garden. The eucalypts were sourced from
a range of vegetation communities (wet sclerophyll forest, dry sclerophyll forest, grassy woodland
and semiarid woodland). Further details of the study design and data were provided in Li et al. [37],
Li et al. [38] and Blackman et al. [39]. Images of the leaves of each species are provided in Figure S1.
Saplings of the eight eucalypt species were progressively dried and coupled measurements of leaf
water potential (Ψleaf) and live fuel moisture content (LFMC) of foliage were taken periodically at
pre-dawn and midday during the imposed drought. Measurements were undertaken on >56 leaves per
species and >7 individuals per species. During the drought, the canopy leaf area that each plant lost
progressively to leaf shedding was calculated from measurements of the dry weight of shed leaves and
the mean leaf mass per area (LMA) of foliage sampled prior to the drought treatment. For each species,
the Ψleaf value associated with initiation of leaf shedding was calculated by averaging Ψleaf values
when some leaf shedding had occurred but >90% of the plant leaf area was still present. Leaf hydraulic
vulnerability to drought-induced embolism was also measured (see [38]).

4. From Relative Water Content to Live Fuel Moisture Content

The foundation of the linkage between drought and fire is the moisture content of fine fuels
(e.g., foliage, twigs). In the drought literature, the water content of foliage is characterised as relative
water content (RWC), whereas in the fire literature it is characterised as live fuel moisture content
(LFMC). However, these metrics are two sides of the same coin. Both RWC and LFMC quantify
the mass of water in foliage, with RWC expressing this mass relative to saturated water content,
whereas LFMC expresses this mass relative to foliar dry weight (Equations (1) and (2), respectively).
The similarity of these two metrics means that the response of LFMC to drying soils can be modelled
in the exact same way that RWC is modelled. In the drought literature, RWC is commonly modelled as
a function of leaf water potential (Ψleaf). This relationship is characterised by the pressure–volume
curve [34], which is a fundamental method of assessing drought tolerance [40].

RWC =
(

Fw −Dw

Tw −Dw

)
·100 (1)

LFMC =
(

Fw −Dw

Dw

)
·100 (2)

where Fw is the fresh weight (i.e., weight prior to rehydration), Dw is the dry weight and Tw is the
turgid (or saturated) weight of the fuel (that is, leaf or shoot).

Pressure–volume curves are typically derived from repeated measurements of Ψleaf and RWC on
a cut leaf or shoot dehydrating on a bench. As leaves dehydrate, cell volume shrinks, turgor pressure
decreases and osmotic potential (Ψπ), and thus Ψleaf, decline [34]. The curve is obtained by plotting
−1/Ψleaf as a function of RWC (Figure 2a). Above the turgor loss point (ΨTLP), the curve is non-linear,
but it approaches a linear relationship as −1/Ψleaf falls below the ΨTLP [34]. This relationship can be
reformulated to express LFMC as a function of Ψleaf by simply replacing RWC with LFMC as follows
(Figure 2b):

LFMC = ma Ψleaf + ca for Ψleaf > ΨTLP (3)

LFMC =

((
−1

Ψleaf

)
− cb

)
/mb for Ψleaf < ΨTLP (4)

where ma and ca are the slope and intercept for the linear model of LFMC and Ψleaf above the ΨTLP,
and mb and cb are regression coefficients for the non-linear model of LFMC and −1/Ψleaf below the ΨTLP,
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respectively. Note, mb and cb can be calculated from a linear regression if Equation (4) is rearranged to
model −1/Ψleaf as a function of LFMC. Equations (3) and (4) will have the exact same form whether
RWC or LFMC are used as the dependent variable, assuming there are no changes in leaf dry matter
content (see Section 6).

Figure 2. (a) Pressure–volume curve illustrating the non-linear relationship between −1/Ψleaf and
declining water status (RWC) (when Ψleaf > ΨTLP), and the linear relationship (when Ψleaf < ΨTLP).
Additionally shown is the turgor loss point (ΨTLP), saturated water content, and region of the graph
affected by cell wall elasticity and osmotic potential at full hydration. (b) Relationship between live fuel
moisture content (LFMC) and Ψleaf above and below the ΨTLP, derived from pressure-volume curve
relationships. Note, this is a theoretical relationship and not based on observations.

To date, there have been few studies modelling LFMC as a function of Ψleaf (but see [19,22]). Here,
we use data from our case study (see Section 3) to demonstrate that declining LFMC during drought can
be modelled from Ψleaf using Equations (3) and (4). Note, our data represent progressive measurements
on multiple leaves during drought, rather than on a single leaf dehydrating on a bench. We modelled the
decline in LFMC and Ψleaf using Equation (3) (for data>ΨTLP) and Equation (4) (for data < ΨTLP: −1/Ψleaf

versus LFMC). The transition between the two models (the ΨTLP) was estimated following Sack et al. [41],
whereby the r2 of the linear regression below the ΨTLP was maximised. The ΨTLP calculated in this way
was similar to that calculated from traditional pressure-volume curves using excised leaves dehydrating
on a bench (the mean absolute error was 0.19 MPa, Figure S2 in Supplementary Material).

For each of our eight species of eucalypt, we found that the model below the ΨTLP (i.e., Equation (4))
fit the data well: r2 = 0.77–0.94, p < 0.001 (Figure 3). Above the ΨTLP, the regression slope was close
to zero for many species, and so the fit of the linear models (i.e., Equation (3)) was relatively poor,
as expected when regression slopes are at or near zero: p > 0.05 for five spp. and p < 0.05 for three spp.
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(r2 = 0.33–0.44 for these spp.). However, the intercepts were always statistically significantly different
from zero (p < 0.001). Despite the poor fit of the linear regression above the ΨTLP for some species,
we think a linear model is still the best model to fit, since (a) there is a good theoretical basis for doing
so [34]; and (b) the data do not exhibit a non-linear relationship. As discussed later in Section 7.2,
modelling LFMC above ~150–200%, which is above the value of LFMC at the ΨTLP for these species,
is of relatively minor importance for predicting critical periods of live fuel moisture content, as most
wildfires occur well below this value.

Figure 3. Decline in LFMC and Ψleaf modelled using Equation (3) (for data > ΨTLP) and Equation (4)
(for data <ΨTLP: −1/Ψleaf versus LFMC), for saplings of eight Eucalyptus species. Species are ordered by
increasing moisture index (ratio of precipitation to potential evapotranspiration) from climate of origin,
i.e., E. largiflorens is from the most arid climate. Regressions for all species were statistically significant
(p < 0.05), except the slope of the linear regression above the ΨTLP for the following species: E. grandis,
E. melliodora, E. blakelyi, E. populnea and E. largiflorens. (a) E. viminalis; (b) E. grandis; (c) E. macrorhyncha;
(d) E. melliodora; (e) E. blakelyi; (f) E. sideroxylon; (g) E. populnea; (h) E. largiflorens.

This case study demonstrates that LFMC can be modelled as a function of Ψleaf following the
pressure–volume curve approach. There is an extensive literature that quantifies pressure–volume
curve parameters, globally [40]. Utilising this literature to model LFMC offers the potential to rapidly
develop models for the prediction of spatiotemporal change in LFMC across a range of ecosystems.
While Ψleaf does not directly affect LFMC (rather, it is foliar water content that affects Ψleaf), developing
a model of LFMC as a function of Ψleaf provides a framework for modelling LFMC from soil water
content, which is discussed in the next section.

5. How Drought Models Can Inform Fire Models: Predicting Live Fuel Moisture Content

Leaf water potential is a key parameter for modelling carbon and water fluxes [42] and is now
being implemented into land surface models [43]. These models have largely been developed to
predict changes in carbon and water cycling due to drought but could be harnessed to predict live fuel
moisture content. Figure 4 outlines the general framework for how Ψleaf, and subsequently LFMC,
can be modelled from soil water content.

Plant water potential generally equilibrates with root-zone soil water potential (Ψsoil) overnight [44].
For this reason, pre-dawn Ψleaf is frequently used as a proxy for Ψsoil. Soil water potential can in turn be
modelled from soil water content and basic soil hydraulic properties that govern the soil water retention
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curve, such as soil texture (see [42]). We note that in some circumstances, night-time transpiration,
solute accumulation and other processes may affect the relationship between pre-dawn soil and leaf
water potential [45]. Diurnal values of Ψleaf will fluctuate relative to Ψsoil due to transpiration [42].
These Ψleaf fluctuations can be modelled from a soil-plant-atmosphere-continuum type of model.
For example, Tuzet et al. [42] developed a coupled model of stomatal conductance, photosynthesis and
transpiration that predicts diurnal values of Ψleaf. Required inputs for this model are Ψsoil, vegetation
attributes that control hydraulic conductance (leaf area index, canopy height, plant hydraulic resistance,
canopy mixing length), stomatal conductance and atmospheric demand for water (Figure 4). A similar
approach has been proposed for modelling LFMC of Calluna-dominated heathlands in the United
Kingdom [46].

Figure 4. Overview of plant structural and physiological traits which modify the relationship between
live fuel moisture content (LFMC) and soil water content.

While diurnal variation in LFMC is largely a function of the stomatal regulation of water loss, water
loss still occurs following stomatal closure through the cuticle and incompletely closed stomata [47].
Thus, diurnal values of Ψleaf will be dependent on rates of minimum conductance following stomatal
closure, which is particularly relevant during drought. However, the processes controlling leaf
desiccation in very dry soil are poorly understood compared to the stomatal regulation of Ψleaf [18],
and thus are a critical knowledge gap for modelling both drought vulnerability and diurnal LFMC
under extreme drought conditions.

6. Drought-Related Plant Traits Determine the Response of Live Fuel Moisture Content to
Drying Soil

Drought-related plant traits, such as rooting depth and the leaf traits which modify the relationship
between RWC and Ψleaf, affect the development of critically low values of LFMC (Figure 2a).
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Thus, existing models for the prediction of live fuel moisture content models may be improved
by incorporating these traits (Figure 4). There is already recognition that plant traits play a role in
forest flammability. For example, leaf size and shape affect the packing of litter beds, which in turn
affects ignitability (i.e., ease of ignition; [36,48]). Similarly, leaf mass per area of live foliage affects
ignitability [49,50]. We now discuss the role of plant traits in determining LFMC dynamics.

Rooting depth determines access to water resources, and will therefore influence seasonal and
inter-annual LFMC dynamics. For example, in Mediterranean environments, tree species typically
have access to deeper soil water or ground water reserves than co-occurring shrubs, and consequently
exhibit less seasonal variation in LFMC [19,51]. In addition to lifeform, rooting depth is often related
to post-fire regeneration strategy. For example, species that can resprout following high intensity fire
typically have greater allocation to roots and deeper root systems than species lacking this capacity,
and consequently exhibit less seasonal variation in LFMC than non-resprouting species [19,24].

One of the central leaf traits characterising physiological responses to soil dryness is the turgor
loss point (ΨTLP), which defines the operating range of water potentials that plants use to control
moisture content [52]. Above the ΨTLP the rate of decline of Ψleaf with RWC is largely dependent on
cell wall elasticity [34]. Below the ΨTLP, cell walls are relaxed and the rate of decline in Ψleaf with RWC
is dependent upon the concentration of solutes in cells, which is characterised by osmotic potential.
While the ΨTLP, cell-wall elasticity and osmotic potential at full turgor control the rate of decline in
LFMC with Ψleaf, saturated water content affects the absolute value of LFMC. Saturated water content
is analogous to maximum LFMC and is negatively correlated with leaf structural properties, including
leaf mass per area (LMA), leaf thickness and leaf density [35]. Here, we found that maximum LFMC
from each of the eight Eucalyptus species in the common garden study declined with increasing LMA
(Figure 5a). This relationship between LFMC and LMA is expected, since both traits incorporate leaf
dry mass, and will therefore be auto-correlated. Thus, the key leaf traits that determine variation in
the relationship between soil water content and LFMC are the ΨTLP, LMA, leaf elasticity and osmotic
potential at full hydration.

These plant traits are known to vary along environmental gradients. The ΨTLP, leaf cell wall
elasticity and osmotic potential at full hydration all generally decline with site water availability,
enabling plants to continue gas exchange during periods of soil water deficit [40]. Our case study
results are largely consistent with this observation. We examined the relationship between leaf traits
and the climatic moisture index of the location of origin of each species (obtained from the Atlas of
Living Australia website at http://www.ala.org.au). We found that: (i) the ΨTLP increased with the
climatic moisture index (Figure 5b); (ii) above the ΨTLP, the slope of Ψleaf versus LFMC (indicative of
cell wall elasticity) increased with the moisture index (Figure 5c); and (iii) below the ΨTLP, the slope
of −1/Ψleaf versus LFMC (indicative of osmotic potential at full hydration) largely increased with the
moisture index, although this correlation was not significant (Figure 5d). Plants can exhibit some
plasticity in these traits through solute accumulation during drought or from wet to dry seasons [53].
Thus, there may be some variability in the relationship between LFMC and Ψleaf through time due to
osmotic adjustment.

LMA also varies along environmental gradients, particularly light, temperature and nutrient and
water availability [54]. Here, we found that LMA from our case study Eucalyptus species increased with
declining moisture availability from their climate of origin (Figure 5e). LMA also increases during leaf
maturation [55]. This effect of leaf age has been associated with seasonal declines in conifer LFMC [56].
Therefore, we suggest that LFMC models may be improved by taking seasonal variation in LMA
into account.
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Figure 5. Relationship between (a) maximum live fuel moisture content (LFMC) and average leaf
mass per area (LMA) in eight Eucalyptus species in a common garden experiment; and (b–e) plant
ecophysiological traits and the moisture index from the climate of origin (calculated as the ratio of
precipitation to potential evapotranspiration), including (b) the turgor loss point (ΨTLP), (c) the slope
of Ψleaf versus LFMC above the ΨTLP (analogous to cell wall elasticity), (d) the slope of −1/Ψleaf

versus LFMC below the ΨTLP (analogous to osmotic potential at full hydration), and (e) average LMA.
Note, the same LMA values are used in (a,e), but the data are transformed by a negative reciprocal
transformation in (a). Dashed lines represent the 95% confidence interval of each regression.

7. How Does Physiological Drought Stress Affect Fuel Availability

During the early stages of drought, declining soil water content will affect live fuel moisture
content, as well as the moisture content of surface dead fuels. As the drought progresses, the onset of
leaf shedding and, eventually, tree death will have major implications for fuel properties. Currently,
there is a concerted research effort to quantify and predict thresholds in leaf- and branch-level die-back,
and whole forest mortality [17,18]. However, linkages between thresholds in drought mortality
and thresholds in wildfire risk have not been explicitly examined to date. Thus, joint research on
drought and forest flammability presents a major opportunity to inform predictive models of wildfire
risk. Thresholds in plant vulnerability to drought are typically calculated from leaf or xylem water
potential [18] or drought indices [57], while thresholds in wildfire risk are typically calculated from
observed relationships between the area burnt by wildfire and fuel moisture content across large spatial
areas (e.g., [9,58]).

7.1. Influence of Physiological Drought Stress on the Distribution of Dead Fuels

Plant vulnerability to cavitation is a major predictor of drought-induced mortality [18],
and is therefore likely to affect the amount and spatial distribution of dead fuels within a forest.
When cavitation is severe enough to trigger leaf death, it results in the transformation of live fuels into
dead fuels. While they are retained within the canopy, these dead fuels decline to moisture contents
well below those of live fuels. These senescent canopy fuels may therefore increase the probability
of crown fire [3,10,36]. When these dead fuels are shed from the canopy, there is an influx of litter
to the surface fuel bed. Initially, these litter fuels are likely to be relatively uncompacted, and thus
well-aerated and available to burn [36]. Thus, leaf shedding may potentially increase the likelihood of
surface fires, although the likelihood of crown fires may decrease due to the lowered overall fuel load
within the tree canopy. Thus, we hypothesise that physiological drought stress can lead to an increase
in the probability of large forest fires.
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There is some evidence for this hypothesis. For example, leaf shedding is known to occur during
infrequent drought events in eucalypt forests [59,60], and this coincides with periods of peak wildfire
activity in these forests ([14]; Figure 6a). Similarly, in Amazonian forests, leaf shedding during severe
drought events coincides with increased fire activity [61]. There is also some evidence that leaf death
and subsequent shedding due to causes other than drought-induced cavitation can affect flammability.
For example, in Mediterranean Pinus halepensis stands, needle senescence occurs during late June and
mid-July, which coincides with peak fire activity in the region ([3]; Figure 6b). In contrast, in western
North America, defoliation due to bark beetles does not result in an increase in the area burnt by
wildfire [62], and may even reduce fire severity (i.e., fuel consumed) due to decreased canopy fuel
loads [63]. Further, while seasonal leaf senescence may coincide with peak fire activity in many regions,
this is not necessarily evidence that physiological drought stress is a causal factor of wildfires. Rather,
physiological drought stress may simply be correlated with the causal factors of fire intensity, such as
high atmospheric evaporative demand.

Figure 6. (a) Eucalypt woodland in north-eastern New South Wales, Australia, during severe drought
in October 2019, illustrating the conversion of live fuels (i.e., foliage) into dead fuels. In this region,
over five million hectares was subject to wildfire in 2019/2020. (b) Seasonal needle senescence in Pinus

halepensis in Catalonia, Spain. Several days following this photo (22 June 2019), large fires occurred
nearby. Image credit: Carles Arteaga.

7.2. Co-Occurrence of Thresholds in Physiological Drought Stress and Wildfire

Thresholds in drought vulnerability vary substantially among species, which may manifest in
different thresholds in wildfire risk across biomes. The potential linkages between thresholds in
drought vulnerability and wildfire risk have so far not been explicitly examined. A key barrier to
investigating this linkage is the differing metrics and terminology used in the drought and fire research
disciplines, e.g., RWC and LFMC. By developing a model of LFMC based on Ψleaf, we can overcome
this barrier, and begin examining whether drought and fire thresholds co-occur. Examining the
relationship between physiological drought stress and wildfire may potentially lead to new insights
and hypotheses about the mechanisms underlying fire occurrence, and development of more reliable
tools for predicting the risk of large wildfires.

Several studies have demonstrated that when fuel moisture content declines below a threshold
value, there is a significant increase in the area burnt by wildfire. For live fuels, thresholds of 70–95%
have been identified for Mediterranean shrublands [58,64,65] and 100–120% for forests [9,66]. We note
that a recent discussion has emerged in the literature on the methods used to estimate these critical
LFMC thresholds, with alternate methods likely to result in small changes in these threshold values
(e.g., a ~10% difference in thresholds was observed in Mediterranean shrublands, depending on the
method applied; [65]).
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Using our common garden case study, we were able to calculate the value of LFMC when the
eucalypt saplings were experiencing drought stress, and compare these values of LFMC with critical
thresholds of LFMC identified for landscape-scale fires in eucalypt forests and woodlands across
south-eastern Australia [9]. We calculated the value of LFMC at three metrics of physiological drought
stress: (i) leaf P50, which is a measure of the Ψleaf corresponding to a 50% decline in maximum
leaf hydraulic conductance, and is commonly used to compare leaf hydraulic vulnerability among
species [67]; (ii) leaf P88, which is a measure of the Ψleaf corresponding to an 88% decline in maximum
leaf hydraulic conductance and may better represent critical hydraulic failure [68]; and (iii) the value
of LFMC associated with the initiation of leaf shedding (defined here as 10% of total canopy leaf
shedding, see Section 3). We found that the value of LFMC at leaf P50 was largely above the critical
threshold of ~102% identified for landscape-scale fire in eucalypt forests and woodlands ([9]; 91–120%,
Figure 7a). However, the value of LFMC at leaf P88 was at or below this critical threshold (77–102%;
Figure 7b). We also found that for all except the most mesic species, the LFMC value corresponding to
the initiation of leaf shedding was at or below this same critical threshold of 102% (Figure 5c).

Figure 7. Value of LFMC at (a) leaf P50, (b) leaf P88 and (c) initiation of leaf shedding (when up to 10%
leaf shedding had occurred) for eight species of Eucalyptus. The y-axis range is the same as for Figure 3,
to illustrate the range of LFMC values observed in the case study. The horizontal lines represent the
LFMC threshold (~102%) associated with a step-change in fire activity for south-eastern Australian
eucalypt forests and woodlands (see [9]).

It is remarkable that the value of LFMC at critical periods of drought stress in eucalypt saplings
aligns so closely with the critical LFMC threshold, leading to a step-change in the area burnt by wildfire
across south-eastern Australian forests and woodlands. These results support our hypothesis that
physiological drought stress contributes to an increased probability of large forest fires. We note that
other factors are important in contributing to these LFMC thresholds, in particular the increasing
connectivity between patches of dry fuel that occurs across the landscape as LFMC declines, e.g.,
the drying of gullies which would otherwise act as a fire break [69].

8. Bridging the Gap between the Drought and Fire Literature

We have demonstrated that plant responses to drought affect fuel attributes, and thus may exert
an important influence on the probability of wildfire. The establishment of better links between
ecophysiological and fire behaviour research communities has the potential to transform knowledge of
fire dynamics. We propose three major research directions:

1. Build connections between the drought and fire literature, in particular, identify ways to
translate between the different measures used in each, e.g., relative water content and live fuel
moisture content.

2. Utilise ecophysiological principles and metrics of drought vulnerability to develop new, predictive
models of fuel dynamics.
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3. Investigate the application of physiological knowledge of critical properties of plants for fire
behaviour modelling.

The potential applications of this proposed research include (i) the development of new types of
live fuel moisture content models which do not require species-specific calibrations; (ii) the capacity
to model live fuel moisture content under future climatic conditions; (iii) the potential to derive
new insights into the mechanisms underlying major wildfire events; and (iv) the development of
physiologically based thresholds of forest flammability.

There is a large body of literature quantifying pressure–volume curve parameters (e.g., turgor
loss point, osmotic potential and elasticity) globally [40]. Applying this research to model LFMC as
a function of Ψleaf requires conversion from RWC to LFMC. One method to convert between RWC
and LFMC is to develop a model of maximum LFMC, i.e., when RWC is 100%. The value of LFMC at
critical values of RWC can then be readily calculated. For example, the value of RWC at the turgor
loss point is commonly calculated in pressure–volume curves, and can be easily converted to LFMC if
the maximum LFMC is known for a given species. Given that maximum LFMC is auto-correlated
with LMA (see Section 6), and LMA is a common and easily measurable trait [54], quantifying the
relationship between maximum LFMC and LMA would provide a pathway to rapidly convert between
RWC and LFMC across many species globally. Thus, research on the leaf structural and environmental
drivers of maximum LFMC is required to bridge the gap between the drought and fire literature.

While we have established that there is a connection between plant responses to drought and
forest flammability, applying this research to fire behaviour modelling requires spatially explicit models
of relevant plant traits, to model plant responses to variation in soil water content, which is not trivial.
An important challenge to developing a physiologically based model of LFMC as a function of soil
water content will be characterising rooting depth. In particular, characterising whether species have
access to groundwater resources, which can buffer LFMC against seasonal variation in soil moisture
content [19]. Vegetation access to groundwater can be inferred from remotely sensed observations
of canopy greenness and surface temperature [70]. Characterising access to water resources among
co-occurring species may be inferred from plant function types, e.g., trees versus shrubs, or post-fire
resprouting versus non-resprouting species. We suggest further studies to test the generality of these
relationships between plant functional types, access to water resources and seasonal variability in
LFMC dynamics across biomes.

A further challenge will be modelling the leaf-level traits which govern responses to declining soil
water content. We suggest modelling the key leaf-level traits as a function of environmental gradients,
in particular aridity and soil nutrient content. However, many of these traits can vary seasonally and
inter-annually, as a function of phenology or climate. For the purposes of modelling wildfire risk,
these seasonal dynamics in leaf traits may be somewhat unimportant, given that wildfires typically
only occur during particular seasons. Thus, research efforts to quantify these plant traits should
prioritise measurements during the fire season.

We hypothesise that leaf death and subsequent shedding as a result of drought-induced cavitation
may affect fire behaviour in multiple, opposing directions. Clearly, this hypothesis requires further
research, and would benefit greatly from quantification of the extent and timing of leaf death and
subsequent shedding. It has been hypothesised that leaf death due to drought occurs as a protective
mechanism to delay dangerous cavitation within stems; however, this is not consistent among
species [71]. Furthermore, the environmental cues that trigger seasonal leaf death and shedding have
often not been well characterised. Thus, further studies on the mechanisms underlying leaf death,
in addition to observations on the extent of leaf death and shedding during drought are suggested.

Further studies are also required to assess the linkages between physiological drought stress and
wildfire occurrence. We suggest additional research focuses on quantifying the distribution of LFMC at
critical periods of drought stress (i.e., critical thresholds of leaf/stem cavitation), and comparing these
values with observed LFMC thresholds that lead to a step change in area burnt by wildfire. Establishing
a physiological basis for thresholds in wildfire occurrence would enable the quantification and
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prediction of wildfire risk across biomes, without the need for local empirical modelling. Investigation
of the relationship between physiological drought stress and wildfire occurrence may also be facilitated
by remotely sensed metrics of vegetation water stress. An indicator of vegetation water stress is
when evapotranspiration declines below seasonal averages [72]. Recent advances in remote sensing
have enabled estimation of evapotranspiration over large spatial scales at high spatial resolution [73].
Linking remotely sensed evapotranspiration with drought metrics derived from precipitation and
potential evapotranspiration would enable large-scale investigation of the relationships between
vegetation drought stress and wildfire activity.
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Figure S1: Scanned images of the leaves of each species used in the common garden study. Not to scale.; Figure S2:
Turgor loss point (ΨTLP ± 1SE) of eight Eucalyptus species, calculated from standard pressure-volume curves
(bench dehydration method) and ΨTLP calculated from progressive observations of leaf water potential (Ψleaf) and
live fuel moisture content (LFMC) of plants subject to imposed drought. Mean absolute error is 0.19 MPa.
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Abstract: Research Highlights: Pre-programmed cell death in old Aleppo pine needles leads to low
moisture contents in the forest canopy in July, the time when fire activity nears its peak in the
Western Mediterranean Basin. Here, we show, for the first time, that such needle senescence may
increase fire behavior and thus is a potential mechanism explaining why the bulk of the annual
burned area in the region occurs in early summer. Background and Objectives: The brunt of the fire
season in the Western Mediterranean Basin occurs at the beginning of July, when live fuel moisture
content is near its maximum. Here, we test whether a potential explanation to this conundrum lies
in Aleppo pine needle senescence, a result of pre-programmed cell death in 3-years-old needles,
which typically occurs in the weeks preceding the peak in the burned area. Our objective was to
simulate the effects of needle senescence on fire behavior. Materials and Methods: We simulated the
effects of needle senescence on canopy moisture and structure. Fire behavior was simulated across
different phenological scenarios and for two highly contrasting Aleppo pine stand structures, a forest,
and a shrubland. Wildfire behavior simulations were done with BehavePlus6 across a wide range
of wind speeds and of dead fine surface fuel moistures. Results: The transition from surface to
passive crown fire occurred at lower wind speeds under simulated needle senescence in the forest
and in the shrubland. Transitions to active crown fire only occurred in the shrubland under needle
senescence. Maximum fire intensity and severity were always recorded in the needle senescence
scenario. Conclusions: Aleppo pine needle senescence may enhance the probability of crown fire
development at the onset of the fire season, and it could partly explain the concentration of fire
activity in early July in the Western Mediterranean Basin.

Keywords: fire behavior; crown fire; fire modeling; senescence; foliar moisture content; canopy
bulk density
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1. Introduction

Pine-dominated ecosystems are one of the major landscape types in the Mediterranean Basin,
where they cover 25% of the forest surface [1]. One of the most abundant and widespread pine species in
the Mediterranean Basin is Pinus halepensis Mill. (Aleppo pine), which covers 6.8 Mha, at low altitudes
(<500 m) and near the coastline [2]. Aleppo pine is a fire-embracer species meaning that it depends,
at least partly, on fires for seed release from serotinous cones and consequent regeneration [3,4].
Post-fire regeneration often results in dense thickets that show a high accumulation of ladder fuels
leading to vertical fuel continuity [5]. P. halepensis shows a low degree of self-pruning, and these forests
are thus particularly prone to crown fires. Approximately one-third of the total annual burned area in
the Mediterranean Basin occurs in P. halepensis stands [6].

There are different types of crown fires, ranging from individual tree torching, active crown fires
and, under exceptional circumstance, independent crown fires that become decoupled from surface
fuels may also occur [7]. Wildfire in P. halepensis stands often show potential for developing active
crown fires beyond extinction capacity [8]. The high rate of spread and intensity of crown fires in
P. halepensis stands, combined with long range spotting are characteristics that pose a serious threat to
life and property [9].

In order to understand potential wildfire behavior, mathematical models have been developed
to account for the various interacting processes that drive fire behavior [10]. In North America and
Europe, different models that link [11,12] surface and crown fire rate of spread predictions with [7,13]
crown fire transition and propagation criteria have often been used [14], including BehavePlus (USDA,
Missoula, MT, USA) [15], FlamMap (USDA, Missoula, MT, USA) [16] or NEXUS (USDA, Missoula, MT,
USA) [17].

In these semi-empirical approaches, the onset of a crown fire is defined by the transition of a
wildfire from surface to canopy fuels. This transition occurs when the surface fire intensity attains or
exceeds a certain critical surface intensity (I0), which, in turn, is determined by the interaction between
foliar moisture content (FMC) and the canopy base height (CBH) [7]:

I0 = (0.01 CBH (460 + 25.9 FMC))1.5 (1)

After the transition from the surface to the canopy layer, a certain canopy bulk density (CBD)
is needed to develop and maintain a solid flame front. If this CBD is not reached, the crown fire
will passively torch isolated trees (or groups of trees), but it will not spread across the canopy [17].
Consequently, for active crown fire development, a critical minimum spread rate (R0), which depends
on CBD, is needed to maintain continuous crowning [12]:

R0 =
3

CBD
(2)

Characterization of the fuel structure and its relevance for fire behavior has been the topic of much
research [18]. Variations in live fuel moisture are often taken into account, although some discussions
are still active on its role in fire propagation [19]. However, an aspect that has seldom been considered
is the role of pre-programmed needle senescence, despite its potential to increase crown fire intensity
and severity [19,20].

Needle lifespan in P. halepensis is approximately three years, and three-years-old needles typically
become dry and senesce towards the end of June or start of July (Figure 1A). This is immediately before
the peak of the fire season in the Western Mediterranean basin, which often occurs in the first half of
July [21] (Figure 1B). Consequently, pre-programmed needle senescence (a developmental process that
allows nutrient recycling in old leaves before shedding) potentially leads to one-third of the canopy
(that is, all 3 years-old leaves) being dry right before the peak fire season [22].

Some studies have addressed the role of FMC on fire behavior [23]. Others have addressed how
canopy drying, following bark beetle attacks, for instance, impacts fire behavior [24–26]. However,
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to the best of our knowledge, the effects of partial canopy drying after needle senescence on crown
flammability have not been quantified so far [19,20,22].

Figure 1. (A) Needle senescence in P. halepensis affecting the old leaves cohort (3-years-old) typically
occurs between the end of June or July, and it drastically modifies the moisture of the canopy. Photo by
Carles Arteaga. (B); Temporal pattern of long-term average (1968–2015) burned area (black, all fires;
red, crown fires) in the Pinus halepensis forests of the Mediterranean regions of Spain. (Data from the
Estadística General de Incendios Forestal provided by the Ministry of Agriculture, Fishing, and Food).

Temporal and spatial coincidence of low foliar moisture content and high canopy bulk density
creates optimal conditions to increase the probability of crown fire occurrence as well as their intensity
and severity. High-intensity crown fires burn canopies by convection, leading to widespread defoliation
and, consequently, plant death. Preprogrammed old needle senescence may thus enhance Aleppo pine
mortality rates after wildfires, if it does affect intensity fire behavior [19]. However, this effect only
lasts for a few weeks, until leaf dropping [20]. After shedding of senesced needles, the probability
of crown fire activity declines as the weighted foliar moisture content increases and the canopy bulk
density decreases. Consequently, surface fires may become more intense after needle shedding due to
an increase in surface fuel loads, but surface fires seldom reach intensities beyond extinction capacity.

It is currently unknown why the brunt of the fire season occurs in early July in the Western
Mediterranean Basin [19]. During this time, FMC in Mediterranean trees, shrubs, and grasses is near
its seasonal maximum [27] and fires occurring in late August, under much lower FMC, often burn at
lower intensity [19]. Aleppo pine needle senescence could thus offer at least a partial explanation to
such conundrum.

Here we seek to quantify the potential effects of needle senescence on fire behavior in P. halepensis

stands. We simulated four scenarios that recreated the major annual physiological and structural
changes in relation to needle senescence (that is, before, during and after leaf senescence and later
in the year after the onset of litter decomposition in the autumn). Each of the four simulations was
ran for two highly contrasting P. halepensis fuel structures (representatives of very high and very low
crown fire likelihood) that are dominant in Valencia (E Spain), one of the most fire-prone regions
in Mediterranean Spain. We wanted to test the potential effects of needle senescence on crown and
surface fire behavior in contrasting stand types, and also to establish its dependence and interactions
with wind speed and dead fuel moisture, two well-known drivers of fire behavior. More specifically,
we wanted to test: (i) whether needle senescence increases the likelihood of transition from surface to
crown fire; (ii) whether once the transition to crown fire has occurred, the likelihood to develop an
active crown fire increases with needle senescence in widely contrasting stand structures; (iii) whether
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needle senescence increases mortality rates after wildfire activity; and (iv) what is the importance of
the effect of needle senescence on crown fire likelihood relative to wind speed and dead fuel moisture.

2. Materials and Methods

2.1. Senescence Scenarios

Aleppo pine presents a tetracyclic annual shoot elongation process. Once senescence is active
(end of June-beginning of July) needles have developed two thirds of the total annual elongation in
current year shoots [28]. Thus, considering a three-year needle life span, pre-programmed senescence
leads to 1/3.6th, or 28%, of the dried canopy (or dead mass fraction, fd) if all 3 years old needles senesce
at once. To simulate annual canopy physiological and structural changes caused by needle senescence,
four phenological scenarios were created. The first one, scenario-A (Table 1), represents spring leaf
sprout. At this time there is an increase in canopy bulk density, canopy cover and foliar moisture
content. Scenario-B (Table 1) represents the time of needle senescence, when about 28% of the canopy
is composed of dead matter at the beginning of July. To introduce these changes in FMC, canopy live
matter moisture (Ml) and canopy dead matter moisture (Md) were weighed (Mw) considering fd as
in [29]:

FMC = Mw = fdMd + (1− fd)Ml (3)

Table 1. Parameters values in shrub and forest fuel types for each scenario: A, before senescence; B,
during senescence; C, after shedding; D, in autumn.

Forest (TU-3) A B C D

Canopy Cover (%) 35 35 35 35
Canopy Height (m) 8 8 8 8
Canopy Base Height (m) 1.5 1.5 1.5 1.5
Canopy Bulk Density (kg/m3) 0.15 0.15 0.1 0.1
Fine Fuel Load (t/ha) 2.5 2.5 3 2.5
1-h Dead Surface Fuel Moisture (%) 6 5 5 9
10-h Dead Surface Fuel Moisture (%) 7 6 6 10
100-h Dead Surface Fuel Moisture (%) 8 7 7 11
Foliar Moisture Content (%) 105 74 100 100

Shrub (SH-9) A B C D

Canopy Cover (%) 100 100 100 100
Canopy Height (m) 5 5 5 5
Canopy Base Height (m) 1 1 1 1
Canopy Bulk Density (kg/m3) 0.22 0.22 0.15 0.15
Fine Fuel Load (t/ha) 10 10 10.7 10
1-h Dead Surface Fuel Moisture (%) 6 5 5 9
10-h Dead Surface Fuel Moisture (%) 7 6 6 10
100-h Dead Surface Fuel Moisture (%) 8 7 7 11
Foliar Moisture Content (%) 105 74 100 100

Scenario-C simulates the time when needles have been shed, which reduce canopy bulk density.
The reduction of dry needles in the crown increases weighted foliar moisture content but needle
shedding increases surface fine fuel loads. Finally, scenario-D (Table 1) corresponds to autumn and
winter periods when surface fine fuel load decreases due to litter decomposition.

2.2. Stand Structures and Fuel Features

Forest structure and fuel loads play a critical role in fire behavior and crown fire susceptibility.
We obtained fuel structure data from the fuel models developed by the Fire Service in Valencia,
Spain [30]. The Valencian fuel model catalogue adapts the models from Scott and Burgan [31] to E
Spain conditions. We used models SH-9 (shrubland from now on; Tables 1 and 2) and TU-3 (forest from
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now on; Tables 1 and 2). We will refer to SH-9 as a shrub fuel type, in the sense that it is short stature
vegetation, but we note that it has two separate fuel layers (canopy fuels begin at 1 m above ground).
It represents stands with a low proportion of large trees, extremely high tree density, and horizontal
fuel continuity. In contrast, TU-3 is a forest fuel type representing stands with two separated layers,
high proportion of large trees, moderate tree density and moderate to low vertical and horizontal
fuel continuity. Both models are considered as dynamic fuels, thus live herbaceous fuels become
dead depending on their moisture content [31]. For initial model simulations, dead fuel moisture for
scenarios A, B, and C were established according to the low moisture values recorded after heat wave
periods [32,33]. As scenario-D represents autumn, dead fuel moisture values are higher due to more
benign conditions. We obtained Ml from [34] and Md from [33]. Additionally, in order to understand
the effect of leaf senescence relative to other drivers of fire behavior, we conducted a sensitivity analysis
on how different values of 1-h dead surface fuel moisture affected fire behavior. Canopy bulk density,
canopy height, and canopy base height were established according to [35]. Changes in canopy bulk
density were established considering a reduction of 28% among scenarios before and after senescence,
as previously argued. Canopy base height values were considered stable among scenarios because
the differences in height between 3 and 2 years-old needles are negligible (<10 cm) for the purpose of
these simulations.

Table 2. Fuel models SH-9 (shrub) and TU-3 (Forest) parameters values.

Fuel Parameters Fuel Model TU-3 Fuel Model SH-9

1-h Dead Fuel Load 2.5 t/ha 10 t/ha
10-h Dead Fuel Load 0.34 t/ha 5.5 t/ha
100-h Dead Fuel Load 0.56 t/ha 0 t/ha
Live Herbaceous Fuel Load 1.5 t/ha 3.5 t/ha
Live Woody Fuel Load 2.5 t/ha 16 t/ha
1-h SAV Ratio 59.05 cm2/cm3 24.60 cm2/cm3

Live Herbaceous SAV Ratio 52.49 cm2/cm3 59.05 cm2/cm3

Live Woody SAV Ratio 45.93 cm2/cm3 49.21 cm2/cm3

Fuel Bed Depth 40 cm 134 cm
Dead Fuel Moisture of Extinction 30% 40%
Dead Fuel Heat Content 18,622.3 kJ/kg 18,622.3 kJ/kg
Live Fuel Heat Content 18,622.3 kJ/kg 18,622.3 kJ/kg

2.3. Fire Behavior Modelization

Wildland fire behavior simulation was done using BehavePlus6 [15] and crown fire was calculated
using Scott and Reinhardt [17] as input option. The input values used in each stand type and each
scenario are detailed in Tables 1 and 2. Slope steepness was set to 0% and 10 m open wind speed was
established in a range from 0 to 30 km/h. Final figures were created using R.3.6.1. (Lucent Technologies,
Murray Hill, NJ, USA) [36]. Assessment of fire severity were performed using the lethal thresholds
(LD) developed by [19]. Thus, a crown fraction burned (CFB) between 0.4–0.8 eliminates 50% of
the population (LD50), and CFB higher than 0.8–0.9 completely eliminates the population (LD100).
When CFB remains below 0.4 CFB mortality is negligible (LD0) [19].

2.4. Dead Mass Fraction Sensitivity Analysis

We also conducted a sensitivity analysis to assess how a varying proportion of fd affected the
transition ratio from a surface to crown layer. This is important because, assuming that the biomass of
each cohort is constant, our previously estimated 28% of fd would constitute a maximum potential
value: needle senescence may start earlier in the year such that different values of fd may occur when
the fire season starts. Surface fire intensity was established from the mean surface intensity across
scenarios with an intermediate wind speed of 15 km/h.
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3. Results

We observed that maximum fire intensity and severity occurred in scenario-B under all wind
speeds and fuel types (Table 3). Fire intensity and severity values were higher in the shrub than in the
forest fuel model. The highest estimated value of Rate of Spread (ROS) in scenario-B for the forest fuel
type was 14.6 m/min at a wind speed of 30 km/h. This value was between 2 and 3 times higher than the
peak ROS in the other scenarios (Figure 2A). In the shrub fuel type, the highest ROS was 17.7 m/min,
a value that was also reached in scenario-B with a wind speed of 30 km/h. ROS in scenario-B in the
shrub fuel type was at least 1.4 times higher than in other scenarios (Figure 3A). The highest fire line
intensity reached in scenario-B was 5924 kW/m in the forest stand and 17,179 kW/m in the shrub stand.
Peak fire line intensity in scenario-B was 2–3 times higher in the forest fuel type and 1.5 times higher
in the shrub fuel type compared to other scenarios (Table 3). The highest flame length occurred in
scenario-B and took values of 8.7 m in the forest stand and 17.7 m in the shrub stand. Flame length
remained between 2–3.3 m for the forest stand and between 10.1–14.4 m in the shrub stand in the other
three scenarios (Table 3).

Table 3. Simulated Rate of Spread (m/min), Fire Line Intensity (kW/m), Flame Length (m) and Crown
Fraction Burned for each scenario (A, B, C, D) under four 10 m open wind speeds (0, 10, 20, 30 km/h).

FOREST (TU-3) Wind Speed (km/h) A B C D

Rate of Spread (m/min)

0 0.3 0.5 0.4 0.3
10 0.9 1.2 1.1 0.9
20 1.7 5.1 2.6 1.7
30 5.8 14.6 6.9 3.9

Fire Line Intensity (kW/m)

0 48 74 69 45
10 130 200 183 121
20 259 1384 462 240
30 1393 5924 1585 653

Flame Length (m)

0 0.5 0.6 0.5 0.4
10 0.7 0.9 0.9 0.7
20 1 3.3 1.6 1
30 3.3 8.7 3.6 2

Crown Fraction Burned

0 0 0 0 0
10 0 0 0 0
20 0 0.35 0.06 0
30 0.30 0.81 0.32 0.13

SHRUB (SH-9) Wind Speed (km/h) A B C D

Rate of Spread (m/min)

0 0.7 1 0.8 0.7
10 2.1 3.1 2.2 1.8
20 5.7 8.6 5.5 4.4
30 12.6 17.7 11.6 9.1

Fire Line Intensity (kW/m)

0 560 765 586 490
10 1752 2615 1679 1330
20 5208 8228 4510 3402
30 12,562 17,179 10,074 7372

Flame Length (m)

0 1.8 2.2 1.9 1.7
10 3.9 5.1 3.8 3.2
20 8.0 10.9 7.3 6
30 14.4 17.7 12.4 10.1

Crown Fraction Burned

0 0.13 0.19 0.1 0.08
10 0.34 0.44 0.27 0.23
20 0.63 0.79 0.49 0.43
30 0.95 1 0.75 0.65
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Figure 2. (A) Rate of Spread (m/min) in each scenario as a function of 10 m open wind speed in forest
stands (TU-3 fuel model type). Dotted lines refer to surface fires, solid lines to passive crown fires.
(B) Crown Fraction Burned values as a function of 10 m open wind speed (km/h) and 1-h dead surface
fuel moisture (%) for each scenario: (A), before senescence; (B), during senescence; (C), after shedding;
(D), in autumn.

121



Forests 2020, 11, 1054

Figure 3. (A) Rate of spread (m/min) in each scenario as a function of 10 m open wind speed in the
shrub stand (SH-9 model type). Solid lines to passive crown fires and dot-dash lines to active crown
fires. (B) Crown Fraction Burned as a function of 10 m open wind speed (km/h) and 1-h dead surface
fuel moisture (%) for each scenario: (A), before senescence; (B), during senescence; (C), after shedding;
(D), in autumn.
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The transition from surface to crown fire in the forest stand occurred with wind speeds higher
than 11 km/h in scenario-B. For scenarios A, C and D, the wind speed thresholds necessary for crown
fire development were 25, 18 and 26 km/h, respectively. However, it is important to note that we
only observed a transition to passive crown fire development, not to active crown fires, in the forest
fuel model TU-3. In the shrub fuel model SH-9, passive crown fires developed under all wind speed
conditions. Active crown fire only developed in scenario-B, when wind speeds were larger than
25 km/h.

Regarding fire severity, crown fraction burned (CFB) values were always higher in scenario-B for
both fuel types and under all wind speed conditions (Figures 2B and 3B). The relative effect of fuel type
on CFB was higher in the forest stand than in the shrub stand since maximum CFB was six times larger
in scenario-B (0.81) than in scenario-D (0.13). Importantly, the effect on CFB varied markedly with
the moisture content of 1-h dead surface fuels. For instance, in the forest, a CBD leading to (LD100) in
the scenario-B occurred either under a wind speed of 25 km/h and a 1 h dead surface fuel moisture of
4% or with a wind speed of 30 km/h and 1-h dead surface fuel moisture of 10%. LD50 was similarly
reached with wind speeds above 15 km/h under minimum 1 h dead surface fuel moisture (4%). In the
remaining forest scenarios (scenarios A, C, and D), increasing wind speed and lowering 1-h dead
surface fuel moisture led to increases in CFB, but they always remained below LD50.

In shrublands (Figure 3B), at least some crown damage was recorded in all scenarios under any
wind speed and 1-h dead surface fuel moisture conditions. CFB values ranged from 1 in scenario-B to
0.65 in scenario-D under the highest wind speed, indicating important differences depending on fuel
phenology. Regarding lethal thresholds (LD), LD50 was reached in scenario-B, under a wind speed of
12 km/h when 1-h dead surface fuel moisture was at 12%, or under 8 km/h when 1-h dead surface fuel
moisture was at 4%. Further increases in wind speed in this scenario would lead to LD100. In the other
scenarios, LD50 was recorded under an intermediate wind speed of 20 km/h and under critical wind
speed conditions (30 km/h), LD100 also occurred in scenario A.

Finally, the sensitivity analysis on the effect of a varying fd on the transition ratio was only
performed in forest stands as critical transition to crown fires always occurred in the shrub fuel under
any wind speed. Our simulations indicated that the critical surface intensity to crown fire transition
under a wind speed of 15 km/h occurred with a minimum fraction of 0.17 of the canopy composed of
dead foliar fuels (Figure 4).

Figure 4. Sensitivity analysis on the effects of a varying mass fraction of dead foliar fuels (fd) and
associated weighted foliar moisture on the Transition Ratio from a surface fire to the canopy layer
on forest stands. Fire transition occurs when the transition ratio between the surface fire intensity
(250 kW/m) and critical surface intensity (I0, Equation (1)) becomes equal or higher than 1.
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4. Discussion

Our results suggest that Aleppo pine needle senescence significantly affects potential crown fire
behavior. Simulations showed important differences in wildfire intensity and severity due to the
physiological and structural changes caused by needle drying and shedding. However, the effect
of needle senescence on fire behavior differed depending on fuel type and its interaction with wind
speeds and 1-h dead surface fuel moisture. In other words, needle senescence by itself does not lead to
active crown fire, but its presence lowers the critical wind speeds and 1-h dead fuels moisture values
necessary to reach such transition point.

We observed stronger crown fire activity under scenario-B in both stand types (Figures 2 and 3).
This scenario represents the process of needle senescence leading to a few-weeks period typically
occurring towards the end of June or beginning of July [22], during which about one third of pine
stand canopy is composed of dry needles (Figure 1A). Spatial and temporal coincidence of low foliar
moisture content and high canopy bulk density favors the development of more intense and severe
crown fires at lower wind speed conditions, particularly for the shrub fuel type, where active crown
fires may develop only under needle senescence. These results indicate that needle senescence could be
a contributing factor to increasing fire intensity in Aleppo pine stands. Consequently, this mechanism
could partly explain why the peak in the burned area observed in the Western Mediterranean basin,
where fires predominantly affect P. halepensis, occurs in early July (Figure 1B).

We also observed that the relative effect of needle senescence was more noticeable in the forest
fuel model than in the shrub fuel model. This is likely due to the fact that baseline flammability in
shrublands is already very high: this fuel type presents a lower canopy base height, which reduces,
to some extent, the dependence of critical transitions to crown fire on foliar moisture (Equation (1)).
Increasing needle flammability in the shrubland stand would thus have, comparatively speaking,
a smaller relative effect for extreme fire behavior than on the forest stand. In fact, crown fires would
develop under any wind speed and canopy moisture in shrublands (Figure 3A). However, needle
senescence did increase the probability of active crown fires. That is, the development of active fires in
the shrubland stand only occurred under canopy senescence. These differences observed between fire
behavior in shrub and forest stands are consistent with other studies [5,37,38].

Needle senescence may influence crown fire behavior in at least two ways: affecting FMC and CBD.
In our forest stand simulation, we recorded that the wind speed necessary for crown fire development
decreased from 25 km/h to 10 km/h between scenarios A and B (Figure 1A) because of decreasing foliar
moisture from 105% to 74% (Table 1). A lower FMC reduces the influx of energy required to start the
ignition, because a smaller amount of water needs to be evaporated. Needle senescence may thus
enhance crown fire development, by reducing foliar moisture content and hence the critical surface
intensity threshold value at which surface fires become crown fires. Furthermore, as we observed in
the sensitivity analysis (Figure 4), the critical surface intensity to cause the transition from a surface fire
to the canopy layer occurred as the dead foliar fractions increased over 17%.

We need to acknowledge that the actual role of FMC in affecting the fire rate of spread is
currently being discussed. Some authors argue that the role of FMC is exaggerated in fire behavior
models because the high convective and radiative fluxes produced by the flame are several orders of
magnitude higher than the energy required to dry the fuel, which would render FMC inconsequent [23].
However, other studies consider that the effect of FMC as a driver of fire spread has actually been
underestimated [29,39]. Furthermore, empirical evidence across many biomes support that increases
in burnt area occur under decreasing FMC [40–43]. A full discussion on this issue would be out of
scope, and the reader is referred to a recent review of this issue for more details [19].

The effect of needle senescence on fire behavior was dependent on 1-h dead surface fuel moisture.
As we observed in Figures 2B and 3B, senescence effects interact with variation in 1-h dead surface fuel
moisture such that critical CFB values were reached in the senescence scenarios under low 1-h dead
surface fuel moisture values. As previously stated, fire behavior is more affected, in relative terms,
by the structural and physiological effects caused by needle senescence in forest stands compared to
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shrublands. Simulations showed that lethal thresholds varied from LD0, which indicates negligible
mortality in all forest scenarios, to LD100, which represents the death of the entire population in
scenario-B under a wind speed of 30 km/h (Table 3). These changes in tree mortality rates among
scenarios were also noticeable in shrublands, where simulations showed that LD100 occurred in
scenario-B after wind speeds as low as 21 km/h under low 1-h dead fuel moisture values. In the
other shrubland scenarios, LD100 only occurred in scenario-A, under a critical wind speed condition
of 30 km/h. Therefore, while needle senescence is, by itself, not enough to reach critical fire severity
thresholds, it lowers the need for critical wind speeds and 1-h dead fuel moisture values necessary to
reach LD50 or LD100.

We recognize that a problem with our study is the way in which the effects of needle senescence on
FMC were inputted into the model. We used a weighted average of FMC whereas, in reality, senesced
leaves may form a layer of fuel that is effectively independent of live FMC. Future research should
concentrate on building more realistic descriptions of needle arrangement such that fuel moisture
within a whorl can change with time. We conducted additional simulations considering only the CBD
of dead canopy fuels, but the resulting CBD (0.05 kg/m3 for forests and 0.07 kg/m3 for shrublands) was
not high enough to produce canopy fires (data not shown).

Another problem with our study lies on the limitations of fire modeling. Considering the complex
dynamics behind wildland fires processes, fire models are very simplified, and this could lead to
misleading predictions. Furthermore, considering climate change, it is difficult to predict extreme
fire conditions accurately. There is some anecdotal evidence that needle senescence enhances crown
flammability (M. Castellnou pers. comm.), but further work should confirm experimentally that needle
senescence does enhance canopy flammability.

An important yet unresolved aspect is whether needle senescence serves an evolutionary role.
It has been reported that pre-programmed needle senescence in the oldest cohort, at least in some
temperate and boreal conifers, increases as new leaves develop [44]. This would be a mechanism to
recycle nutrients from old leaves into new, developing leaves. In our case, needle senescence co-occurs
with the flush of current-year growth, and it could thus serve to support new needle growth. However,
needle senescence also occurs as summer drought stress is starting to be important. Consequently,
needle senescence could also serve as a water-saving mechanism that decreases transpirational area,
at the expense of a transient increase in flammability [22]. However, as climate change intensifies
summer drought and wildfire activity, needle senescence could turn maladaptive by enhancing
crown fire likelihood. Further efforts towards quantifying the phenology of needle senescence and
understanding its underlying drivers should be at the forefront of our research efforts.

We have shown that not considering needle senescence can lead to misleading predictions on
fire risk, potentially misestimating wildfire behavior in Aleppo pine stands and this could potentially
lead to the application of suboptimal forest and fire management activities. While simulations are
routinely performed in order to decide forest management and fire prevention operations, these
simulations could incorporate the role of needle senescence because it significantly lowers the threshold
for catastrophic fire behavior. To date, needle senescence effects may be underrated in fire behavior
simulations due to the relatively short period that it represents each year. However, they occur at a
critical time of the year and, as such, its cascading effects on fire behavior may be rather important, as
we have anticipated in this work.

An increased probability of extreme events has been forecasted for the next decades as a result
of global change. According to predictions, fire seasons may be longer and drier, thereby producing
more intense and severe wildfires [19]. Changes in fire regimes represent a challenge to fire-prone
species and ecosystems. Aleppo pine post-fire regeneration strategy can be hard-pressed if wildfires
return intervals become shorter than the time needed for trees to reach sexual maturity or to produce
enough serotinous cones [45]. Also, extremely high wildfire intensity can damage serotinous seeds
causing the decline of seedling recruitment and leading to populations collapse [22]. We can thus
expect important changes in ecosystem structure in the coming decades, which would have important
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interactions with changes in the fire regime. Furthermore, it would be relevant to simulate Aleppo
pine-woods responses to predicted future climate conditions for the different scenarios tested in this
study. A better understanding of pyrophysiology should, therefore, be at the forefront of our research.

5. Conclusions

We have shown evidence, for the first time to our knowledge, of enhanced crown fire behavior in
Aleppo pine driven by needle senescence through altered canopy structure and foliage in a period
that is coincidental with the brunt of the fire season. Regarding our initial questions, changes in
physiological and structural conditions following senescence enhance the probability of more intense
and severe crown fires development and concentrate extreme tree mortality rates in senescence
periods. Furthermore, in a fuel type with enough canopy bulk density, senescence effects may lead to
development of active crown fires. Finally, it is important to consider that senescence, by itself, may not
be enough to lead to extreme fire behavior. That is, needle senescence should be viewed as a contributing
factor that may favor extreme fire behavior when environmental conditions (e.g., high wind speed)
and 1-h dead surface fuel moisture are also at critical levels. We argue for further research to better
understand and quantify the drivers of needle senescence and its effects on fire behavior in the field.
A lack of consideration of this phenomenon in crown fire modeling systems may provide incomplete
predictions leading to the application of unsatisfactory forest and fire management activities.
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Abstract: Previous studies have shown that Live Fuel Moisture Content (LFMC) is a crucial driver
affecting wildfire occurrence worldwide, but the effect of LFMC in driving wildfire occurrence still
remains unexplored over the southwest China ecosystem, an area historically vulnerable to wildfires.
To this end, we took 10-years of LFMC dynamics retrieved from Moderate Resolution Imaging
Spectrometer (MODIS) reflectance product using the physical Radiative Transfer Model (RTM) and
the wildfire events extracted from the MODIS Burned Area (BA) product to explore the relations
between LFMC and forest/grassland fire occurrence across the subtropical highland zone (Cwa) and
humid subtropical zone (Cwb) over southwest China. The statistical results of pre-fire LFMC and
cumulative burned area show that distinct pre-fire LFMC critical thresholds were identified for Cwa
(151.3%, 123.1%, and 51.4% for forest, and 138.1%, 72.8%, and 13.1% for grassland) and Cwb (115.0%
and 54.4% for forest, and 137.5%, 69.0%, and 10.6% for grassland) zones. Below these thresholds, the
fire occurrence and the burned area increased significantly. Additionally, a significant decreasing
trend on LFMC dynamics was found during the days prior to two large fire events, Qiubei forest
fire and Lantern Mountain grassland fire that broke during the 2009/2010 and 2015/2016 fire seasons,
respectively. The minimum LFMC values reached prior to the fires (49.8% and 17.3%) were close to the
lowest critical LFMC thresholds we reported for forest (51.4%) and grassland (13.1%). Further LFMC
trend analysis revealed that the regional median LFMC dynamics for the 2009/2010 and 2015/2016
fire seasons were also significantly lower than the 10-year LFMC of the region. Hence, this study
demonstrated that the LFMC dynamics explained wildfire occurrence in these fire-prone regions over
southwest China, allowing the possibility to develop a new operational wildfire danger forecasting
model over this area by considering the satellite-derived LFMC product.

Keywords: critical LFMC threshold; forest/grassland fire; radiative transfer model; remote sensing;
southwest China

1. Introduction

Wildfire is a natural phenomenon for many ecosystems since fire affects nutrient cycling, vegetation
succession patterns, and resistance to pests [1]. It also poses a great threat to the ecological environment,
economic development, as well as human life and property [2–6]. There are three major factors that relate
to the incidence of wildfires, spatially continuous and dry enough to burn fuel (biomass), meteorological
conditions conducive to the spread of fire, and ignitions [7–9]. In this context, fuel moisture content
(FMC), defined as the proportion of water content to dry mass within the fuel and traditionally divided
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into FMC of live (LFMC) and dead fuels (DFMC) [10], is an important driver affecting fuel ignition and
fire spread rate [11–13]. Additionally, FMC has also been proven to explain fire occurrence at a large
scale as the burned area tends to increase as FMC decreases [14–17]. This is due to the fact that fuels
with higher moisture content require more energy for water evaporation, slowing down the fire spread
rate and decreasing the flame length [18].

Three methods are normally used to estimate FMC: on-ground field measurements, meteorological
data, and satellite imagery [19]. Ground field measurements commonly achieve a high accuracy level
if a standard protocol is followed and have been used to investigate the relation of FMC with wildfire
occurrence, particularly for the Mediterranean region. For example, Chuvieco et al. [17] demonstrated
FMC measurements to have a predictive effect on fire occurrence in central Spain where grassland FMC
change was a significant factor explaining the numbers of fires, and shrub FMC was highly associated
with large fires. Schoenberg et al. [20] showed that the burned area tended to increase when the field
measured FMC was lower than 90%. Dennison et al. revealed an FMC threshold of 70%–80% [21] and
79% [15] in chamise and southern California, that explained the largest fires. However, despite the
locally high accuracy level for FMC taken at the field, the high time- and cost-consuming make the
large-scale and spatial–temporal FMC mapping unfeasible.

Meteorological indices such as the Keetch–Byram Drought Index (KBDI) and Cumulative
Water Balance Index (CWBI) have been commonly used as indicators for FMC variations [22–24].
Ruffault et al. [25] predicted LFMC quantitative variations and critical values by evaluating the capacity
of six drought indices (DuffMoisture Code (DMC), Drought Code (DC), KBDI, the Nesterov Index (NI)
and the Relative Water Content (RWCL and RWCH)). FMC estimated from meteorological data allowed
for long-term and large-scale mapping, however, the coarse spatial resolution and interpolation of
meteorological data also introduce additional errors. Moreover, the LFMC estimate from meteorological
data is still challenged because living plants can utilize moisture stored in the soil and have multiple
drought adaptation strategies [19,26].

Remote sensing techniques are the only way to date to spatially and temporally understand the
FMC dynamics at regional to continental scale. Methods based on remote sensing for FMC mapping
can be broadly classified into two categories: empirical methods and the radiative transfer model
(RTM) based methods [19,27–29]. The former techniques are known to use statistical formulas based
on FMC measurements and corresponding reflectance or vegetation indices derived from remote
sensing images. For example, with optimally averaged Enhanced Vegetation Index, Myoung et al. [30]
developed an empirical model function of LFMC from MODIS satellite data for wildfire danger
assessment in southern California USA. These statistical approaches are simple and have a known
local accuracy, and their effect on wildfire occurrence has also been explored and analyzed in previous
studies [31]. Jurdao et al. [31] suggested that the critical FMC that supported 90% of grassland and
shrubland fire occurrence was 127.12% and 105.51%, respectively, by extracting the burned pixels from
the MODIS Thermal Anomalies product (MOD14) and retrieving pre-fire FMC from empirical models
applied to satellite images. Nolan et al. [9] determined DFMC thresholds of forest and woodland (14.6%
and 9.9%, respectively) across eastern Australia, based on an empirical formula of vapor pressure
deficit estimated from interpolated weather station measurements [32], and determined the LFMC
threshold values that explained fire occurrence in eastern Australia (156.1% and 101.5%) by estimating
LFMC using an empirically exponential model based on MODIS derived vegetation index. They also
demonstrated the “switch” hypothesis [7] that flammable and non-flammable states can change quickly
from one to another when the temporal dynamics of FMC are close to the thresholds. However, these
empirical methods are known to lack reproducibility due to the shortcomings of sensor-specificity and
position-dependence [33,34]. Alternatively, RTM-based methods have proven to be more reproducible
for LFMC retrievals given they are based on physical laws that provide explicit connections between
surface parameters and leaf and/or canopy spectra [35,36]. Furthermore, RTM-based methods for
LFMC retrieval have been demonstrated to be robust, not site-specific, and easy to generalize [37].
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This study aims to explore the effect of LFMC dynamics on wildfire occurrence in the fire-prone
regions over southwest China between 2007 and 2016 using LFMC estimates derived from satellite
data and RTM. Specifically, senescence in grasses results in the conversion of live fuel to dead fuel over
time. Grassland LFMC in the sections below, is considered as the average moisture content of both live
and dead fuel components, and the degree of curing is not explicitly accounted for. This study is novel
as it (i) provides the first analysis of the effects of LFMC on wildfire occurrence over the southwest
China fire-prone regions which are historically vulnerable to wildfire, and (ii) was entirely based on
optical remote sensing data while RTM-derived LFMC offers a unique way to monitor LFMC dynamics
at large scale. The materials and methods mentioned here can be applied to other fire-prone areas due
to the generalization potential and reproducibility of the RTM-based LFMC retrieving methods used.
The overarching objective of this study is to contribute to the development of an operational system
over this region by considering the satellite- and RTM- based LFMC product. This new system will
allow wildfire danger early prediction, suppression, and response, as well as improved awareness of
fire risk to life and property.

2. Materials and Methods

2.1. Study Area

The study area (101◦ E–107◦ E, 22◦ N–27◦ N) is located in southwest China, which is part of the
Yunnan–Guizhou plateau (Figure 1a), with most areas are 1500–2000 meters above sea level. According
to the IGBP (International Geosphere–Biosphere Programme) classification scheme of the MODIS
Land Cover product MCD12Q1 [38], evergreen broadleaf forests, mixed forests, woody savannas,
grasslands, croplands, and cropland/natural vegetation mosaics are dominant vegetation types in this
area (Figure 1b) (Table 1). Under the Koppen climate classification [39], the study area lies within
the subtropical highland zone (Cwb) and humid subtropical zone (Cwa), with mild to warm winters,
and tempered summers (Figure 1b). The annual average temperature of the study area is 15–18 ◦C,
with an annual temperature difference between 12 ◦C and 16 ◦C. The annual precipitation of the study
area ranges from 1000 mm to 1200 mm. The precipitation in May to October accounts for 80%–90% of
the whole year, whereas November to the next April is the dry season with little precipitation, leading
to a high frequency of wildfire occurrence during this period. Figure 2 shows the burned area per
month from 2007 to 2016 within the study area extracted from the MODIS Burned Area (BA) product
MCD64A1 [40], which also illustrated that the wildfires commonly occurred during the dry season and
peak in January to April. Here, we defined the fire season as spanning from September (month with
highest LFMC value) to the next year August (e.g., the 2009/2010 fire season starts from September
2009 to August 2010) in this study in terms of the annual LFMC dynamics. Additionally, two large
fire (burned area greater than 10 km2 following Arganaraz et al. [41]), Qiubei forest fire (104.42◦ E,
24.41◦ N) on the 1th February 2010 and burned 18.2 km2 for around two weeks (Figure 1c), and Lantern
Mountain grassland fire (103.23◦ E, 23.89◦ N) on the 13th February 2016 and burned about 35.4 km2 for
around three days (Figure 1d), were selected as the case studies to explore the relation between LFMC
and fire occurrences.
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Figure 1. (a) Study area showing the historical (2007–2016) burned areas extracted from MCD64A1
Burned Area product and the DEM (Digital Elevation Model) as the background image. (b) Dominated
vegetation types and Koppen climate classification. The location and burned pixels of (c) the Qiubei
forest fire event on the 1st February 2010, and (d) Lantern Mountain grassland fire event on the 13th
February 2016. Cwa: Subtropical Highland Zone; Cwb: Humid Subtropical Zone.

Figure 2. Burned area per month from 2007 to 2016 extracted from MCD64A1 product over
southwest China.
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2.2. LFMC Measurements

LFMC measurements taken at west China were used to validate the accuracy of the LFMC
retrieved by RTM. The field campaigns were conducted at three areas during four periods, (i) Ruoergai
Grassland (102.46◦ E–102.67◦ E, 33.38◦ N–33.98◦ N), 2013, (ii) Qinghai Lake (98.30◦ E– 101.09◦ E,
36.38◦ N–38.25◦ N), 2014, (iii) Qinghai Lake (98.48◦ E–101.07◦ E, 36.34◦ N–37.78◦ N), 2015, and (iv)
Wenquan Town (102.44◦ E–102.46◦ E, 24.99◦ N–25.00◦ N), 2016. A total of 192 sampling plots (50 plots
in 2013, 62 plots in 2014, 70 plots in 2015, and 10 plots in 2016) covering grass and forest areas were
selected and sampled. The positions for each plot were measured through a global positioning system
(GPS, Trimble Geo 3000). In each plot of grassland area (30 m × 30 m), the plants (0.5 m × 0.5 m)
were randomly measured and destructively sampled. The forest samples were taken within 20 m
from the center of the plots (i.e., the area of the plot is around 40 m × 40 m), and we used a telescopic
scissor to sample the tree canopy leaves that were not easily reached. The fresh samples were first
sealed in plastic bags to prevent the loss of water and then transported to the laboratory, weighed, then
oven-dried, and finally weighed again to determine the LFMC. For details on the sampling protocol,
please refer to refs. [36,42].

2.3. Satellite Data

Satellite products from two different sensors were used in this study, MODIS products and Landsat
8 OLI product. MODIS products were supplied by the Land Processes Distributed Active Archive
Center (LPDAAC) at the U.S. Geological Survey (USGS) Earth Resources Observation and Science
Center (EROS). Landsat 8 OLI product provided by USGS via Google Earth Engine (GEE).

2.3.1. Land Cover

The IGBP classification scheme integrated into the MODIS land cover product MCD12Q1 Collection
5 [38] was selected and used to re-classify the vegetation types into three fuel classes (Table 1): forest,
grassland, and shrubland following Yebra et al. [43]. Since MCD12Q1 Collection 5 was only available
from 2001 to 2013, we continued to use the year 2013 for the years 2014 to 2016. Notably, since little
shrubland (around 0.46% of total vegetation coverage area) was identified in the study area, and the
corresponding cumulative burned area was less than 10 km2, we masked those shrubland pixels out
and did not estimate their LFMC.

Table 1. Re-classified fuel classes based on the IGBP classification scheme and its corresponding
coverage area and cumulative burned area.

Fuel Class IGBP
Coverage Area

(km2)
Cumulative Burned

Area (km2)

Forest

Evergreen Needleleaf Forests 28.9 *
Evergreen Broadleaf Forests 4263.6 117.7

Deciduous Needleleaf Forests 1.7 *
Deciduous Broadleaf Forests 10.7 *

Mixed Forests 26,680 1880.2

Grassland

Woody Savannas, 22,384 2079.2
Savannas 30 *

Grasslands 5784.7 417.8
Permanent Wetlands 108.9 *

Croplands 9794.9 429
Cropland/Natural Vegetation Mosaics 5687.9 281.5

Shrubland
Closed Shrublands 139.6 *
Open Shrublands 206.4 *

The coverage area was calculated based on IGBP in 2013. The cumulative burned area was calculated from 2007 to
2016 based on IGBP in 2013. * denotes the cumulative burned area of this vegetation type from 2007 to 2016 is less
than 5 km2.
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2.3.2. Reflectance

The MODIS MCD43A4 Collection 5 product [44] provides 8-day temporal resolution and 500 m
surface reflectance adjusted by Nadir Bidirectional Reflectance Distribution Function (BRDF), and
the MODIS MCD43A2 Collection 5 product records the quality information of the MCD43A4 pixel
reflectance. MCD43A4 is based on a 16-day period, which makes LFMC retrieval less influenced by
clouds or shadows [45]. Moreover, adjustment by BRDF makes the observed reflectance closer to RTM
simulations that were based on zero zenith angles [46].

Directly validating satellite-derived LFMC with LFMC measurements is unreasonable since the
LFMC was measured at 30/40 m scale which was mismatched with the spatial resolution of MCD43A4
(500 m). Therefore, Landsat 8 Operational Land Imager (OLI) products with spatial resolution of 30 m
and acquired at the closest sampling periods were used to filter out the LFMC measurements sampled
in heterogeneous areas (Section 2.4.1).

2.3.3. Burned Area

The MODIS Burned Area (BA) product MCD64A1 Collection 6 [40] was proven to be of high
accuracy and large-scale BA product [47] was selected as the measure of fire occurrence in this study.
The product is generated monthly at a spatial resolution of 500 m. All pixels with values greater than
zero in the “Burn Date” layer were identified as burned pixels and were used to determine the burn
locations and burn dates in the study area.

2.4. Data Analysis

2.4.1. LFMC Retrieval and Validation

LFMC dynamics were retrieved and mapped from MCD43A4 based on the Look-Up Table
(LUT) algorithm following Quan et al. [28] (grassland) and Quan et al. [36] (forest). In these studies,
the PROSAIL RTM (PROSPECT [48] + SAILH [49,50]) was used for the LFMC retrieval for grassland,
and the PROSAIL RTM coupled with PROGeoSAIL RTM (PROSPECT + GeoSAIL [51]) was used for
forest. The latter was coupled to better represent a two-layered forest characteristic with upper tree
species and understory of grass. To validate the approach, LFMC field measurements (see Section 2.2)
were used, however, directly validating estimations with field measurements may cause errors because
of scale discrepancy [52] (Figure 3). To alleviate the scale discrepancy between sampling plots (30 m
for grassland and 40 m for forest) and MCD43A4-derived LFMC pixels (500 m) only homogeneous
plots within the MODIS footprint were selected. The homogeneity of the plots was assessed using the
standard deviation of NDVI (Normalized Difference Vegetation Index, Equation (1), Figure 3) derived
from the Landsat 8 OLI pixels within a 500 m × 500 m buffer (SDNDVI) and the CVNDVI (Equation (2)).
We argue that plants within the 500 m × 500 m MODIS pixel size buffer should be more homogeneous
in both species composition and moisture condition when the CVNDVI (ranges from 0.05 to 0.15) and
SDNDVI (ranges from 0.15 to 0.30) are lower than a certain threshold [53]. Finally, the threshold values
that resulted in high R2 and low RMSE were selected for the final methodology. Noteworthily, 152 field
data were finally obtained after calculating the average value of field LFMC measurements (originally
192 LFMC measurements) at MODIS scale (Figure 3b).

NDVI =
ρNIR − ρred

ρNIR + ρred
(1)

CVNDVI =
SDNDVI

MEANNDVI
(2)

where ρNIR and ρred are the near-infrared and red reflectance of Landsat 8 OLI product, respectively.
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Figure 3. A case showing the spatial location of field plot, Landsat 8 OLI pixel and MODIS pixel.
The black boxes indicate the 3× 3 MODIS grid (1.5 km× 1.5 km). (a) homogeneous and (c) heterogeneous
LFMC measurement plots of vegetation at MODIS spatial resolution and (b) an example of a MODIS
pixel containing multiple LFMC measurement plots, and 152 field data were finally obtained after
calculating the average value of the field LFMC measurements in such a case.

The processing of the Landsat data was conducted using the Google Earth Engine [54] and the
LFMC retrieval algorithm was implemented in MATLAB (R2017a version, The MathWorks, Natick,
Massachusetts, United States of America).

2.4.2. Critical LFMC Thresholds and Their Relation to Fire Occurrence over Southwest China

The MCD64A1 burned area product was used to extract the historical wildfire location and date
which, however, were almost provided at the pixel level, rather than specific fire events (normally
with the burned area more than one pixel). The KD-Tree based DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) algorithm [55] was used to extract the total burned area for
each of the studied fire events. Figure 1c,d show the cluster results of the Qiubei forest fire and the
Lantern Mountain grassland fire. To analyze the influence of pre-fire LFMC on the burned area and
frequency, the critical LFMC thresholds should be determined beforehand. We identified the burn
dates of all pixels within each fire event based on the information of “Burn Date” layer of MCD64A1
BA product. The pre-fire LFMC value of each pixel was equal to the LFMC prior to the burning date of
that pixel and the median value of all pre-fire LFMC values was used to characterize the overall LFMC
condition before the fire broke out. The cumulative burned area by fire event was therefore calculated
as a function of decreasing the pre-fire median LFMC value following Dennison and Moritz [15] and
Nolan et al. [9]. A segmented regression model [51] was then applied to fit the relation between pre-fire
LFMC and cumulative burned area for all the fire events, thus identifying critical LFMC thresholds.
The model with the lowest Akaike’s Information Criterion (AIC) was selected as the optimal [9].
Breakpoints that indicate a significant increase in the cumulative burned area were finally identified as
the critical threshold and other breakpoints were discarded because of the small significance. Here,
we divided the study area into four areas (forest across Cwa and Cwb, grassland across Cwa and
Cwb), and this methodology based on cumulative burned area was applied to each area. Moreover,
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the LFMC dynamics before and after the Qiubei forest fire and Lantern Mountain grassland fire were
analyzed as two case studies to illustrate the effect of LFMC critical thresholds on fire occurrence.

Finally, the median LFMC values for forest and grassland over southwest China were calculated
for each of the LFMC maps from 2007 to 2016, and then a boxplot was used to characterize the overall
LFMC distribution on each DOY (Day of Year) at 8-day temporal resolution through the ten years.
Because of the similarity of critical LFMC thresholds in Cwa and Cwb climate zones (see in Section 3.2),
we did not distinguish here two climatic zones and analyzed the relation between LFMC climatology
and fire occurrence based on different fuel classes (forest and grassland). We additionally analyzed
the median LFMC and corresponding burned area dynamics for forest in 2015/2016 fire season and
grassland in 2009/2010 fire season. Those periods were selected because of the occurrence of the large
wildfires subject to investigation in this research. In this case, temporal resolution for the burned area
was re-calculated to 8-days according to the burn date extracted from the MCD64A1 product.

3. Results

3.1. LFMC Validation and Mapping

The accuracy in the LFMC retrievals improved (R2 increased and RMSE decreased) when
decreasing the CVNDVI and SDNDVI threshold values used to filter out heterogeneous plots (Figure 4).
Specifically, R2 increased from 0.52 to 0.67, and RMSE slightly decreased from 41.8% to 40.5% as the
CVNDVI and SDNDVI increased.

A result of this study is a multi-temporal LFMC dataset over the study area from 2007 to 2016.
An example of the monthly LFMC distribution during the 2009/2010 fire season is shown in Figure 5.
The LFMC in the study area was low from Nov 2009 to May 2010, particularly during the months of
January to April. These months coincide with the dry season and peaks in the burned area in the study
area (Figure 2). The rainy season generally begins in June and lasts until October. Consequently, high
LFMC values are observed during this period but also more data gaps due to frequent cloudy and
rainy weather (Figure 5).

Figure 4. Three-dimensional maps showing R2 (a) and RMSE (b) between LFMC observations and
estimations with the variation of the threshold values of CVNDVI and SDNDVI used to filter out sites
that are heterogeneous within the MODIS footprint.
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Figure 5. Multi-temporal mapping of monthly LFMC over southwest China throughout the 2009/2010
fire season.

3.2. Critical LFMC Thresholds and Their Relation to Fire Occurrence over Southwest China

The relations between the burned area and pre-fire LFMC were non-linear for both grassland and
forest (Figure 6). However, the critical pre-fire LFMC thresholds that explain an increase in wildfire
occurrence were different for these fuel classes. The burned area increased significantly when the
LFMC was below the thresholds (Figure 6). Moreover, the thresholds of the same fuel class were
similar under different climatic zones. More specifically, three LFMC thresholds were observed for the
forest under the Cwa climate, 151.3% (95% Confidence Interval, CI: 146.8%–155.9%), 123.1% (95% CI:
121.8%–124.3%) and 51.4% (95% CI: 51.2%–51.7%). The ratio of the burned area below these thresholds
to the total burned area accounted for 93.1%, 86.5%, and 34.2% of the total burned area, respectively
(Figure 6a, Table 2). Ten large forest fires (burned area >10 km2) were also detected in this region, and
out of which 10, 9, and 5 occurred below the corresponding LFMC thresholds (Table 2). There were
three additional breakpoints identified at 101.8% (95% CI: 100.2%–103.4%), 48.3% (95% CI: 47.9%–48.6%)
and 39.8% (95% CI: 38.5%–41.1%), which were not identified as thresholds and were discarded since
they did not indicate a significant increase in burned area (e.g., the slope between 51.4% and 101.8%
was lower than the slope between 101.8% and 123.1%). Three LFMC thresholds were also observed
for grassland across the Cwa climate (138.1% (95% CI: 134.1%–142.0%), 72.8% (95% CI: 70.8%–74.8%),
and 13.1% (95% CI: 12.1%–14.1%)) (Figure 6b). Similarly, 17, 14, and 4 out of 21 large grassland fires
occurred below the corresponding threshold (Table 2).

Two thresholds were found for forest in the Cwb zone (115.0% (95% CI: 113.6%–116.3%) and
54.4% (95% CI: 53.6%–55.2%)) (Figure 6c). These two threshold values were close to those found for
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the second (123.1%) and third (51.4%) thresholds for forest in the Cwa zone. The maximum LFMC
supporting forest fire occurrence in this region was 124.3% and no wildfire was detected at the wetter
range of pre-fire LFMC, thus, no threshold was identified. For grassland across Cwb, 137.5% (95% CI:
129.4%–145.6%), 69.0% (95% CI: 66.5%–71.4%), and 10.6% (95% CI: 10.2%–11.0%) were identified as
critical LFMC thresholds (Figure 6d). The three thresholds were similar to the LFMC thresholds for
grassland across the Cwa zone.

Figure 6. Relationship between pre-fire LFMC and cumulative burned area for forest (a) and grassland
(b) across the Cwa climate zone, and forest (c) and grassland (d) across Cwb.

Table 2. Value and range of critical LFMC thresholds, and proportion of burned area and the number
of large fires below the corresponding threshold for forest and grassland across Cwa and Cwb zones.

Fuel Class Climate Zone Threshold (%) 95% CI (%)
Burned Area

Proportion (%)
Large Fire
Number

Forest
Cwa

151.3 146.8–155.9 93.1 10/10
123.1 121.8–124.3 86.5 9/10
51.4 51.2–51.7 34.2 5/10

Cwb
115.0 113.6–116.3 92.2 2/2
54.4 53.6–55.2 34.1 0/2

Grassland

Cwa
138.1 134.1–142.0 81.6 17/21
72.8 70.8–74.8 67.5 14/21
13.1 12.1–14.1 33.7 4/21

Cwb
137.5 129.4–145.6 94.4 2/2
69.0 66.5–71.4 81.1 2/2
10.6 10.2–11.0 30.7 0/2

95% CI (%) represents the range of this threshold under the 95% confidence interval. Burned area proportion
represents the ratio of the burned area below this threshold to the total burned area. Large fire number denotes the
number of large fires (greater than 10 km2) below this threshold and the total number of large fires for forest or
grassland across Cwa (Subtropical Highland Zone) or Cwb (Humid Subtropical Zone).
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The Qiubei forest fire, which occurred on the 1st February 2010, affected 75% of the forested area
and 25% of the grassland area in the region. In six months, the median LFMC within the burned
area gradually decreased from a maximum of 179.7% (YEAR-DOY 2009-241) to a minimum of 49.8%
(2010-025), and a fire broke out when the LFMC was below the 51.4% threshold reported for forest
across the Cwa zone (Figure 7a). After the fire, the median LFMC value across the burned area
stabilized around 49% for more than one month. Similarly, the median LFMC for the vegetation within
the final burned area of the Lantern Mountain fire (78% grassland and 22% forest) declined from
286.8% (2015-249) to 151.7% (2015-345) (Figure 7b). Two months before the fire occurred, the median
LFMC (125.2%, 2015-353) was already below the 138.1% critical LFMC threshold found for grassland
across Cwa zone and further decreased to 17.3% (20156-041), which was slightly higher than the 13.1%
grassland LFMC threshold, just before the fire broke out. Different to the Qiubei forest fire, the LFMC
recovered quickly after the fire probably due to a quicker regrowth of the grass in this region.

Figure 7. Temporal LFMC dynamics before and after the Qiubei (a) and the Lantern Mountain (b) fire
events across the Cwa zone. The dotted lines represent the critical LFMC thresholds. The pie chart
shows the percentage of the total burned area per land cover.

The dynamics variation of the median grassland (Figure 8b) and forest (Figure 8a) LFMC across
the study area are similar in terms of alignment with the fire season (see Section 2.1). The lowest
LFMC were observed from DOY 337 to DOY 113 which coincided with the dry season and the months
with the highest fire occurrence (Figure 8). Additionally, the median LFMC for grassland and forest
of the study area (red lines) reached the critical LFMC thresholds (dotted lines) earlier during the
highest fire activity fire seasons (2009/2010 and 2015/2016) than for the whole time period (shown as
boxplots). Moreover, the median LFMC values during these two fire seasons were almost lower than
the first quartile value of the boxplot on the same DOY and were much more likely to be observed as
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the low outliers (dots traversed by the red line). For example, 14 and 21 median LFMC values were
observed as the outliers in the 2015/2016 (Figure 8a) and 2009/2010 (Figure 8b) fire seasons, respectively.
Furthermore, the period of lower LFMC coincided with the larger burned area (Figure 8). This suggests
that the critical LFMC thresholds effectively explain the burned area. For example, almost all grassland
fires in 2009/2010 occurred when the regional median LFMC was below the 70.9% threshold (Figure 8b).

Figure 8. Dynamics of LFMC and burned area over forest (a) and grassland (b) in southwest China.
Each boxplot indicates the distribution of median LFMC values of the forest or grassland on the same
DOY over ten years (2007 to 2016). Red lines indicate the LFMC dynamics during the fire seasons
when the studied fires broke down (a) 2015/2016 and (b) 2009/2010. Dotted lines denote the critical
LFMC thresholds. The bar chart indicates the re-calculated 8-day burned area for (a) 2015/2016 and
(b) 2009/2010.

4. Discussion

High-quality spatial information on LFMC is needed to explore the effect of LFMC on fire
occurrence at a regional scale. In this study, we followed the methodologies by Quan et al. [28,36] to
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retrieve LFMC over southwest China using the MCD43A4 product. There was a statistically significant
(p <0.01) agreement between retrieved and measured LFMC at field sites used to evaluate the inverse
RTM method. The R2 and RMSE of LFMC improved from 0.52 to 0.67 and from 41.8% to 40.5% when
we removed pixels heterogeneous within the MODIS footprint. This indicated the heterogeneity in the
sampling site highly influences the accuracy assessment of the LFMC retrievals and therefore it should
be considered when it comes to model evaluation.

In this study, cumulative burned area methodology was applied to identify breakpoints, and
thus to determine the thresholds in forest and grassland classes across Cwa and Cwb climatic regions.
Pimont et al. [56] suggested that this kind of methodology should be considered with caution because
it is biased by the frequency distribution of LFMC values. However, we argue that the LFMC threshold
is not only affected by the distribution of pre-fire LFMC but also by the corresponding burned area.
For example, we found that in low LFMC condition (under 15%, Figure 6b,d), cumulative burned area
significantly increases, mainly because of the occurrence of several fire events with a large burned
area. Therefore, it is reasonable to use this methodology to find LFMC thresholds values below which
fires are prone to break out and burn large areas. On the other hand, Pimont et al. [56] also found that
fire activity saturated at low LFMC values when cumulative burned area methodology was applied.
For example, the cumulative burned area basically did not increase when LFMC was lower than 37.2%
(Figure 6c). However, this saturation does not suggest that a low LFMC corresponds to a low fire
occurrence. It suggests that it is enough to support fire when the LFMC condition is slightly higher
than 37.2%. Therefore, a higher LFMC threshold of 54.4% (Figure 6c) was considered.

Similar to these previously reported studies [9,15,21,31], we found that most wildfires occurred
under low LFMC conditions and when LFMC crossed critical LFMC thresholds. Conversely, when
pre-fire LFMC exceeded 200% only 0.29% (forest across Cwa) and 0.19% (grassland across Cwb) of the
total burned area occurred (Figure 6a,d). However, four large fires with pre-fire LFMC greater than
200% were unexpectedly detected for grassland across Cwa (Figure 6b). Yebra et al. [43] also found
high pre-fire LFMC (232%–256%) in the Linksview Road Grassland Fire which occurred in New South
Wales on 16th October 2013. This suggests that FMC is not the only driver of wildfire occurrence and
therefore, other factors such as meteorological data (e.g., temperature, precipitation, air humidity, etc.)
should be accounted for full characterization. For both forest and grassland over southwest China, the
first threshold (137.5%–151.3%) is similar to the LFMC threshold identified by Nolan et al. [9] at 156.1%
in eastern Australia forest and woodland. The second thresholds changed between different fuel
classes with 115.0%–123.1% for forest and 69.0%–72.8% for grassland. Among them, 115.0%–123.1%
for forest is similar to the threshold identified by Nolan et al. [9] at 113.6% in eastern Australia, and
69.0%–72.8% for grassland is similar to those reported in other researches [9,15,21]. The third threshold
(51.4%–54.4%) for forest is close to the lowest value of LFMC that results in wildfire occurrence in
other studies [9,15,17,20,21]. The third threshold (10.6%–13.2%) for grassland is consistent with the
previously reported results that the occurrence of wildfires increases when the DFMC decreases to
12.4%–15.1% [9].

LFMC dynamics over a 10-year time series showed that median forest and grassland LFMC values
were significantly lower during fire seasons with relatively higher fire activity than other fire seasons.
Additionally, those LFMC values were commonly detected as the outliers of the 10-year time series.
This suggested that the LFMC is an effective driver and an early indicator of wildfire occurrence over
southwest China.

We used optical remote sensing data for LFMC mapping in near real-time. However, because of
the weak penetration ability of optical spectral signals through clouds, its applications over cloudy
areas are largely limited [57,58]. For example, the computed LFMC maps had many data gaps in June,
July, and August over the study area (Figure 5) in spite of the monthly image composite of MCD43A4
data used. Fortunately, this has little impact on analyzing the effects of LFMC on fire occurrences
because seldom have wildfires been recorded during this period over the past 10 years (Figure 2).
Nevertheless, it poses the question that wildfires may be highly frequent in cloudy areas (e.g., the
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tropics are inevitably affected by fire [59] and are often covered by clouds [60]). Microwave remote
sensing data has been demonstrated to have better potential application in LFMC inversion because of
its strong penetration ability [61] and high sensitivity to surface moisture [62–65]. The combination of
multi-source optical and microwave remote sensing may be an effective way to alleviate the missing
data problem caused by weather conditions, allowing high quality and long-term LFMC products for
wildfire risk assessment to be generated. This will be explored in future work.

5. Conclusions

In this paper, we presented the first study on exploring the effect of LFMC on wildfire occurrence
over southwest China. The LFMC dynamics from 2007 to 2016 were first retrieved using RTM and
reflectance from the MODIS MCD43A4 product and then validated using field LFMC measurements.
Wildfires events were identified through the KD-tree based DBSCAN algorithm under two Koppen
climate zones (Cwa and Cwb). Statistical results showed that the LFMC dynamic remarkably affects
both grassland and forest fire occurrence: Forest and grassland wildfires between 2007 and 2016 were
controlled by three pre-fire critical LFMC thresholds which varied slightly between different fuel classes
but were similar for the two climate zones. Furthermore, regional median LFMC during a fire season
with high fire activity was significantly lower than the ten year average LFMC. Therefore, this study
demonstrated that LFMC dynamics have clear effects on wildfire occurrence over southwest China,
allowing the possibility to develop a new operational wildfire early-warning model over this area.
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BRDF Bidirectional Reflectance Distribution Function
Landsat 8 OLI Landsat 8 Operational Land Imager
NDVI Normalized Difference Vegetation Index
SDNDVI Standard Deviation
CVNDVI Coefficient of Variance
DBSCAN Density-Based Spatial Clustering of Applications with Noise
CI Confidence Interval
DOY Day of Year

References

1. Kilgore, B.M. The ecological role of fire in Sierran conifer forests: Its application to National Park management.
Quat. Res. 1973, 3, 496–513. [CrossRef]

142



Forests 2019, 10, 887

2. Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Kasibhatla, P.S.; Arellano, A.F., Jr. Interannual
variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 2006, 6, 3423–3441.
[CrossRef]

3. Werf, G.R.V.D.; Morton, D.C.; Defries, R.S.; Olivier, J.G.J.; Kasibhatla, P.S.; Jackson, R.B.; Collatz, G.J.;
Randerson, J.T. CO2 emissions from forest loss. Nat. Geosci. 2009, 2, 737–738. [CrossRef]

4. Boerner, R.E.J.; Jianjun, H.; Hart, S.C. Impacts of fire and fire surrogate treatments on forest soil properties:
A meta-analytical approach. Ecol. Appl. 2009, 19, 338–358. [CrossRef] [PubMed]

5. Liu, X.; He, B.; Quan, X.; Yebra, M.; Qiu, S.; Yin, C.; Liao, Z.; Zhang, H. Near real-time extracting wildfire
spread rate from himawari-8 satellite data. Remote Sens. 2018, 10, 1654. [CrossRef]

6. Rieman, B.E.; Gresswell, R.E.; Young, M.K.; Luce, C.H. Introduction to the effects of wildland fire on aquatic
ecosystems in the Western USA. For. Ecol. Manag. 2003, 178, 1–3. [CrossRef]

7. Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications.
Glob. Ecol. Biogeogr. 2010, 19, 145–158. [CrossRef]

8. Meyn, A.; White, P.S.; Buhk, C.; Jentsch, A. Environmental drivers of large, infrequent wildfires: The emerging
conceptual model. Prog. Phys. Geogr. 2007, 3, 287–312. [CrossRef]

9. Nolan, R.H.; Boer, M.M.; de Dios, V.R.; Caccamo, G.; Bradstock, R.A. Large-scale, dynamic transformations
in fuel moisture drive wildfire activity across southeastern Australia. Geoph. Res. Lett. 2016, 43, 4229–4238.
[CrossRef]

10. Chuvieco, E.; Aguado, I.; Dimitrakopoulos, A.P. Conversion of fuel moisture content values to ignition
potential for integrated fire danger assessment. Can. J. For. Res. 2004, 34, 2284–2293. [CrossRef]

11. Viegas, D.X.; Viegas, M.; Ferreira, A.D. Moisture content of fine forest fuels and fire occurrence in central
Portugal. Int. J. Wildland Fire 1992, 2, 69–86. [CrossRef]

12. Rossa, C.G. The effect of fuel moisture content on the spread rate of forest fires in the absence of wind or
slope. Int. J. Wildland Fire 2017, 26, 24. [CrossRef]

13. Rossa, C.G.; Fernandes, P.M. Live fuel moisture content: The ‘pea under the mattress’ of fire spread rate
modeling? Fire 2018, 1, 43. [CrossRef]

14. Davis, F.W.; Michaelsen, J. Sensitivity of Fire Regime in Chaparral Ecosystems to Climate Change; Springer:
New York, NY, USA, 1995; pp. 435–456.

15. Dennison, P.E.; Moritz, M.A. Critical live fuel moisture in chaparral ecosystems: A threshold for fire activity
and its relationship to antecedent precipitation. Int. J. Wildland Fire 2009, 18, 1021–1027. [CrossRef]

16. Agee, J.K.; Wright, C.S.; Williamson, N.; Huff, M.H. Foliar moisture content of Pacific Northwest vegetation
and its relation to wildland fire behavior. For. Ecol. Manag. 2002, 167, 57–66. [CrossRef]

17. Chuvieco, E.; González, I.; Verdú, F.; Aguado, I.; Yebra, M. Prediction of fire occurrence from live fuel moisture
content measurements in a Mediterranean ecosystem. Int. J. Wildland Fire 2009, 18, 430–441. [CrossRef]

18. Dimitrakopoulos, A.P.; Papaioannou, K.K. Flammability assessment of Mediterranean forest fuels. Fire Technol.

2001, 37, 143–152. [CrossRef]
19. Yebra, M.; Dennison, P.E.; Chuvieco, E.; Riaño, D.; Zylstra, P.; Hunt, E.R., Jr.; Danson, F.M.; Yi, Q.; Jurdao, S.

A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards
operational products. Remote Sens. Environ. 2013, 136, 455–468. [CrossRef]

20. Schoenberg, F.P.; Peng, R.; Huang, Z.J.; Rundel, P. Detection of non-linearities in the dependence of burn area
on fuel age and climatic variables. Int. J. Wildland Fire 2003, 12, 1–6. [CrossRef]

21. Dennison, P.E.; Moritz, M.A.; Taylor, R.S. Evaluating predictive models of critical live fuel moisture in the
Santa Monica Mountains, California. Int. J. Wildland Fire 2008, 17, 18–27. [CrossRef]

22. Burgan, R.E. 1988 Revisions to the 1978 National Fire-Danger Rating System; Research Paper SE-273; US
Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA,
1988; p. 144.

23. Dennison, P.E.; Roberts, D.A.; Thorgusen, S.R.; Regelbrugge, J.C.; Weise, D.; Lee, C. Modeling seasonal
changes in live fuel moisture and equivalent water thickness using a cumulative water balance index. Remote

Sens. Environ. 2003, 88, 442–452. [CrossRef]
24. Dimitrakopoulos, A.; Bemmerzouk, A. Predicting live herbaceous moisture content from a seasonal drought

index. Int. J. Biometeorol. 2003, 47, 73–79. [PubMed]

143



Forests 2019, 10, 887

25. Ruffault, J.; Martin-StPaul, N.; Pimont, F.; Dupuy, J.L. How well do meteorological drought indices predict
live fuel moisture content (LFMC)? An assessment for wildfire research and operations in Mediterranean
ecosystems. Agric. For. Meteorol. 2018, 262, 391–401. [CrossRef]

26. Viegas, D.; Piñol, J.; Viegas, M.; Ogaya, R. Estimating live fine fuels moisture content using
meteorologically-based indices. Int. J. Wildland Fire 2001, 10, 223–240. [CrossRef]

27. Quan, X.; He, B.; Li, X.; Tang, Z. Estimation of grassland live fuel moisture content from ratio of canopy
water content and foliage dry biomass. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1903–1907. [CrossRef]

28. Quan, X.; He, B.; Li, X.; Liao, Z. Retrieval of grassland live fuel moisture content by parameterizing radiative
transfer model with interval estimated LAI. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 910–920.
[CrossRef]

29. Quan, X.; He, B.; Yebra, M.; Yin, C.; Liao, Z.; Zhang, X.; Li, X. A radiative transfer model-based method for the
estimation of grassland aboveground biomass. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 159–168. [CrossRef]

30. Myoung, B.; Kim, S.H.; Nghiem, S.V.; Jia, S.; Whitney, K.; Kafatos, M.C. Estimating live fuel moisture from
MODIS satellite data for wildfire danger assessment in Southern California USA. Remote Sens. 2018, 10, 87.
[CrossRef]

31. Jurdao, S.; Chuvieco, E.; Arevalillo, J.M. Modelling fire ignition probability from satellite estimates of live
fuel moisture content. Fire Ecol. 2012, 8, 77–97. [CrossRef]

32. Nolan, R.H.; Dios, V.R.D.; Boer, M.M.; Caccamo, G.; Goulden, M.L.; Bradstock, R.A. Predicting dead fine fuel
moisture at regional scales using vapour pressure deficit from MODIS and gridded weather data. Remote

Sens. Environ. 2016, 174, 100–108. [CrossRef]
33. Al-Moustafa, T.; Armitage, R.P.; Danson, F.M. Mapping fuel moisture content in upland vegetation using

airborne hyperspectral imagery. Remote Sens. Environ. 2012, 127, 74–83. [CrossRef]
34. Houborg, R.; Anderson, M.; Daughtry, C. Utility of an image-based canopy reflectance modeling tool for

remote estimation of LAI and leaf chlorophyll content at the field scale. Remote Sens. Environ. 2009, 113,
259–274. [CrossRef]

35. Huang, J.X.; Sedano, F.; Huang, Y.B.; Ma, H.Y.; Li, X.L.; Liang, S.L.; Tian, L.Y.; Zhang, X.D.; Fan, J.L.; Wu, W.B.
Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional
winter wheat yield estimation. Agric. For. Meteorol. 2016, 216, 188–202. [CrossRef]

36. Quan, X.; He, B.; Yebra, M.; Yin, C.; Liao, Z.; Li, X. Retrieval of forest fuel moisture content using a coupled
radiative transfer model. J. Environ. Modell. Softw. 2017, 95, 290–302. [CrossRef]

37. Yebra, M.; Chuvieco, E.; Riaño, D. Estimation of live fuel moisture content from MODIS images for fire risk
assessment. Agric. For. Meteorol. 2008, 148, 523–536. [CrossRef]

38. Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS
collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens.

Environ. 2010, 114, 168–182. [CrossRef]
39. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Koppen-Geiger climate classification.

Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [CrossRef]
40. Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire

products. Remote Sens. Environ. 2016, 178, 31–41. [CrossRef]
41. Arganaraz, J.P.; Landi, M.A.; Scavuzzo, C.M.; Bellis, L.M. Determining fuel moisture thresholds to assess

wildfire hazard: A contribution to an operational early warning system. PLoS ONE 2018, 13, e0204889.
[CrossRef]

42. Quan, X.; He, B.; Li, X. A bayesian network-based method to alleviate the ill-posed inverse problem: A case
study on leaf area index and canopy water content retrieval. IEEE Trans. Geosci. Remote Sens. 2015, 53,
6507–6517. [CrossRef]

43. Yebra, M.; Quan, X.; Riaño, D.; Larraondo, P.R.; Dijk, A.I.J.M.V.; Cary, G.J. A fuel moisture content and
flammability monitoring methodology for continental Australia based on optical remote sensing. Remote

Sens. Environ. 2018, 212, 260–272. [CrossRef]
44. Strahler, A.H. MODIS BRDF/Albedo Product: Algorithm Theoretical Basis Document Version 5.0. 1999. Available

online: https://www.semanticscholar.org/paper/MODIS-BRDF-%2F-Albedo-Product-%3A-Algorithm-
Theoretical-Strahler-Lucht/1adc54eac2199b93536c5988bb2bd1952127d74f (accessed on 9 September 2019).

144



Forests 2019, 10, 887

45. Yebra, M.; Dijk, A.V.; Leuning, R.; Huete, A.; Guerschman, J.P. Evaluation of optical remote sensing to
estimate actual evapotranspiration and canopy conductance. Remote Sens. Environ. 2013, 129, 250–261.
[CrossRef]

46. Jurdao, S.; Yebra, M.; Guerschman, J.P.; Chuvieco, E. Regional estimation of woodland moisture content by
inverting radiative transfer models. Remote Sens. Environ. 2013, 132, 59–70. [CrossRef]

47. Padilla, M.; Stehman, S.V.; Ramo, R.; Corti, D.; Hantson, S.; Oliva, P.; Alonso-Canas, I.; Bradley, A.V.;
Tansey, K.; Mota, B.J.R.S.O.E. Comparing the accuracies of remote sensing global burned area products using
stratified random sampling and estimation. Remote Sens. Environ. 2015, 160, 114–121. [CrossRef]

48. Feret, J.B.; Francois, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; le Maire, G.;
Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic
pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [CrossRef]

49. Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model.
Remote Sens. Environ. 1984, 16, 125–141. [CrossRef]

50. Kuusk, A. The Hot Spot Effect in Plant Canopy Reflectance; Springer: Berlin/Heidelberg, Germany, 1991;
pp. 139–159.

51. Huemmrich, K.F. The GeoSail model: A simple addition to the SAIL model to describe discontinuous canopy
reflectance. Remote Sens. Environ. 2001, 75, 423–431. [CrossRef]

52. Adab, H.; Devi Kanniah, K.; Beringer, J. Estimating and up-scaling fuel moisture and leaf dry matter content
of a temperate humid forest using multi resolution remote sensing data. Remote Sens. 2016, 8, 961. [CrossRef]

53. Yebra, M.; Scortechini, G.; Badi, A.; Beget, M.E.; Boer, M.M.; Bradstock, R.; Chuvieco, E.; Danson, F.M.;
Dennison, P.; Resco de Dios, V.; et al. Globe-LFMC, a global plant water status database for vegetation
ecophysiology and wildfire applications. Sci. Data 2019, 6, 155. [CrossRef]

54. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth engine:
Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202. [CrossRef]

55. Hahsler, M. Density Based Clustering of Applications with Noise (DBSCAN) and Related Algorithms
[R Package Dbscan Version 0.9-7]; 2016. Available online: https://rdrr.io/cran/dbscan/ (accessed on
9 September 2019).

56. Pimont, F.; Ruffault, J.; Martin-Stpaul, N.K.; Dupuy, J.L. A cautionary note regarding the use of cumulative
burnt areas for the determination of fire danger index breakpoints. Int. J. Wildland Fire 2019. [CrossRef]

57. Shi, Q.; He, B.; Zhe, Z.; Liao, Z.; Quan, X. Improving Fmask cloud and cloud shadow detection in mountainous
area for Landsats 4–8 images. Remote Sens. Environ. 2017, 199, 107–119.

58. Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens.

Environ. 2012, 118, 83–94. [CrossRef]
59. Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a sentinel-2 burned area

algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17.
[CrossRef]

60. Asner, G.P. Cloud cover in landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 2001, 22,
3855–3862. [CrossRef]

61. Tsang, L.; Kong, J.A.; Shin, R.T. Theory of Microwave Remote Sensing; Wiley: New York, NY, USA, 1985.
62. Fan, L.; Wigneron, J.-P.; Xiao, Q.; Al-Yaari, A.; Wen, J.; Martin-StPaul, N.; Dupuy, J.-L.; Pimont, F.; Al Bitar, A.;

Fernandez-Moran, R. evaluation of microwave remote sensing for monitoring live fuel moisture content in
the Mediterranean region. Remote Sens. Environ. 2018, 205, 210–223. [CrossRef]

63. Tanase, M.; Panciera, R.; Lowell, K.; Aponte, C. Monitoring live fuel moisture in semiarid environments
using L-band radar data. Int. J. Wildland Fire 2015, 24, 560–572. [CrossRef]

64. Wang, L.; Quan, X.; He, B.; Yebra, M.; Xing, M.; Liu, X. Assessment of the dual polarimetric sentinel-1A data
for forest fuel moisture content estimation. Remote Sens. 2019, 11, 1568. [CrossRef]

65. Jia, S.; Kim, S.H.; Nghiem, S.V.; Kafatos, M. Estimating live fuel moisture using SMAP L-band radiometer
soil moisture for Southern California, USA. Remote Sens. 2019, 11, 1575. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

145





Article

Terpenoid Accumulation Links Plant Health and
Flammability in the Cypress-Bark
Canker Pathosystem

Gianni Della Rocca 1, Roberto Danti 1, Carmen Hernando 2,3, Mercedes Guijarro 2,3,

Marco Michelozzi 4, Cristina Carrillo 2,5 and Javier Madrigal 2,3,*

1 Institute for Sustainable Plant Protection, IPSP-CNR, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (FI),
Italy; gianni.dellarocca@ipsp.cnr.it (G.D.R.); roberto.danti@ipsp.cnr.it (R.D.)

2 INIA–CIFOR, Department of Forest Dynamics and Management, Ctra. A Coruña Km 7.5, 28040 Madrid,
Spain; lara@inia.es (C.H.); guijarro@inia.es (M.G.); cristina.carrillo@inia.es (C.C.)

3 iuFOR, Sustainable Forest Management Institute UVa-INIA, 34004 Palencia, Spain
4 Istituto di Bioscenze e Biorisorse IBBR-CNR, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (FI), Italy;

marco.michelozzi@ibbr.cnr.it
5 ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid (UPM), Ramiro de Maeztu

s/n, 28040 Madrid, Spain
* Correspondence: incendio@inia.es

Received: 22 April 2020; Accepted: 5 June 2020; Published: 7 June 2020
��������	
�������

Abstract: To explore the possible relationship between diseased trees and wildfires, we assessed
the flammability of canker-resistant and susceptible common cypress clones that were artificially
infected with Seiridium cardinale compared to healthy trees. This study explored the effect of
terpenoids produced by the host plant in response to infection and the presence of dead plant portions
on flammability. Terpenoids were extracted and quantified in foliage and bark samples by gas
chromatography–mass spectrometry (GC–MS). A Mass Loss Calorimeter was used to determine the
main flammability descriptors. The concentration of terpenoids in bark and leaf samples and the
flammability parameters were compared using a generalized linear mixed models (GLMM) model.
A partial least square (PLS) model was generated to predict flammability based on the content of
terpenoid, clone response to bark canker and the disease status of the plants. The total terpenoid
content drastically increased in the bark of both cypress clones after infection, with a greater (7-fold)
increase observed in the resistant clone. On the contrary, levels of terpenoids in leaves did not
alter after infection. The GLMM model showed that after infection, plants of the susceptible clone
appeared to be much more flammable in comparison to those of resistant clones, showing higher
ignitability, combustibility, sustainability and consumability. This was mainly due to the presence of
dried crown parts in the susceptible clone. The resistant clone showed a slightly higher ignitability
after infection, while the other flammability parameters did not change. The PLS model (R2Y = 56%)
supported these findings, indicating that dead crown parts and fuel moisture content accounted for
most of the variation in flammability parameters and greatly prevailed on terpenoid accumulation
after infection. The results of this study suggest that a disease can increase the flammability of trees.
The deployment of canker-resistant cypress clones can reduce the flammability of cypress plantations
in Mediterranean areas affected by bark canker. Epidemiological data of diseased tree distribution
can be an important factor in the prediction of fire risk.

Keywords: Cupressus sempervirens; fire risk; fuels; fuel moisture content; mass loss calorimeter;
Seiridium cardinale; vulnerability to wildfires; disease; alien pathogen; allochthonous species;
introduced fungus
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1. Introduction

The relationship between non-native plant disease and the frequency of wildfires (the effect on
fire regimes), and the implications for fire management has become an increasing focus of research in
recent years [1,2]. Both wildfires and disease caused by invasive pathogens (and insects) are key factors
in determining tree mortality in forests worldwide and are linked to the global change context [3–10].
The relationship between wildfire and forest disease depends on the host–pathogen species involved
and their mutual interaction, knowledge in this field is still lacking detailed information.

Current global change scenarios in terms of the combination of climate, shift in land use, and
the expansion of trade networks and volume of goods, exacerbate the seasonal drought and warming
stress periods that in turn influence plant physiology, biochemical defences and disease severity,
in terms of pest and disease movement and outbreaks [9,11,12]. At the stand level, the interaction
between wildfire and an emerging fungal forest disease was studied in Californian and Oregon forests
affected by sudden oak death (SOD) (caused by Phytophthora ramorum) [1,4,13]. This new disease
altered the physical and biochemical characteristics of the ecosystem e.g., fuel load, increasing the
surface fuel, restructuring the forest canopy, decreasing canopy continuity and increasing tree mortality.
This altered the species composition and in turn affected wildfire dynamics (severity, risk of crown
ignition, etc.) [4,14–17]. In Californian forests affected by SOD, the rate of standing dead trees was
higher, the tanoak (Notholithocarpus densiflorus) mass of woody debris on the soil was tens of times
greater and the depth of the fuel bed in diseased stands was four times that in disease-free forest [18].
Simulation modelling with the BehavePlus fire model system, indicated that flame length, fire spread
rate and fireline intensity, increased several times in infected Douglas fir and Redwood stands compared
to their healthy counterparts [18].

At the tree level, both climatic and biotic stress factors affect the health of trees. These stresses
decrease the water content of plant organs, increase the ratio of dead to alive crown portions,
and especially in conifers, influence the qualitative and quantitative amount of several plant defensive
compounds, such as terpenoids [19–22]. Terpenoids are considered to be one of the most important
molecules affecting forest fuel flammability [23–28]. Terpenoids are constitutive induced lines of defence
in conifers; an increase in absolute amounts, changes in their proportions and de novo production of
molecules (phytoalexins) have been observed after infection depending on the pathosystem [29].

Cypress canker disease (CCD) is a non-native lethal disease affecting many Cupressaceae (above all
Cupressus sempervirens L., in the Mediterranean area). It is caused by the invasive fungal pathogen
Seiridium cardinale (Wagener) Sutton et Gibson introduced in Europe (and spread across the globe)
from California, USA [30–32]. This destructive disease causes the dieback of crown portions and the
desiccation of twigs and branches, due to the girdling of the woody organs by the necrotrophic fungal
agent [33]. An additional effect of CCD is also the de novo genesis of traumatic resin ducts (TRD) in
bark tissues affected by canker [34–36], and the consequent abundant exudation of resin that flows
down from the infected organs [33]. Both of these effects supposedly affect the flammability of the
infected trees or their portions. A long-term genetic research program developed since the 1970s in
Italy, France and Greece led to the selection of several C. sempervirens genotypes resistant to CCD
(some of which were patented and made commercially available).

The CCD resistant clones are able to block the growth of the fungus in the infected bark within
a few weeks and completely heal the lesion within a few years [37–41]. The efforts undertaken to
control the CCD are justified by the high ecological, symbolic, historical and cultural value of this
tree in Mediterranean countries. Cupressus sempervirens is used in forestry, landscaping in peri-urban
and urban contexts and also as a windbreak and hedge [32]. The induction of terpenoids as part of
the defensive reaction of common cypress plants (both CCD-resistant and susceptible clones and not
selected for CCD resistance plants) to Seiridium cardinale infection is characterized by the production
and accumulation of several de novo specific compounds [29].

The flammability of the live crown of plants of C. sempervirens has already been studied
extensively [42–47]; nevertheless, the flammability descriptors (ignitability, sustainability, combustibility
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and consumability) of healthy and diseased cypress clones selected for CCD resistance have not yet
been assessed. This work explores the links between diseased trees and wildfire, comparing the
flammability of canker-resistant and susceptible common cypress clones, artificially infected by
S. cardinale, in comparison to healthy ramets of both clones. We set out to address the following
questions: (i) Is a diseased plant more flammable than a healthy one, and if so, to what extent? (ii) Is
a CCD-resistant cypress clone less flammable than the CCD-non-resistant equivalent? (iii) How do
terpenoids produced by the host in response to infection, and dead plant portions killed by the fungal
pathogen, affect flammability?

2. Materials and Methods

2.1. Experimental Set-Up: Plant Selection, Growth Conditions and Artificial Inoculation

Twenty 3-year-old grafted ramets of Cupressus sempervirens of the canker-resistant (PM-322;
patented cypress clone ‘Bolgheri’) and CCD-susceptible (10 ramets each) clones were used for this
study. The plants were grown under natural field conditions in 4 litre pots (15 × 15 × 20 cm) containing
a mixture of peat, compost and perlite (3:1:1, v/v/v) in the experimental area of the Institute for
Sustainable Plant Protection (IPSP) of the Italian National Research Council (CNR) in Sesto Fiorentino,
Italy (43◦49′05” N; 11◦12′07” E). During the experiment, the potted cypress plants were irrigated
2 times per week and were fertilized every 20 days with half-strength Hoagland solution.

At the beginning of June 2018, four ramets of each cypress clone were artificially inoculated with
a standard isolate of S. cardinale (ATCC 38654) following the procedure described in Danti et al. [48],
while the other ramets were left intact. A 3 mm plug of stem bark was removed with a cork borer and
replaced with a plug the same size of S. cardinale mycelium grown on PDA in Petri dishes for 15 days
at 25 ◦C in the dark. The inoculum was then covered with wet cotton wrapped with parafilm around
the trunk for one week.

We performed 5 stem inoculations for each plant to simulate a severe CCD attack and induce
severe infection symptoms. The sites of inoculation started approximately 10 cm below the top of the
plant and were spaced 5 cm apart from one another, where the stem was between 0.5 and 1 cm in
width, determined using a stem calliper. The duration of the study was 3 months.

Three months after the inoculation (September 2018), when the typical CCD symptoms were
fully evident (development of necrotic lesions around the inoculation points, a little resin exudation
from the inoculation points, with apical twigs and shoot desiccation), the 4 diseased plants and 4
unaffected plants of each clone were sampled for the flammability tests and the determination of
terpenoid content. At the same time, two more intact ramets of each clone were used to determine the
moisture content (FMC) and dry mass (see below).

2.2. Fuel Moisture and Biomass Determination

To determine the moisture content and biomass, two intact ramets of each clone were subdivided
into three parts: upper, middle and lower third, and each portion was in turn divided into green leaves
and twigs, bark tissues and xylem. The cutting and splitting of the ramets was carried out in a cold
room (5 ◦C) as fast as possible (taking a few minutes). Each type of sample was then immediately
weighed (fresh weight) with a precision balance and placed in an oven at 70 ◦C until a constant weight
was achieved and considered to represent the dry weight. The fresh and dry mass and the moisture
content (FMC) of the leaves—twigs, bark and xylem were separately determined for the three parts
(upper third, middle third, lower third) of the ramets. These measures allowed us to determine the
real amount of terpenoids contained in the leaves and bark of each sample used for flammability tests
(see below).
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2.3. Sample Splitting for the Determination of Terpenoids and Flammability Tests

For the extraction of terpenoids and to conduct the flammability tests, 16 ramets (8 per clone,
4 inoculated and 4 intact) were separately cut in 10 cm long stem portions (in a cold room as before)
from the upper, lower and medium third of the ramets. From each portion, a 4 cm long stem segment
(including the inoculation point, for the infected plants) and 5 g in fresh weight of leaves, randomly
chosen, were sampled for the determination of terpenoids. From the 4 cm stem segments, bark tissues
(from the cambium to the outer periderm) were removed and separately stored (while the xylem
was discarded). For the determination of terpenoids, the leaves and bark samples were stored in
falcon tubes at −20 ◦C until the extraction of the terpenoids. The remaining material from each of the
stem portions, that were initially 10 cm in length, was placed in hermetically sealed plastic bags and
immediately stored at −20 ◦C and shipped in dry ice (the day after with a 12 h courier) to the Forest
Fire Laboratory of the INIA–CIFOR in Madrid, Spain, for the flammability tests (see below).

2.4. Terpenoids Extraction, Identification and Quantification

For the determination of terpenoids, 500 mg (fresh weight) of each foliage and bark tissues were
quickly fragmented into small pieces, of about 0.5–1 cm in length, with a scalpel (in a cold room) and
placed separately in sealed 230 mL vials with 1 mL of heptane as the solvent and tridecane (20 ppm)
as an internal standard. The vials were then submitted to 3 sonication cycles of 10 min each at room
temperature (25 ◦C) at a frequency of 38–40 KHz (Ultrasonic cleaner Sonica, S3 EP, Soltec, Milano, Italy)
and subsequently stirred overnight (for 12 h) at 35 ◦C in a rotating incubator shaker (Thermoshake
THO 500/1, Gerhardt, Königswinter, Germany) at 90 rpm. The vials were then centrifuged for 10 min at
20 ◦C at 5000 rpm (Centrifuge 5810 R, Eppendorf, Hamburg, Germany), and the supernatant pipetted
in 2 mL vials sealed with a Teflon septum and crimped with an aluminum cap for the detection of the
terpenoids via gas chromatography–mass spectrometry (GC–MS).

The terpenoids were analysed using a Gas Chromatograph Agilent 7820 GC-Cromatograph
equipped with a 5975C MSD with EI ionisation (Agilent Tech., Palo Alto, AC, USA) as described
in [27]. A 1 μL sample of the aforementioned supernatant was injected in a split/splitless injector
operating in split mode with 1:10 split ratio. A Gerstel MPS2 XL autosampler equipped with liquid
option was used. The analysis was carried out under the following conditions: H2 (carrier gas) at
1.2 mL min−1; the injector in splitless mode set at 260 ◦C, J&W innovax column (30 m, 0.25 mm
i.d., 0.5 μm df); oven temperature program: initial temperature 40 ◦C for 1 min, then 5 ◦C/min until
200 ◦C, then 10 ◦C/min until 220 ◦C, then 30 ◦C/min until 260 ◦C, with a hold time of 3 min. The mass
spectrometer was operating with an electron ionisation of 70 eV, in scan mode in the m/z range 29–330
at three scans/sec.

The deconvoluted peak spectra, obtained by Agilent MassHunter Workstation software,
were matched against the NIST 11 spectral library for tentative identification. Kovats’ retention
indices were calculated for further compound confirmation and compared with those reported in the
literature for the chromatographic column used. In addition, terpenoids (mono- and sesquiterpenoids)
were identified by the comparison of the retention times with those of authentic standards (high-purity
components were obtained from Fluka, Aldrich and Acros) injected under the same conditions, and also
by comparison with the tridecane internal standard for those compounds for which standards were
not available. The identified terpenoids (TOTterp) were grouped into four categories: monoterpenoids
(MT), oxygenated monoterpenoids (MTox), sesquiterpenoids (ST) and oxygenated sesquiterpenoids
(STox), as outlined in Della Rocca et al. [27]. The amount of terpenoids was expressed as μg/g dry
weight (DW) of the samples.

2.5. Flammability Test at MLC

An adapted Mass Loss Calorimeter (MLC) device was used [47,49–51]. The tests were performed
using the MLC arranged in the standard horizontal configuration, to determine the main flammability

150



Forests 2020, 11, 651

descriptors [52]: ignitability (time to ignition, TTI), combustibility (peak of heat release rate, PHRR),
sustainability (average effective heat of combustion, AEHC) and consumability (percentage mass lost,
PML). A porous holder (10 × 10 × 5 cm) was used to allow the natural diffusion of air through the
samples during the MLC tests. The MLC tests were conducted at 50 kW/m2, simulating severe fire
conditions [53]. The fuel moisture content (FMC) of the live foliage was promptly determined on 8 g
subsamples using a Computrac MAX R 2000XL moisture analyser (Arizona Instrument LLC). Based on
their FMC values, the dry mass of the fresh samples was fixed at 10 g (to balance the variability
in weight due to the differences in water content among the samples [50]). At the end of each test,
the residual mass fraction was determined with a precision balance (Mettler AB104-S). All samples
were stored in a refrigerated chamber (at 4 ◦C) and processed within 5 days.

A series of tests was carried out using the experimental design described for the extraction of
terpenoids (see above). The portions cut from the 16 ramets (8 per clone), were divided into the three
groups previously identified (upper, middle and lower thirds), and a total of 48 samples were obtained.
From each portion, one 8 g subsample of leaves was used to obtain the FMC (see above), while the
remaining samples of woody stem and foliage (10 g of dry weight) were subdivided in 3–5 subsamples
to carry out the flammability tests. The MLC protocol for ‘alive’ samples generated a high level of
variability, and non-repetitive tests must be removed from analysis to obtain at least two replicates
complying with the repeatability criteria (errors less than 15% [53]). Therefore, the original set of 48
samples was reduced to 36 samples (8 replicates per condition: CCD-resistant clone inoculated (RI)
or non-inoculated (RC), CCD-susceptible clone inoculated (SI) and non-inoculated (SC)). This data
set (n = 36) was considered representative (upper, middle and lower third portion of trees), and was
randomly extracted from 16 ramets (replicates), avoiding pseudo-replication. For each plant portion,
the FMC and dry mass were measured and the real amount of terpenoids contained in each sample
used for the flammability tests was determined, starting from the concentration of terpenoids per μg
found in the leaves and the bark tissues.

2.6. Statistical Analysis

The total concentrations of terpenoids (TOTterp), as well as the subcategories of MT, MTox, ST,
and STox extracted from both the bark and leaves and the flammability parameters (TTI, PHRR, AEHC,
PML) were used as the response variables. Considering the hierarchical nature of the data (multiple
observations on single ramets of a same clone), multilevel generalized linear mixed models (GLMM)
with both fixed and random effects acting at ramet and portion (upper, middle and lower third) levels
were fitted. The distribution of variables was checked for parametric requisites (skewness, kurtosis,
influence points) and to select the suitable link function (Gaussian or Gamma distribution). Once the
model was fitted, the assumptions of normality and homoscedasticity of the residuals were evaluated.
Potential autocorrelation was controlled by residual analysis. Finally, the goodness-of-fit statistics,
referring to both the marginal (not considering random effects) and conditional (including random
effects) predictions were determined. A GLMM model was generated to predict variables for each
clone (susceptible “S” and resistant “R”) using the factor ‘infection’ (infected “I” vs. healthy control
“C”) and the covariable FMC as the fixed predictor variables. As some of the upper part of susceptible
inoculated (SI) ramets died as consequence of the inoculation with the pathogen, to prevent the strong
effect of dead parts in the prediction of terpenoid content and flammability, models were replicated
removing those samples. An additional model was generated to detect the effect of the clone (R vs. S)
in determining the terpenoid concentrations before (C) and after the treatment (I).

A partial least square (PLS) model was generated to predict the flammability parameters (TTI,
PHRR, AEHC, PML) using terpenoid contents per sample (MT_tot, ST_tot, MTox_tot, STox_tot,
Tot_Terp) expressed in μg and FMC as predictors, including a dummy variable “alive vs. dead
samples”. An additional factor predictor with 4 levels (resistant infected “RI”, resistant control “RC”,
susceptible infected “SI” and susceptible control “SC”) was included in the model. The technique
prevented the problems associated with multicollinearity among the multiple initial explanatory
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variables (e.g., terpenoid content and FMC), and the main advantage was that a linear combination
of the explanatory variables can be determined. For the determination of the optimal number of
components, the cross-validation method was used by applying the Stone-Geiser Q2 statistic. To assess
the relative contribution of each independent variable in the model, the value and physical sense of the
scaled coefficients were checked. The final output was a multiple linear model with a fit estimated
by the R2Y statistic, which was equivalent to the adjusted R2 of a multiple linear model obtained
by generalized least squares, and the R2X statistic, which evaluated the collinearity between the
independent variables. Statistica 10® and SPSS 20® packages were used to analyse the data.

3. Results

After three months, the inoculation with S. cardinale on the young stems of the S clone induced
the dieback of the crowns which were partially desiccated, due to the girdling of the stem by the
necrotic lesion (Figure 1).

Figure 1. Cupressus sempervirens L. clones 3 months after multiple artificial stem inoculation with the
cypress canker disease fungal agent S. cardinale. (a) Resistant (R); (b) Susceptible (S). The susceptible
ramets displayed the dieback of crown portions due to the effect of the bark pathogen that completely
girdled the inoculated axes.

3.1. Clone and Infection Effects on Terpenoids Concentration

The differences in the concentration of terpenoids (μg/g) in the leaves and the bark samples were
evaluated between the inoculated and the intact ramets of the two clones (Tables 1 and 2), as well as
within the same clone, between the intact (control) and the inoculated ramets (Tables 3 and 4).

The results showed strong differences between the clones for both the intact (uninoculated) (C)
and the inoculated plants (I) (Table 1). In the leaves of intact plants, clone (S) had a higher concentration
(p < 0.001) of total terpenoids compared to clone (R) (7514 vs. 6730 μg/g) due to the higher MT
and MTox (4319 vs. 3093 μg/g and 221 vs. 156 μg/g, respectively; p < 0.001). In contrast, a higher
concentration of ST was shown by the R clone. In the bark tissues (Table 2), the total concentration
of terpenoids was higher (p < 0.001) in the R clone than in the S (1727 vs. 1295 μg/g), despite the
concentration of monoterpenoids being slightly higher (MT) or higher (MTox) in the S clone (604 vs.
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549 μg/g and 42 vs. 32 μg/g, respectively); a similar pattern was also observed in the leaves. Both classes
of sesquiterpenoids (ST and STox) were much higher in the R clone (p < 0.001).

Table 1. Generalized linear mixed models (GLMM) on the concentration of terpenoids (μg/g)
in common cypress leaf samples from the control (C) and infected (I) treatments comparing
the resistant (R) vs. susceptible (S) clones for the following variables: MT (monoterpenoids
concentration), MTox (oxygenated monoterpenoids concentration), ST (sesquiterpenoids concentration),
STox (oxygenated sesquiterpenoids concentration), TOTterp (total terpenoids concentration). The fuel
moisture content (FMC) was used as the covariable. The model for the S clone was repeated removing
dead samples (live fuels only)*. The average and standard deviation (in brackets) for each variable are
shown (N = 12). The p-value shows the significance of the fixed variables (clone, R vs. S) and covariable
(FMC) predictors. Significant differences (>95%) are highlighted in bold.

Treatment Clone MT MTox ST STox TOTterp FMC (%)

C R 3093 (450) 156 (35) 2129 (400) 1352 (183) 6730 (894) 149 (9)
S 4319 (818) 221 (46) 1617 (362) 1357 (199) 7514 (1147) 147 (24)

p-value Clone <0.001 <0.001 <0.001 0.019 <0.001

FMC 0.205 0.019 0.002 0.009 0.005
I R 2894 (656) 158 (44) 2231 (514) 1204 (207) 6487 (1303) 133 (17)

S 3134 (944) 239 (118) 1529 (535) 1100 (293) 6003 (1301) 103 (76)
p-value Clone <0.001 <0.001 <0.001 <0.001 <0.001

FMC <0.001 <0.001 <0.001 <0.001 <0.001
S (live) 3671 (740) 287 (124) 1240 (448) 1172 (333) 6370 (1500) 164 (19)

p-value Clone <0.001 <0.001 <0.001 <0.001 <0.001

FMC 0.003 0.025 0.030 0.010 0.009

Table 2. GLMM on the concentration of terpenoids (μg/g) in the common cypress bark samples from
the control (C) and infected (I) treatments, comparing the resistant (R) vs. susceptible (S) clones for
the following variables: MT (monoterpenoids concentration), MTox (oxygenated monoterpenoids
concentration), ST (sesquiterpenoids concentration), STox (oxygenated sesquiterpenoids concentration),
TOTterp (total terpenoids concentration). The average and standard deviation (sd) for each variable
are shown (N = 12). The p-value shows the significance of the fixed variables (clone, R vs. S) and
covariable (FMC) predictors. Significant differences (>95%) are highlighted in bold.

Treatment Clone MT MTox ST STox TOTterp

C R 549 (360) 32 (13) 746 (266) 401 (174) 1727 (753)
S 604 (464) 42 (18) 424 (135) 226 (72) 1295 (650)

p-value <0.001 <0.001 <0.001 <0.001 <0.001

I R 5926 (3711) 489 (561) 2623 (2034) 3504 (2508) 12,542 (8541)
S 2190 (2225) 380 (590) 1450 (1962) 1741 (1834) 5760 (6338)

p-value <0.001 <0.001 <0.001 <0.001 <0.001

The comparison of the inoculated plants of the two clones (I) showed that the clone R generated
a higher total concentration of terpenoids (TOTterp) (p < 0.001) in both leaves (6487 vs. 6003 μg/g)
(Table 1) and bark tissues (more than twice the concentration of the S one, that was 12,542 vs. 5760 μg/g)
(Table 2). With regard to the intact plants C, the higher (p < 0.001) concentration of MT (3134 vs.
2894 μg/g) and MTox (239 vs. 158 μg/g) in the leaves was found in the S clone (Table 1), while the ST
and STox were higher (p < 0.001) in the R clone (2231 vs. 1529 μg/g and 1204 vs. 1100 μg/g, respectively).
After infection, the significant differences between the clones were maintained even when the dead leaf
samples were removed: TOTterp, MT and MTox were slightly higher in the clone S (live) compared to
S (live and dead) while the STs were even lower. After the fungal infection, the concentration of all
terpenoid categories in the bark tissues were markedly higher (p < 0.001) in the R clone compared
to the S clone (Table 2). The effect of the FMC on the concentration of terpenoids in the leaves was
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always significant, excluding for the concentration of MT in the C plants (comparing R and S clones)
(Table 1). The results suggested that the effect of the infection should be analysed separately within the
two clones R and S (Tables 3 and 4).

Table 3. GLMM on the concentration of terpenoids (μg/g) in the common cypress leaf samples of the
resistant (R) and susceptible (S) cypress clones comparing the control (C) vs. infected (I) treatments
for the following variables: MT (monoterpenoids concentration), MTox (oxygenated monoterpenoids
concentration), ST (sesquiterpenoids concentration), STox (oxygenated sesquiterpenoids concentration),
TOTterp (total terpenoids concentration). Fuel moisture content (FMC) is used as a covariable. Model for
the SI treatment was repeated removing the dead samples *. The average and standard deviation
(in brackets) for each variable are shown (N = 12). The p-value shows the significance of the fixed
variables (treatment, C vs. I) and covariable (FMC) predictors. Significant differences (>95%) are
highlighted in bold.

Clone Treatment MT MTox ST STox TOTterp

R
C 3093 (450) 156 (35) 2129 (400) 1352 (183) 6730 (894)
I 2894 (656) 158 (44) 2231 (514) 1204 (207) 6487 (1303)

p-value Treatment 0.224 0.999 0.993 0.026 0.439
FMC 0.052 0.122 0.588 0.033 0.159

S
C 4319 (818) 221 (46) 1617 (362) 1357 (199) 7514 (1147)
I 3134 (944) 239 (118) 1529 (535) 1100 (293) 6003 (1301)

p-value Treatment 0.017 0.118 0.275 0.129 0.025
FMC 0.003 0.011 0.789 0.000 0.004

S *
(vs. C)
p-value

I 3671 (740) 287 (124) 1240 (448) 1172 (333) 6370 (1500)
Treatment 0.999 0.999 0.045 0.999 0.08

FMC 0.998 0.025 0.456 0.036 0.117

Table 4. GLMM of the concentration of terpenoids (μg/g) in the common cypress bark samples of the
resistant (R) and susceptible (S) cypress clones comparing the control (C) vs. infected (I) treatments
for the following variables: MT (monoterpenoids concentration), MTox (oxygenated monoterpenoids
concentration), ST (sesquiterpenoids concentration), STox (oxygenated sesquiterpenoids concentration),
TOTterp (total terpenoids concentration). The average and standard deviation (sd) for each variable
are shown (N = 12). The p-value shows the significance of the fixed variables (treatment, C vs. I).
Significant differences (>95%) are highlighted in bold.

Clone Treatment MT MTox ST_c STox_c TOT_terp_c

R
C 549 (360) 32 (13) 746 (266) 401 (174) 1727 (753)
I 5926 (3711) 489 (561) 2623 (2034) 3504 (2508) 12,542 (8541)

p-value Treatment <0.001 <0.001 <0.001 <0.001 <0.001

S
C 604 (464) 42 (18) 424 (135) 226 (72) 1295 (650)
I 2190 (2225) 380 (590) 1450 (1962) 1741 (1834) 5760 (6338)

p-value Treatment 0.007 0.001 0.017 <0.001 0.002

The results showed little differences between the control (C) and the infected (I) plants of the clone
R (Table 3), with only slight decreases in the STox concentration in the leaves after infection (from 1352
to 1204 μg/g; p = 0.026) (Table 3). The susceptible (S) clone reacted to the infection in a different way,
the TOTterp significantly decreased in the inoculated plants (from 7514 to 6003 μg/g, p = 0.025), mainly
due to the strong reduction in the concentration of MT (from 4319 to 3134 μg/g; p = 0.017) (Table 3).
Nevertheless, when the dead samples were removed from the analysis, this difference between the
clones was not significant with only a difference in ST concentration occurring (decreasing to 1239 μg/g)
(p = 0.045). The relationship between the FMC and terpenoids was always positive: the higher the
FMC, the higher the concentration of terpenoids (Table 3). The effect of infection in both clones was
strongly evident in the bark tissues (Table 4). A strong increase in TOTterp was detected in the clone S
(with an almost 4-fold increase: from 1295 to 5760 μg/g) but especially in clone R in which the value in
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inoculated plants was more than seven times higher than in the C plants (from 1727 to 12,542 μg/g;
p < 0.001). All the classes of terpenoids increased after the infection (p < 0.001), and irrespective of their
concentration in the bark tissues of the intact plants, the values reached in the R clone were always
higher than those in the S clone. The levels of MT and MTox in the R clone showed the highest relative
increase (from 549 to 5926 μg/g, almost 11 times, for MT; from 32 to 489 μg/g, more than 15 times,
for MTox) (Table 4).

3.2. Clone and Infection Effects on Flammability

Significant differences between the clones were detected for all the flammability parameters in
the intact plants (C) (Table 5). The R clone showed a significantly (p < 0.001) higher TTI compared to
the S clone (140.78 vs. 121.67 s) due to the higher FMC, AEHC (p < 0.001) (5.54 vs. 5.07 MJ/Kg) and
PML (22.90 vs. 19%). Susceptible infected (SI) clones showed significantly higher ignitability (lower
TTI, 73 vs. 116 s, p < 0.001), combustibility (higher PHRR, 143 vs. 69 kW/m2, p < 0.001), sustainability
(higher AEHC, 8.10 vs. 4.93 MJ/Kg, p < 0.038) and consumability (higher PML, 47.50 vs. 21.67%,
p < 0.001) than the resistant infected (RI) clones. Excluding the dead samples of the S clone (when
comparing the live R and the live S portions), many differences among the clones were markedly
reduced and only the TTI remained lower in the S clone (109 vs. 116 s, p < 0.001) (Table 5). The effect of
the FMC was always significant (p ranging from <0.001 to 0.003) except for the AEHC of the clones
before the infection (Table 5).

Table 5. GLMM of the flammability parameters from the control (C) and the infected (I) treatments
of the resistant (R) vs. susceptible (S) common cypress clones for the following variables: TTI (time
to ignition, s), PHRR (peak heat release rate, kW/m2), AEHC (average effective heat of combustion,
MJ/Kg), PML (percentage of mass lost, %). The average and standard deviation (in brackets) for each
variable and treatment are shown (N = 9). The fuel moisture content (FMC) is used as a covariable.
The model for the SI treatment was repeated removing dead samples (*). The p-value indicates the
significance of the fixed variables (clone, R vs. S). The factor ramet is included in the model as a random
variable. Significant differences (>95%) are highlighted in bold.

Treatment Clone TTI PHRR AEHC PML

R 141 (79) 65 (37) 5.54 (4.46) 22.90 (25.57)
C S 122 (77) 96 (29) 5.07 (1.63) 19.00 (6.58)

p-value Treatment <0.001 <0.001 <0.001 <0.001
FMC <0.001 0.003 0.955 <0.001

R 116 (73) 69 (32) 4.93 (2.95) 21.67 (17.83)
I S 73(51) 143 (106) 8.10 (5.65) 47.50 (36.10)

S * 109 (27) 64 (27) 3.94 (2.15) 23.75 (25.54)

p-value Treatment <0.001 <0.001 0.038 <0.001
FMC <0.001 <0.001 <0.001 <0.001

SC vs. SI (live) Treatment <0.001 0.332 0.925 0.168
FMC <0.001 <0.001 0.267 0.139

The comparison of infection effects within the R and S clones showed that the main differences
were related to ignitability (TTI) and combustibility (PHRR) (Table 6). In fact, in the R clone the TTI
was the only parameter that changed (decreased) in the inoculated plants (from 141 to 116 s, p < 0.001)
(Table 6) which showed a higher ignitability. The effect of the inoculation in the S clone was even
stronger and involved all of the flammability parameters: ignitability (TTI dropped from 122 to 73 s,
p = 0.002), combustibility (PHRR, p < 0.001), sustainability (AEHC, p = 0.005) and consumability (PML,
p < 0.001) all increased. Nevertheless, when the dead samples were removed, only the TTI remained
significantly lower than in the control (Table 6). The effect on the FMC was significant for all of the
flammability parameters in the S clone, whereas in the R clone, it was only the TTI and PHRR that
were significantly affected (p < 0.001). In the S clone, when the dead parts were removed from the
computation, the effect of the infection on the FMC was still significant (p < 0.001) (Table 6).
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Table 6. GLMM of the flammability parameters of the resistant (R) and susceptible (S) common cypress
clones comparing the control (C) and infected (I) treatments for the following variables: TTI (time to
ignition, s, PHRR (peak heat release rate, kW/m2), AEHC (average effective heat of combustion, MJ/Kg),
PML (percentage of mass lost, %). The average and standard deviation (in brackets) for each variable
and treatment are shown (N = 9). The fuel moisture content (FMC) is used as a covariable. The model
for the SI treatment was repeated removing the dead samples (*). The p-value indicates the significance
of the fixed variables (treatment, C vs. I). Significant differences (>95%) are highlighted in bold.

Clone Treatment TTI PHRR AEHC PML

R
C 141 (79) 65 (37) 5.54 (4.46) 77.10 (25.57)
I 116 (73) 69 (32) 4.93 (2.95) 78.33 (17.83)

p-value Treatment <0.001 0.459 0.177 0.413
FMC <0.001 <0.001 0.387 0.958

S
C 122 (77) 96 (29) 5.07 (1.63) 81.00 (6.58)
I 73 (51) 143 (106) 8.10 (5.65) 87.50 (36.10)

I * 109 (27) 94 (27) 3.94 (2.15) 76.25 (25.54)

p-value Treatment 0.002 <0.001 0.005 <0.001
FMC <0.001 <0.001 <0.001 <0.001

RI vs. SI (live) Treatment 0.001 0.657 0.170 0.257
FMC <0.001 0.241 0.962 0.513

3.3. Linking Disease and Flammability

The PLS model indicated that 56% of the variation in the flammability can be explained by the
following selected variables: clone x treatment (RC, RI, SC, SI), fuel moisture content (FMC), the dummy
variable ‘alive vs. dead’ samples, and terpenoid concentration for each class. The fitted parameters
(Table 7) show that the flammability components were explained by the predictive variables with
different fits between 24% and 77%. Therefore, the model accounts for the combustibility (R2Y = 77%
for PHRR) and consumability (R2Y = 66% for PML) more effectively than ignitability (R2Y = 24%
for TTI) or sustainability (R2Y = 52% for AEHC). The PLS model showed that the FMC and ‘alive
vs. dead’ (dummy variable) explain most of the variability in the data (higher scaled coefficients)
(Figure 2). With regard to the amount of terpenoids, ST showed the highest scaled coefficients and a
positive relationship with flammability (higher PHRR, AEHC and PML) (Figure 2). In terms of the
treatment effects, the scaled coefficients in the model showed that the most important parameter related
to flammability was the dead portions of plant instead of the changes in the content of terpenoids
(Figure 2). When the dead samples were included (Figure 2), the susceptible infected clone (SI) showed
the highest flammability.

Table 7. Fitted parameters for the partial least square (PLS) model to predict the flammability (TTI,
PHRR, AEHC, PML) using: the amount of terpenoids (MT_tot, ST_tot, MTox_tot, STox_tot, Tot_Terp)
contained in each sample (μg), the FMC, the treatment x clone (4 levels: resistant control, RC, resistant
infected, RI, susceptible control, SC, susceptible infected, SI) as predictors. The model selects two
components and includes the dummy variable ‘alive vs. dead’ samples to highlight the importance
of the dead samples (4 samples belonging to the SI treatment) in the prediction of flammability
(N = 36). The total model fit (R2Y) and the partial model fit for the predicted flammability variables are
highlighted in bold.

PLS Model R2X
R2X

(Cumul.)
Eigenvalues R2Y

R2Y
(Cumul.)

Q2 Q2

(Cumul.)

R2Y
for
TTI

R2Y
for

PHRR

R2Y
for

AEHC

R2Y
for

PML

Component1 0.31 0.31 3.624263 0.53 0.53 0.462919 0.462919 0.23 0.68 0.41 0.64
Component2 0.16 0.47 1.616667 0.03 0.56 −0.24175 0.333077 0.24 0.77 0.53 0.66
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Figure 2. Scaled coefficients for the predictive variables of the flammability parameters: TTI (ignitability),
PHRR (combustibility), AEHC (sustainability) and PML (consumability). The scaled coefficients show
the relative importance of each variable in the structure of the PLS model (N = 36).

4. Discussion

Volatile terpenoids are secondary plant metabolites that undertake many ecological functions and
roles [54,55]. As part of resins, terpenoids play an essential role in the plant defence against microbes,
especially in conifers [22,56–59]. The expected increase in the content of terpenoids after infection with
S. cardinale was observed in both the cypress clones in the bark tissue (although it was much stronger
in the resistant clone). The accumulation of terpenoids did not occur in the leaves, in accordance with
the biology of the fungal pathogen acting at the cortical level [30,33]. This result was consistent with
the known de novo production and the accumulation of all the classes of terpenoids as a reaction to
the attack of fungal pathogens in many species of conifers [20,29,59–63]. In addition, it was recently
reported that a S. cardinale inoculation on the cypress stems or branches induced a reaction in the
host which consisted in the production of traumatic resin ducts in the phloem [36] and the consequent
accumulation of terpenoids in the bark tissues near the site of infection. This defence reaction was
observed to be stronger in canker resistant cypress genotypes [29], confirming that the production of
resin terpenoids was an important and effective response of cypress to CCD. In unaffected plants (C),
the differences among the clones mainly concerned STs that were higher than in the R clone, indicating
a possible deployment of a constitutive chemical barrier of quantitatively ‘minor’ terpenoids with a
higher biological efficacy, instead of MTs that have less antifungal activity against S. cardinale [29].

Low weight terpenoids (volatiles terpenoids), such as monoterpenoids (C10) and sesquiterpenoids
(C15), possess relatively low boiling and flash points, and as a consequence high flammability [26,27].
The role played by the plant volatile terpenoids in driving the flammability of vegetation is now widely
accepted [26,64], though the quantitative effect is still debated [27]. In other words, to what extent does
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the terpenoid content influence combustion, and the wildfires on the scale of a forest fire, is not yet
well defined. Few laboratory studies have attempted to evaluate the effect of these compounds on the
variability of flammability parameters in different tree species. This is particularly relevant given the
amount of terpenoids contained in the leaf tissues or plant twigs [27].

Inoculation with S. cardinale on the young cypress plants induced the dieback of the upper part of
the crowns of the S clone after three months (Figure 1). This has two implications: firstly, the presence
of dried plant material, and secondly, the accumulation of terpenoids in bark tissues around the
necrotic lesions. It is well known that cypress canker disease may cause large bark lesions, inducing
serious diebacks of cypress crowns [33] and causing the copious exudation of resin which flows down
the affected trunks in severely cankered stems. In this study, the tissues around the inoculated points
on the stem did not show the exudation of resin outside the cankered lesion. This could be due to the
relatively short time between the inoculations and the collection of samples (3 months), the young age
of the plants or the relatively small diameters of the inoculated stems and their subsequent early death.

To our knowledge this is one of the first studies to evaluate the effect of the estimated amount of
terpenoids contained in plant tissues (μg) on flammability tests. The GLMM model showed that the
SI (susceptible–infected) clone samples appeared to be significantly more flammable in comparison
to the RI (resistant–infected) samples, showing higher ignitability, combustibility, sustainability and
consumability. This is mainly due to the presence of dead crown portions, as when the dead samples
of SI were removed from the computation most of the differences between the treatments disappeared.
This finding was also supported by the values of the R clone, which showed a slightly higher ignitability
in infected plants, while the other parameters did not change as a consequence of the S. cardinale
infection. In contrast, the ignitability of the S clone was higher than that of the R clone, when only the
living tissues were considered.

The outcomes from the GLMM were supported by the PLS model results, which indicated that
the FMC and the ‘alive vs. dead’ accounted for most of the data variability. Moreover, concerning
the treatment, the model showed that the most important parameter related to flammability was the
presence of dead plant portions rather than changes in the content of terpenoids (μg). As accounted
for above, this could be partially explained by the absence of a copious amount of resin flowing
on the stems, and by the relatively small proportion of bark tissues (where the highest increase in
terpenoids was observed) when compared to the sample as a whole. In fact, the scaled coefficients
showed a negative correlation between both ‘non-dead’ plant material and FMC vs. all of the tested
flammability parameters. An interesting positive relationship was found between the total amount of
ST and combustibility and sustainability, confirming the role of terpenoids in flammability, as already
hypothesized in Della Rocca et al. [27]. In contrast, a surprising negative relationship between the
total amount of MTs and all the flammability parameters was found. This might be explained by the
observed strong reduction in MT concentration in the dead tissues of the susceptible clone, while in
the live tissues of the same inoculated clone the MT concentration increased. These results suggested
a possible MT leak as the diseased crown portions dry, which requires further investigation to fully
account for the possible relationship between the tissues’ water content and the terpenoids loss.

5. Conclusions

In response to the experimental questions outlined above: (i) in the common cypress—cypress
bark canker pathosystem (at least for young plants such as those considered in this study), the diseased
plants were more ignitable and showed increased combustibility and enhanced sustainability; (ii) the
CCD-resistant cypress clone appeared less flammable than the susceptible clone when infected; and (iii)
the proportion of the dried crown parts (as a consequence of the disease) was a stronger factor in
determining the overall flammability than the terpenoid accumulation.

The selection of CCD-resistant cypress genotypes [65,66] for their use in plantations to replace
trees killed or compromised by the disease, and sanitation to remove the heavily infected portions
of trees [67] not only improves the health, aesthetic and recreational attributes of plantations [32,48]
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but also reduces their flammability. The results of this work suggest some general considerations for
the phytosanitary management of woodlands, plantations and hedges. First, a disease can strongly
increase the flammability of a tree, especially conifers, because it can cause the dehydration or
desiccation of crown portions, the retention of dead material in the crowns and the accumulation of
flammable compounds, such as terpenoids, in living bark tissues as a reaction to the disease. Secondly,
the flammability of a tree species can be highly genotype dependent (i.e., genotypes resistant to a
disease or more tolerant to drought stress can be less flammable than their susceptible or less tolerant
counterparts). Finally, the spread of disease at the tree and stand level can be an important factor in the
prediction of fire risk and should be actively monitored.
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Abstract: Research highlights—Feedbacks between fire severity, vegetation structure and ecosys-
tem flammability are understudied in highly fire-tolerant forests that are dominated by epicormic
resprouters. We examined the relationships between the severity of two overlapping fires in a
resprouting eucalypt forest and the subsequent effect of fire severity on fuel structure. We found that
the likelihood of a canopy fire was the highest in areas that had previously been exposed to a high
level of canopy scorch or consumption. Fuel structure was sensitive to the time since the previous
canopy fire, but not the number of canopy fires. Background and Objectives—Feedbacks between fire
and vegetation may constrain or amplify the effect of climate change on future wildfire behaviour.
Such feedbacks have been poorly studied in forests dominated by highly fire-tolerant epicormic
resprouters. Here, we conducted a case study based on two overlapping fires within a eucalypt forest
that was dominated by epicormic resprouters to examine (1) whether past wildfire severity affects
future wildfire severity, and (2) how combinations of understorey fire and canopy fire within reburnt
areas affect fuel properties. Materials and Methods—The study focused on ≈77,000 ha of forest in
south-eastern Australia that was burnt by a wildfire in 2007 and reburnt in 2013. The study system
was dominated by eucalyptus trees that can resprout epicormically following fires that substantially
scorch or consume foliage in the canopy layer. We used satellite-derived mapping to assess whether
the severity of the 2013 fire was affected by the severity of the 2007 fire. Five levels of fire severity were
considered (lowest to highest): unburnt, low canopy scorch, moderate canopy scorch, high canopy
scorch and canopy consumption. Field surveys were then used to assess whether combinations of
understorey fire (<80% canopy scorch) and canopy fire (>90% canopy consumption) recorded over
the 2007 and 2013 fires caused differences in fuel structure. Results—Reburn severity was influenced
by antecedent fire severity under severe fire weather, with the likelihood of canopy-consuming
fire increasing with increasing antecedent fire severity up to those classes causing a high degree of
canopy disturbance (i.e., high canopy scorch or canopy consumption). The increased occurrence of
canopy-consuming fire largely came at the expense of the moderate and high canopy scorch classes,
suggesting that there was a shift from crown scorch to crown consumption. Antecedent fire severity
had little effect on the severity patterns of the 2013 fire under nonsevere fire weather. Areas affected by
canopy fire in 2007 and/or 2013 had greater vertical connectivity of fuels than sites that were reburnt by
understorey fires, though we found no evidence that repeated canopy fires were having compounding
effects on fuel structure. Conclusions—Our case study suggests that exposure to canopy-defoliating
fires has the potential to increase the severity of subsequent fires in resprouting eucalypt forests in
the short term. We propose that the increased vertical connectivity of fuels caused by resprouting
and seedling recruitment were responsible for the elevated fire severity. The effect of antecedent fire
severity on reburn severity will likely be constrained by a range of factors, such as fire weather.
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1. Introduction

Wildfire size, the annual area burned and the extent of high severity fire are increasing
across many forested regions worldwide [1]. Much of the change in fire activity has been
attributed to recent warming and drying trends associated with anthropogenic climate
change [2,3], owing to the dominant influence of fuel aridity and fire weather on forest fire
behaviour [4–6]. The frequency and duration of climatic conditions that are conducive to
large wildfires are projected to increase across many forested regions in the future [7–9],
with models forecasting greater exposure of forests to large and severe wildfires [10,11].
Feedbacks between fire and vegetation have the potential to either constrain or increase the
effect of climate on future wildfire behaviour through the modification of fuel properties
and ecosystem flammability [11,12]. However, these feedbacks remain poorly under-
stood [13,14], and as such, are rarely incorporated into projections of the effects of climate
change on ecosystem flammability and fire regimes [11].

Flammability is a multidimensional trait of fuels that encompasses their probability of
ignition, rate of combustion and amount of heat released [15]. The flammability of a fuel
particle is determined by its physical properties (e.g., size, shape, moisture content and
calorific value) and the exogenous conditions under which the fuel ignites and burns [16,17].
Fire behaviour at the stand or ecosystem scale, which provides a contextual measure of
flammability [18], is determined by the flammability traits of individual fuel particles
and their vertical and horizontal arrangement within a plant, fuel stratum and stand [19].
Exogenous factors that affect fuel moisture (i.e., soil moisture content, temperature and
relative humidity) and flame propagation (i.e., wind) will strongly affect fire behaviour, as
they influence the likelihood that fire will bridge the gaps between fuel particles within
and between fuel strata [19]. Past exposure of ecosystems to fire may alter leaf flammability
traits and the spatial arrangement of fuels [20], as well as the exogenous conditions affecting
fuel moisture [21], though these effects will depend on the immediate and longer-term
response of the vegetation community to fire [14,22].

Fire severity is a measure that is used to quantify the immediate impact of fire on
ecosystems [23]. Metrics used to quantify fire severity vary, though most tend to focus on
the degree of change to canopy and understorey foliage (e.g., stem mortality, foliage scorch
and consumption), as these changes are readily detected using remote sensing [24–26].
In the context of this paper, we describe fire severity based on the degree of scorch and
consumption of foliage, providing a measure of the immediate impacts of fire on vegeta-
tion [23,27]. In this schema, fires that result in the complete consumption of canopy foliage
will represent the upper extreme of the fire severity spectrum within a community, whereas
fires causing little or no impact to the canopy or understorey foliage represent the lower
end of the spectrum [27–29]. Fire causing intermediate levels of consumption and scorch
to foliage are typically considered to be of intermediate severity [24,27].

An ecosystem’s response to a fire will depend on the capacity of the vegetation
community to resist the direct effects of fire, termed “fire resistance”, or recover following
a fire via resprouting or seedling recruitment, termed “fire resilience” [30]. Fires or fire
regimes that exceed the resistance or resilience of the dominant tree species will cause
substantial changes to vegetation composition and structure [31–33], where in extreme
cases, this leads to the conversion of forests to nonforested states [34]. These structural and
compositional changes often increase the amount of live and dead fuel close to the forest
floor (e.g., [14,35]). This is particularly evident following high-severity fires occurring at
short-intervals, which can instigate the conversion of forests dominated by fire-sensitive
obligate seeder tree species to highly flammable nonforest states [30,32,36]. In more fire-
tolerant forests dominated by resprouters, high-severity fire can cause substantial changes
to canopy structure, reducing the gaps between the tree canopy and litter fuels on the forest
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floor [31,33]. Such changes to the biomass and arrangement of fuels are often inferred as
evidence of positive fire feedbacks (e.g., [32]), though empirical tests over multiple fire
cycles are lacking for many ecosystems.

The eucalypt forests of south-eastern Australia are highly fire-tolerant communities
that are primarily composed of plant species that display some resilience to fire (i.e., >95%
of species [37]). Most of these forests are dominated by eucalypt trees (i.e., Eucalyptus,
Corymbia and Angophora spp.) [38] that are capable of resprouting from buds on the stem
and branches in response to fires that impact the canopy foliage, which is a trait that is
referred to as “epicormic resprouting” [39,40]. Canopy species in these forests show a high
degree of resistance to understorey fires that primarily burn the surface litter, herbaceous
and shrub layers, and result in a low-to-moderate degree of canopy scorch [27,31,41,42].
The resistance of these canopy species decreases as the degree of scorch or consumption
of canopy foliage increases, with high rates of branch and stem mortality being observed
following fires that consume most of the canopy leaves (i.e., canopy fires) [31,42,43]. Mass
seedling recruitment and vigorous resprouting along surviving defoliated stems and branches
often occur following fires that cause extensive leaf scorch or consumption [31,44]. It has been
proposed that these structural changes to vegetation increase the flammability of eucalypt
forests [22,35], resulting in positive feedbacks between canopy fires (e.g., [45]), though research
linking the fire severity–vegetation structure–flammability feedback is currently lacking.

Here, we looked for evidence that fire severity feedbacks had occurred in a forest
dominated by epicormic resprouters using a case study located in south-eastern Australia.
Our study focused on a large area (≈77,000 ha) of eucalypt forest that was burnt by two
successive wildfires six years apart, with the first occurring during the 2007 fire season
and the second during the 2013 season. We address two questions in this study: (1) Are
patterns in reburn severity influenced by antecedent fire severity? (2) Has fuel structure
changed in response to combinations of canopy fire and understorey fire within areas of
reburnt forest? We used remotely sensed measures of wildfire severity to test whether the
severity of the 2013 fire was affected by the severity of the 2007 fire. We conducted field
surveys in areas burnt by different combinations of understorey fire (i.e., <80% canopy
scorch) and canopy fire (i.e., >90% canopy consumption) over the two successive wildfires
to assess how fuel properties varied in response to combinations of fire types.

2. Materials and Methods

2.1. Study Area

The study took place in the West Gippsland region of Victoria, Australia, approxi-
mately 140 km east of Melbourne (Figure 1). The study area was impacted by two major
wildfires prior to the commencement of the study. These fires were the “Great Divide fire”,
which burnt approximately one million hectares between December 2006 and February
2007 (referred to hereon as the “2007 fire”), and the “Aberfeldy fire”, which burnt 87,000 ha
between January and February 2013 (referred to hereon as the “2013 fire”). We note that
a third fire, the “Walhalla fire”, burnt ≈8700 ha within the study area in February 2019,
reburning areas impacted by both the 2007 and 2013 wildfires. The study was confined to
the footprint of the 2013 fire and focused on the impact of the 2007 and 2013 fires.

The study was conducted within forest communities dominated by eucalypt species
that possess the capacity to resprout epicormically [31,43,46]. Open forest communities
dominate the exposed ridges and slopes, whereas tall open eucalypt forest occupies the
mesic sheltered topographic locations (i.e., poleward aspects, lower slopes and gullies) [47].
Canopy cover ranges between 30% and 70% across both forest types [48], except after
high-severity wildfire, when it is substantially reduced [49]. Canopy height is generally
less than 30 m in the open forests but exceeds 30 m in the tall open forest communities [48].
The forests are comprised of a diverse mix of eucalypt species, including Eucalyptus conside-
niana, Eucalyptus cypellocarpa, Eucalyptus dives, Eucalyptus muelleriana, Eucalyptus obliqua,
Eucalyptus radiata, Eucalyptus sieberi and Eucalyptus tricarpa [31,46]. Across both forest types,
the understorey is characterised by a well-developed shrub and herb layer. The composi-
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tion and structure of the understorey vegetation is strongly affected by site productivity
and fire history [47–49].

Figure 1. Severity maps for the (a) 2007 Great Divide wildfire and (b) 2013 Aberfeldy wildfire. Panel (c) shows the location
of the study area (red square in the inset) and the field sites used to assess the effect of the fire combinations on fuel
properties. The footprint of the 2013 Aberfeldy wildfire has been included in each panel to provide a reference. The fire
severity classes presented in panels (a,b) are unburnt (UB), low canopy scorch (LCS), moderate canopy scorch (MCS), high
canopy scorch (HCS) and canopy consumption (CC). Descriptions of these severity classes are provided in Section 2.2. The
fire severity combinations presented in panel (c), which describe the severity of the 2007 and 2013 fires, are understorey
fire followed by an understorey fire (U/U), canopy fire then an understorey fire (C/U), understorey fire then a canopy fire
(U/C) and canopy fire then a canopy fire (C/C). Descriptions of these severity combinations are provided in Section 2.4.

The climate across the study region is temperate, with the average monthly maximum
temperature for the region ranging between 13.7 ◦C (July) and 26.7 ◦C (December), and
the average minimum ranging between 3.7 ◦C (July) and 12.9 ◦C (December) (station
85280; www.bom.gov.au, accessed on 14 May 2019). The average annual rainfall was
735.5 mm, with no strong seasonal trend occurring throughout the year (station 85280;
www.bom.gov.au, accessed on 14 May 2019).

2.2. Fire Severity Mapping

Fire severity mapping was derived for the 2007 and 2013 wildfires using Landsat
imagery and a random forest classification method described in Collins et al. [50]. This
classification scheme targets the degree of scorch and consumption of the canopy foliage,
providing a severity metric that is correlated with flame dimensions within structurally
similar communities [23,27]. The classification method identified five fire severity classes,
including (i) unburnt vegetation (UB; <10% of the understorey burnt), (ii) low canopy scorch
(LCS; <20% canopy scorch), (iii) moderate canopy scorch (MCS; 20–80% canopy scorch), (iv)
high canopy scorch (HCS; >80% canopy scorch) and (v) canopy consumption (CC; canopy
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mostly consumed) [24,50]. The classification method was shown to have a very high
classification accuracy across eucalypt forests (88% global accuracy) when independently
cross-validated on fires not included in the random forest training dataset [50]. Fire severity
maps were produced in the Google Earth Engine platform [28,51].

2.3. Relationships between the Severity Patterns of the 2007 and 2013 Fires

We used fire severity mapping to examine whether the severity patterns of the 2013
fire (Figure 1a) were influenced by the severity patterns of the 2007 fire (Figure 1b). Several
environmental covariates were also considered to account for the effects of fire weather,
terrain and vegetation type on the severity patterns during the 2013 fire. These variables
are described below.

2.3.1. Environmental Datasets

Fire weather conditions in eucalypt forests are operationally classified using the McArthur
Forest Fire Danger Index (FFDI). The FFDI provides a single index of fire danger (0 to >100)
that is calculated using temperature, relative humidity, wind speed and antecedent precip-
itation [52]. The index is related to the likelihood of a fire starting, the fire intensity, the
rate of spread and the suppression difficulty [53]. Six categories of FFDI are recognised for
operational purposes: low (0–12), high (13–25), very high (26–49), severe (50–74), extreme
(75–99) and catastrophic (≥100) [53]. Fires burning under severe, extreme or catastrophic
fire weather (i.e., FFDI > 50) are predominantly weather-driven fires that are characterised
by rapid rates of spread and large areas of canopy-consuming fire [53–55]. The effect of
topography and fuels on fire behaviour typically increases when FFDI falls below ≈50 [53].

Fire progression data and weather observations were used to assign fire weather con-
ditions across the 2013 fire extent. Progression data recorded by the Victorian Depart-
ment of Environment, Land, Water and Planning (DELWP) was used in combination with
hotspot data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)
(http://sentinel.ga.gov.au, accessed on 17 January 2019) to assign a day of burn across areas
of the 2013 fire. The weather data were obtained from the closest Bureau of Meteorology
weather station (station no. 85280, www.bom.gov.au, accessed on 26 April 2016). Fire weather
conditions within the fire ground can deviate considerably from conditions experienced at the
weather station, owing to topographic effects on the wind and the effect of the fire on local
weather conditions. Consequently, we used information from the nearest weather station,
coupled with observed daily rates of fire spread, to inform our classification of the fire weather
conditions (see [6]). The FFDI was calculated at 30 min intervals and the maximum daily FFDI
was extracted. We defined “severe” weather (SEV) as those days where the maximum FFDI
exceeded 49 or the average rate of forest fire spread over a 24 h period exceeded 1000 m h−1.
We defined “nonsevere” weather (NSEV) as conditions when the maximum FFDI was less
than 35 with average rates of spread that were less than 1000 m h−1.

A digital elevation model (30 m resolution) that was generated from the Shuttle Radar
Topography Mission [56] was used to derive spatial layers of slope, aspect and topographic
position, as these topographic variables have previously been found to influence fire
behaviour patterns in eucalypt forests [6,45,57]. Elevation, slope and aspect were calculated
and extracted using the Google Earth Engine platform [51]. Aspect was adjusted such
that the values were relativised with respect to north. This was done by calculating the
absolute difference between 360◦ and those aspects greater than 180◦. Values approaching
0◦ represent north-facing aspects, while values approaching 180◦ represent south-facing
aspects. A topographic position index (TPI) was calculated as the difference between
the elevation of a focal pixel and the average elevation of pixels within a 500 m radius.
Positive values of the TPI represent exposed topographic positions (i.e., ridges and upper
slopes), negative values represent sheltered positions (i.e., gullies and lower slopes) and
values close to zero represent flat areas or mid-slopes. Vegetation mapping acquired
from DELWP [47] was used to assign areas as an open forest or a tall open forest. Other
vegetation communities were excluded.
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2.3.2. Sampling Design

Fire severity and environmental datasets were sampled using a points-based approach
following protocols developed for the analysis of wildfire severity patterns in eucalypt
forests [54,57]. The spacing between sample points is an important consideration when
sampling fire severity data, as fire behaviour displays spatial dependence within forest
ecosystems [57,58]. Topographic position imposes a strong influence on spatial patterns of
fire severity across the study landscape, with ridges and upper slopes typically burning at
a higher severity than gullies and lower slopes [54,58]. We determined that a minimum
spacing of 400 m between sample points was suitable for our study as this is the typical
distance between ridges and gullies across the study region [6]. A grid of points with 400 m
spacing was established across the extent of the 2013 fire. Fire severity, environmental
data and spatial coordinates were extracted from each point (n = 3736) and used for the
analysis. The data extraction and calculation of the TPI were undertaken in ArcGIS v10.7.1
(Environmental Systems Research Institute, Redlands, CA, USA).

2.3.3. Statistical Analysis

Ordinal regression was used to analyse the effects of past fire severity, fire weather,
terrain and vegetation on the likelihood of occurrence for each fire severity class. The effect
of past fire severity and vegetation community were fitted as two-way interactions with
fire weather. The interaction between the vegetation community and past severity was also
included to account for the different fire responses between communities. Topographic
variables were included as additive effects. Interacting smooth terms for longitude and
latitude were also included in the model to account for spatial autocorrelation. Bayesian
regression was used as it provided a robust means for fitting ordinal regression with a
complex model structure. We lacked sufficient a priori information to define meaningful
priors; therefore, uninformed priors were used when fitting the models. The models were
fitted using Markov chain Monte Carlo (MCMC) as follows: four Markov chains were
sampled, each consisting of 5000 iterations, with a 1000-iteration warm-up period, resulting
in 16,000 iterations to derive the posterior distributions for the model parameters. Model
convergence was assessed using the Gelman–Rubin diagnostic [59]. Plots of the median
and 95% credible intervals were used to visualise the effect of model parameters on the
likelihood of each fire severity class. Statistical analysis was conducted in the R statistical
package v4.0.2 [60]. Bayesian models were fitted using the “brms” package [61].

2.4. The Effect of Fire Severity on Fuel Properties

2.4.1. Field Study Design

The field study examining the effect of fire severity on fuel structure targeted areas of
open forest that were burnt by both the 2007 and 2013 fires. We focused on open forests, as
they typically occur on ridges and upper slopes in the study area and are therefore more
accessible than the tall open forests occurring on steep slopes and in gullies. We targeted
areas that were affected by fires that either predominantly burnt in the understorey (i.e.,
understorey fires) or burnt extensively in both the understorey and canopy (i.e., canopy
fires), as they are known to trigger contrasting responses from the dominant eucalypt
species. Areas that had experienced low-to-moderate canopy scorch (<80% canopy scorch)
were considered as having experienced an understorey fire, as field-based assessments have
found that this degree of canopy scorch is associated with fires burning in the understorey
fuels in eucalypt forests [27,62,63]. Areas that had experienced a high degree of canopy
consumption (>90% of the canopy foliage) were considered to have experienced a canopy
fire. Four fire severity combinations were identified across the 2007 and 2013 fires, with
these being consecutive understorey fires (U/U), a canopy fire followed by an understorey
fire (C/U), an understorey fire followed by a canopy fire (U/C) and consecutive canopy
fires (C/C) (Figure 1c).

Large patches (>150 m diameter) of each fire severity combination were initially
identified using both fire severity maps and high-resolution (<35 cm) post-fire aerial
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photographs (see [31]). Five replicate sites were selected for each fire severity combination
(n = 20). Most (90%) of the instances of understorey fire had less than 20% canopy scorch.
Fire severity classes were corroborated in the field where possible through observations
of the scorch heights on tree trunks and the presence of dead and resprouting branches
on trees. The sites were located on ridges and upper slopes with a north-facing aspect
(270–360◦ and 0–90◦) in areas that had no record of timber harvesting in the past 30 years to
control for these potentially confounding factors. Site centroids were located at least 50 m
from the severity patch edge and more than 50 m from roads or major clearings to avoid
the influence of edge effects on the vegetation structure. A minimum spacing of 500 m
was imposed between sites with different fire severity combinations, with a minimum
spacing of 1000 m between sites with the same fire severity combination to ensure the
independence of sites [31]. Field sampling took place between November 2018 and April
2019, approximately six years following the 2013 wildfire.

2.4.2. Fuel Surveys

Four vegetation strata were identified within the open forest community targeted
in our study: near-surface (grasses and herbs), elevated (shrubs and regrowth), mid-
storey (large shrubs and intermediate trees) and canopy (canopy trees) (Figure 2). These
strata have been identified as being influential in determining fire behaviour in eucalypt
forests [64,65]. The assignment of plants to each strata was based on the vegetation
aggregation at the site, rather than predetermined heights, to facilitate differences in
vegetation structure driven by environmental factors, such as fire severity (see Figure 2) [65].
Plants were assigned to the strata that encompassed most of their foliage (Figure 2).

Measurements targeted the dominant species in each of the four strata, with up to
three species being surveyed per stratum. Plots were established at each site centroid to
derive a representative sample of the dominant species. The plot size varied such that
up to 15 individuals were surveyed per dominant species, resulting in plot radii ranging
from 1 m to a predefined maximum of 25 m. Measurements of the crown base height, top
height and width of the plant in two directions were made for each individual. If fewer
than 15 individuals were found within a 25-m-radius plot, then no further measurements
were made. If more than 15 individuals occurred within a plot, irrespective of the plot
size, then these additional individuals were counted to obtain an overall density of the
species. Species that were not dominant were tallied and added to the counts for the
dominant species that had the most similar traits. The average base height and top height
were calculated for each dominant species within a stratum. Crown cover was estimated
for each stratum from the number of plants per area multiplied by the species-weighted
area of each plant crown, where crowns were treated as circular. Cover values could
exceed 100% as crowns within a stratum can overlap and crown dimensions were not
always symmetrical.

Surface fine fuels were measured using destructive sampling. Surface fine fuels were
classified as any dead flammable material <0.6 mm thick, including leaves, twigs and bark
on the ground. Four samples were collected using a circular fuel ring of 0.1 m2 at each site.
These samples were collected 5 m from the centre of the site running perpendicular and
parallel to the slope. Surface fine fuel samples were placed in a 70 ◦C oven for a minimum
of 72 h or until a constant weight was achieved. Fuels were weighted and the mass (tonnes)
of fuel per hectare was calculated.

2.4.3. Statistical Analysis

The analysis of vegetation structure focused on plant top and base heights and crown
cover. Linear mixed-effect models were used to assess the effect of the fire severity com-
binations on the top and base heights of the plants within each fuel strata. Individual
plants were treated as the unit of replication. The models included the interaction between
the severity of the 2007 (SEV07) and 2013 (SEV13) fires, with the site identifier included
as a random effect to account for plants being nested within sites. Analysis of variance
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was used to analyse the effect of the interaction between SEV07 and SEV13 on the esti-
mated canopy cover. Model residuals were visually assessed for all models to see whether
they met the assumptions of homogeneity of variance and normality of residuals. A log
transformation (ln) was performed when these assumptions were not met. Parameters
with p < 0.05 were considered statistically significant. Model predictions were used for the
graphical interpretation of the model effects. Confidence intervals (95%) were generated
using bootstrapping (n = 1000 replicates). Statistical analysis was conducted in the R statis-
tical package v4.0.2 [60]. Linear mixed models were fitted using the “lme4” package [66].
Bootstrapping was conducted using the “boot” package [67].

Figure 2. Graphic depiction of the fuel layers measured in the study. The panels show the delineation of the fuel strata
for open forests that are either (a) long unburnt or recently burnt by understorey fire and (b) recently burnt (i.e., ≈6 years
post-fire) by canopy fire. Photos (c,d) were taken six years following an understorey fire and a canopy fire, respectively. The
fuel type depicted in panel (a) corresponds to the photo in panel (c) and the fuel type in panel (b) corresponds to the photo
in panel (d). The broken horizontal lines show the boundaries between fuel strata. The fuel strata are near-surface (NS),
which includes grasses and small shrubs (typically <50 cm tall); elevated (E), which includes medium-sized shrubs and tree
saplings (typically 50–200 cm tall); mid-storey (M), which includes tall shrubs and subcanopy trees (typically >200 cm);
canopy (C), which is the uppermost tree stratum. Plants were assigned to the strata that encompassed most of their foliage.
For example, the tree that is resprouting from the trunk and branches in panel (b) would be assigned to the canopy stratum,
whereas the tree resprouting from the base would be assigned to the mid-storey stratum.

3. Results

3.1. Relationships between the Severity Patterns of the 2007 and 2013 Fires

The severity patterns of the 2013 fire were influenced by the two-way interactions
between fire weather, antecedent fire severity and vegetation community, and the additive
effects of aspect and topographic position (Table S1, Figure 3). Fire weather and antecedent
fire severity exerted a strong influence on the severity patterns of the 2013 fire (Figure 3).
The likelihood of a point remaining unburnt (UB) or experiencing an understorey fire

170



Forests 2021, 12, 450

(i.e., LCS and MCS) was typically lower during severe fire weather (i.e., SEV) relative to
nonsevere (i.e., NSEV) fire weather conditions, with the opposite trend being observed for
fires that scorched or consumed most of the canopy foliage (i.e., HCS and CC) (Figure 3).
Under SEV weather, the likelihood of CC was greater in areas that were previously exposed
to fires that consumed or scorched most of the canopy foliage (i.e., HCS and CC) relative
to areas that were affected by LCS or were UB (Figure 3). In the open forest communities,
the increase in CC came at the expense of the HCS class (Figure 3a, SEV), whereas in the
tall open forest communities, the increase in CC came at the expense of the MCS and HCS
classes (Figure 3b, SEV). Under NSEV weather, the effect of past fire severity was muted,
with small (ΔP < 0.1) changes in the probability of fire severity classes being observed for
both open forest and tall open forest types (Figure 3).

Figure 3. The effect of the severity of the 2007 fire (x-axis) on the probability of each severity class occurring during the 2013
fire (y-axis) for (a) open forest and (b) tall open forest types under nonsevere (NSEV) and severe (SEV) fire weather. Points
show the mean and error bars are the 95% credible intervals. The fire severity codes are unburnt (UB), low canopy scorch
(LCS), moderate canopy scorch (MCS), high canopy scorch (HCS) and canopy consumption (CC). Slope, aspect, topographic
position (TPI), latitude and longitude have been held constant at their mean values.
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Fire severity was typically lower on poleward-facing aspects compared to equatorial
facing aspects and protected topographic locations (i.e., gullies) compared to exposed
locations (i.e., ridges) (Figures S1 and S2).

3.2. The Effect of Fire Severity on Fuel Properties

Canopy height and cover were affected by the severity of the 2013 wildfire (SEV13),
but not the preceding fire in 2007 (SEV07) (Table 1). Canopy top height and base height were
significantly shorter at sites experiencing canopy fire in 2013 (Figure 4). This was particu-
larly evident for canopy base height, which displayed substantial differences (mean ± S.E.)
in areas impacted by understorey fire (8.92 ± 0.16 m) and canopy fire (2.51 ± 0.14 m)
(Figure 4). The canopy cover at sites affected by a canopy fire in 2013 (57 ± 11%) was
one-third of that recorded at sites affected by an understorey fire in 2013 (177 ± 32%).
Crown height (base and top height) of the mid-storey layer was affected by the interaction
between SEV07 and SEV13 (Table 1), with taller crowns being observed at sites experiencing
a sequence of a canopy fire then an understorey fire (i.e., C/U) compared to the other fire
severity combinations (Figure 4). The cover of the mid-storey layer was not affected by fire
severity (Table 1). The fire severity classes did not affect the crown properties or the cover
of plants in the elevated and near-surface layers (Table 1).

Figure 4. Model predictions for the plant crown top and base heights across the four fuel strata. The left panel shows
the canopy and mid-storey layers. The right panel shows the elevated and near-surface layers. Upward-facing triangles
represent the average crown top height and downward-facing triangles represent the average crown base height. Error bars
show the 95% confidence intervals. The broken line in the left panel corresponds to the maximum height (2.5 m) in the
right panel. The fire severity combinations are understorey fire followed by an understorey fire (U/U), canopy fire then an
understorey fire (C/U), understorey fire then a canopy fire (U/C) and canopy fire then a canopy fire (C/C).

The surface fine-fuel load was affected by SEV13 but not SEV07 (Table 1). The average
fine-fuel load on sites burnt by a canopy fire in 2013 (2.45 t ha−1) was less than half that
recorded at sites burnt by an understorey fire (5.90 t ha−1).
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Table 1. Summary of the models that were used for testing the effects of fire severity combinations
on fuel properties. Five fuel strata were considered. The effect of the fire severity combinations on
crown top height, base height and cover were assessed for each vegetation stratum (excluding the
base height for near-surface fuels). Fuel biomass was assessed for surface fuels. Values highlighted
in bold are statistically significant (p < 0.05).

Stratum Response
SEV07 SEV13 SEV07 × SEV13

F p-Value F p-Value F p-Value

Canopy
Top height 0.561 0.465 11.958 0.003 0.391 0.541
Base height 0.008 0.931 93.426 <0.001 0.001 0.972

Cover 0.443 0.515 20.957 <0.001 0.836 0.374

Mid-storey
Top height 11.041 0.006 2.990 0.107 5.854 0.031
Base height 10.825 0.006 8.669 0.011 9.023 0.010

Cover 0.159 0.696 0.342 0.569 3.366 0.090

Elevated
Top height 1.535 0.233 1.422 0.250 1.536 0.233
Base height 2.065 0.170 2.743 0.117 1.402 0.254

Cover 0.116 0.737 0.776 0.391 0.009 0.924

Near-surface
Top height 2.400 0.141 0.022 0.884 0.001 0.972

Cover 0.499 0.490 2.229 0.155 0.729 0.406
Surface Biomass 0.582 0.457 11.768 0.003 0.215 0.650

4. Discussion

Our study found evidence that the reburn patterns of the 2013 Aberfeldy wildfire were
influenced by the severity patterns of the 2007 Great Divide wildfire, though these effects
were strongly constrained by fire weather conditions. Under conditions of severe weather,
the likelihood of canopy consumption (CC) during the 2013 fire was the highest in areas
where the preceding fire had a substantial impact on the canopy structure (i.e., HCS or CC)
and the lowest in areas where the canopy was minimally affected (LCS) or did not burn
(UB). Reburn severity exhibited a shift from moderate or high canopy scorch to canopy
consumption as the prior fire severity, and hence canopy disturbance, increased. However,
under conditions of nonsevere fire weather, the antecedent fire severity had little effect on
the reburn severity. These results provide some agreement with previous research that
has found evidence of positive relationships between reburn severity and antecedent fire
severity in resprouting eucalypt forests across the Sydney basin bioregion of south-eastern
Australia [45] and conifer forests of the western United States (e.g., [68,69]).

Fuels were most sensitive to the severity of the 2013 fire at the time of sampling, which
took place approximately six years post fire. There were three key changes to fuels in
response to the severity of the 2013 fire, with sites impacted by canopy fires having (i)
smaller gaps between the canopy fuels and understorey fuels (i.e., surface, near-surface,
elevated and mid-storey), (ii) reduced tree canopy cover and (iii) less biomass of surface fine
fuels. We found no evidence that repeated exposure to canopy fire resulted in a transition
to a different fuel state. The resilience of these forests to repeated canopy fire contrasts with
forests dominated by obligate seeder eucalypts, which display transitions to alternative
fuel states (e.g., Acacia-dominated communities) with elevated flammability [32,70].

Changes to the structural properties of vegetation were primarily driven by the fire
response of the mid-storey and canopy species. Resprouting eucalypts display high rates
of survival following canopy fires (typically >95%), with aerial resprouting being common
amongst large stems (>30 cm diameter at breast height), and basal resprouting being preva-
lent amongst smaller stems [31,46]. Vigorous epicormic and basal resprouting following
canopy fires increased the vertical connectivity of fuels, creating a ladder structure from
the surface to the canopy (Figure 2d). In contrast, substantial gaps between the understorey
and canopy fuels were present at sites that had only been exposed to understorey fires
(Figure 2c). The observed differences in the vertical connectivity of fuels likely explain the
greater propensity for canopy consumption during the 2013 fire in areas that had previously
experienced a canopy-defoliating fire (i.e., HCS and CC), as increasing fuel hazard in strata
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close to the surface fuel layer often leads to taller flame heights in eucalypt forests [64],
while a reduction in the spacing between the canopy and surface fuel strata should increase
the likelihood of canopy fire initiation [71]. The loss of canopy cover following a canopy
fire may also contribute to these trends by increasing in-stand windspeed, the rate of fire
spread, and consequently, flame height [64]. Although our study was not specifically de-
signed to assess the temporal changes in fuel following canopy-defoliating fires, our results
suggest that by 12 years post canopy fire (i.e., C/U), gaps between the canopy-stratum
and mid-storey fuels were considerably smaller than at sites that had experienced two
understorey fires (i.e., 2.8 m vs. 6.4 m; Figure 4). The rapid growth rates of seedlings and
basal resprouts, coupled with the mortality of epicormic shoots on the lower stems of trees
(LC, personal observation) were likely driving these temporal changes in fuel connectivity
following a high severity fire.

Research examining the effect of fire severity on ecosystem flammability has pre-
dominantly focused on forests dominated by obligate seeder and basal resprouter canopy
species, where a high-severity fire typically causes complete mortality or topkill of canopy
species (e.g., [14,32]). The transition towards shrub-like structure, driven by the mass
recruitment and regeneration of shrubs and trees following a high-severity fire, typically
increases fuel hazard and flammability in these systems [14,32]. Our study suggests that an
alternative mechanism, namely, resprouting from the tree stems, may have driven the in-
creased propensity for canopy fires in eucalypt forests dominated by epicormic resprouters
that have been recently burnt (i.e., 6 years since the fire) by canopy-defoliating fires. How-
ever, we do note that shrub cover was relatively sparse across the forests examined in
our study, possibly reflecting the combined effects of low rainfall, shallow rocky soils and
recent short interfire intervals [36,48]. Therefore, post-fire shrub recruitment may be a
more influential determinant of fire severity in eucalypt forests dominated by epicormic
resprouters elsewhere (see [22,35,45]). Furthermore, shrubs will likely be important in
determining fire severity patterns at longer interfire intervals (e.g., 10–30 years), owing to
the timing of shrub maturation and senescence [45,47,54]. Knowledge of the distribution
of community fire response traits will be an important requirement for predicting changes
to ecosystem flammability in response to fire severity.

The fuel assessments conducted in our study were limited to two contrasting fire
types (understorey vs. canopy consuming fires), representing the upper and lower ends
of the fire severity spectrum [27]. However, vegetation and fuels may display a range of
responses, depending on the degree of scorch and the consumption of canopy foliage. For
example, fire severity classes involving extensive canopy scorch will produce different
patterns in epicormic resprouting compared to canopy consumption, owing to the greater
likelihood of branch and stem mortality following canopy consuming fires [31,72]. Epi-
cormic resprouting will generally occur higher along the stem and branch profile following
canopy scorch, leading to a more rapid recovery of canopy height and cover compared to
canopy consumption, though tree characteristics (e.g., size, bark thickness and type) will
also be influential in this regard [31,72–74]. Further research examining the response of the
structural properties of fuels to a broader range of fire severity classes is warranted as this
would facilitate a better understanding of fire severity feedbacks between fires.

Fire weather was found to be an important driver of the occurrence of the two highest
fire severity classes (i.e., HCS and CC) in the fire examined in our study. This finding is
in agreement with a large body of work that has identified top-down drivers (e.g., wind,
temperature, humidity and drought) as the primary determinants of fire occurrence, size
and severity in forests, with bottom-up factors (e.g., vegetation structure and terrain)
having secondary effects (e.g., [4,6,58,75]). The effect of fuel properties (i.e., biomass and
structure) on fire behaviour is typically assumed to decrease as the fire weather becomes
more severe [53]. However, we found that antecedent fire severity, a proxy for vertical
connectivity of fuels, had a greater influence on reburn severity under severe fire weather
as opposed to nonsevere fire weather conditions. While high-severity fire reduces the
vertical spacing between the surface and canopy fuel strata, the propagation of fire into the
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canopy is strongly dependent on the occurrence of severe weather conditions. The ignition
of canopy fuels is influenced by the exogenous factors affecting the flammability of fuel
particles (e.g., moisture content), although the spacing of these fuels will place limits on
whether ignition is possible [19,76].

It has been proposed that high-severity fires in resprouting eucalypt forests could
potentially generate a “runaway positive feedback”, whereby high-severity fire becomes
self-sustaining [45]. While our findings demonstrate a positive association between an-
tecedent canopy defoliating fires and the occurrence of a subsequent canopy fire, it was
evident that fire weather and landscape factors (e.g., terrain, vegetation community) im-
posed major constraints on fire severity. For example, the likelihood of repeated canopy-
consuming fires decreased considerably as the weather conditions transitioned from se-
vere to nonsevere, with canopy-consuming fire being largely absent under nonsevere
weather (Figure 3). Fire weather has been found to impose similar constraints on the
occurrence of canopy fire more broadly across the eucalypt forests of south-eastern Aus-
tralia (e.g., [54,58,77,78]). Topographic factors (e.g., aspect and TPI) further moderate fire
behaviour in eucalypt forests, with the likelihood of a canopy fire typically decreasing
from exposed aspects (equatorial-facing upper slopes) to sheltered aspects (poleward-
facing lower slopes) (Figures S1 and S2) [45,54,58]. Therefore, self-sustaining fire severity
feedbacks will likely be localised in eucalypt forests that are dominated by epicormic
resprouters given the spatial and temporal constraints imposed by fire weather, terrain
and the rapid regeneration of fire-resilient plant species, as highlighted for ecosystems
elsewhere (e.g., [69]).

Fuel hazard management across the eucalypt forests of southern Australia primarily
focuses on the time since fire, with little consideration of fire severity patterns (e.g., [20,79]).
This partly reflects the historic emphasis on the importance of fine-fuel biomass in models
that are used to predict fire behaviour (e.g., [80,81]), with little regard for the arrange-
ment of fine-fuels. Accessibility to reliable fire severity mapping has been another limita-
tion, though this has been resolved through recent advances in fire severity classification
techniques [28,82]. Research aimed at quantifying the effect of fire severity on fuel hazard
in eucalypt forests over time should be a priority for fire management agencies. Under-
standing the patterns in the temporal development of fuel hazard following low- and
high-severity fires will be critical for quantifying the risk fire poses to both environmental
and built assets. Further development of models that can incorporate the effect of fire
severity on vegetation structure and composition (e.g., [19]) should be a priority for fire
risk modelling research.

5. Conclusions

Climate change is increasing the frequency and severity of conditions that are con-
ducive to large wildfires across forested regions worldwide [2,9,10]. Feedbacks between
fire severity and vegetation structure have the potential to accelerate or constrain the
effect of climate change on extreme wildfire events [11,12]. Our results demonstrate that
canopy-defoliating fires can increase the vertical connectivity of fuels in resprouting eu-
calypt forests in the short term (e.g., 6–12 years post fire), increasing the likelihood of
future canopy fires under severe fire weather conditions. These findings are consistent
with a growing body of evidence showing that high-severity canopy-disturbing fires cause
transitions towards fuel states with greater ignitability and propensity to burn at a high
severity [14,30,68]. There is evidence that the increasing frequency of severe fire weather
has already driven the contraction of interfire intervals and increased the area affected by
high severity fire across large areas of south-eastern Australia [83–85]. These changes to
fire weather and fire regimes, coupled with increased canopy fuel connectivity resulting
from exposure to high-severity fire, have likely increased the propensity for high-severity
fires across areas of southern Australia.
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Abstract: The occurrence and behavior of forest fires are mainly affected by litter moisture content,
which is very important for fire risk forecasting. Errors in models of litter moisture content prediction
mainly stem from the neglect of diurnal variation. Consequently, it is essential to determine the diurnal
variation of litter moisture content and establish a high-precision prediction model. In this study, the
moisture contents of litters of Mongolian oak (Quercus mongolica) and Korean pine (Pinus koraiensis)
were monitored at 1 h time steps to obtain the diurnal variations of moisture content, and two direct
estimation (Nelson and Simard) methods as well as one meteorological factor regression method
were selected to establish prediction models at 1 h time steps. The moisture contents of the two litter
types showed obvious diurnal variation, and the changes were significantly correlated with the air
temperature and relative humidity. The wind speed had no significant effect on the change within 1 h.
The mean absolute error (MAE) values of the three prediction models of Mongolian oak were 1.02%,
1.03%, and 1.46%, and those of Korean pine were 0.50%, 0.50%, and 1.95%, respectively. Similarly,
the mean relative error (MRE) values of the three prediction models of oak litter were 4.76%, 4.73%,
and 6.65%, and those of pine were 3.53%, 3.59%, and 13.26%, respectively. These results indicated
that the accuracy of the Nelson and Simard methods was similar, and both met the requirements for
the forecasting of forest fire risk. Therefore, the direct estimation method was selected to predict the
moisture contents of two litter types in this area.

Keywords: direct estimation; meteorological factor regression; moisture content; time lag

1. Introduction

The goal of forecasting forest fires is to calculate the probability of fire occurrence and potential
damage [1,2]. With global warming and the increasing occurrence of forest fires, the study of forest fire
forecasting is becoming increasingly important [3–5]. High-accuracy forest fire forecasting can reduce
the losses caused by forest fires through the formulation of firefighting plans according to the possibility
of forest fires and potential damage. Whether suppression can be achieved and appropriate firefighting
plans formulated mainly depends on whether the forest fire forecast is accurate, and whether the
accuracy can meet the needs for prevention and extinguishing of the fire. Therefore, one of the main
tasks of forest fire forecasting is to improve the accuracy of predictions of fire occurrence and potential
damage, which can provide accurate technical support for forest fire management decision-makers.

Research on forest fire forecasting must explore information related to meteorological conditions,
fuel characteristics, geographical conditions, and human activities [6,7]. Among these, forest fuel is
the carrier of forest fire and it is an important variable in forest fire forecasting [8–12]. The moisture
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content of fuel determines the possibility of burning and fire behaviors [13–15], and thus forms the
basis of forest fire prediction. As an important part of forest fuel, surface litter is an important fuel
contributing to forest fires, and its moisture content value determines the probability and initial spread
rate of forest fires. Therefore, it is of great significance to establish a high-accuracy prediction model
for litter moisture content for forecasting forest fires [16].

The prediction methods used to obtain the moisture content of litters mainly include the
meteorological factor, physical process, and direct estimation methods. Although the physical
process method can help to understand the phenomenon of litter moisture change, it is difficult to apply
to fire risk systems due to its complex structure and numerous model parameters [17–20]. The principal
methods employed to predict the moisture content of litter in a fire risk system are the regression
method of meteorological factors and the direct estimation method, both of which still result in some
errors [18,21,22]. The meteorological factor method is a statistical method with a large error of 15% or
more [23,24]. The direct estimation method is a combination of physical processes, the meteorological
factor method, and the principal prediction equation derived from the physical diffuse equation, and
it can be used in the equilibrium moisture content response equation based on the form of physical
derivation or other statistical models [25,26]. The parameters of the direct estimation method are
estimated using observation data and, therefore, it has the advantages of universality and reliability of
the physical method and simplicity of the statistical method [27–29].

The small errors of the direct estimation method compared with the meteorological factor
method [30–32], can lead to a 1- or 2-fold difference in fire risk in some cases [32,33]. Two main reasons
for the errors are as follows: one source of error is the oversimplification of the diurnal variation of litter
moisture content [17,18], while the other is extrapolation and poor applicability [34,35]. Therefore, there
are two mainstream methods for improving the prediction accuracy of dynamic changes in moisture
content, the first of which makes predictions based on an hour (h) or shorter scales. For a specific forest
type, the shorter the prediction scale, the higher the prediction accuracy [17–19]. The other method is
to establish corresponding prediction models according to different stand conditions and fuel types.
Because of the strong spatial heterogeneity of litter bed moisture content [36], if the second method is
selected, it will be time-consuming and laborious, and thus it is difficult to apply in practice. Therefore,
this study chose to shorten the prediction scale to improve the moisture content prediction accuracy,
which is of great significance to understanding the diurnal dynamic changes in litter moisture content.

Meteorological factors have significant impacts on litter moisture content. The air temperature
and relative humidity have a stable diurnal variation process for non-rain days, so the moisture content
of litter has a strong daily variation process [17,18,24]. In addition, stochastic wind and rainfall further
complicate the process. In the past, meteorological factor observation techniques have been limited,
and it has been difficult to provide detailed information that can reflect the daily changes in these
weather phenomena. The value of litter moisture content can be calculated using only meteorological
observations at a certain time of day. The existing fire risk system basically follows the traditional
method; thus, the prediction of litter moisture content is still based on 24 h as the calculation step.
For example, in the Canadian Fire Risk Forecasting System, the noon temperature, humidity, wind
speed, and first 24 h of rainfall are used as predictors to calculate the litter moisture content. In the
United States, meteorological factors such as the daily maximum and minimum temperature are
used. In other models, the meteorological factors at a certain time are directly used as regression
models [37,38], which produce errors due to simplification of the daily variation in moisture content
of the surface litter. It seems the main reason for this is that the influence of diurnal variation of
meteorological factors upon changes in litter moisture content is not taken into consideration.

Due to technical progress, meteorological factors and litter moisture content can now be monitored
in steps of 1 h or less. Forest fire researchers also recognize that fire occurrence and fire behavior
are very sensitive to litter moisture content responses, and accurate forest fire forecasting requires
litter moisture content data at a shorter time scale than that of an entire day to be used to establish
a prediction model using steps of 1 h or less. Therefore, some studies have investigated the diurnal
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variation in moisture. Van Wagner [39] proposed a method for predicting the moisture content of litter
at a 1 h step. Additionally, Lawson et al. [40] used the moisture content at 4 pm to calculate moisture
content data at other times. Furthermore, Catchpole et al. [26] studied the diurnal variation process of
moisture content and established a prediction model using the direct estimation method, with errors
from 2.3% to 5.2%. Sun et al. [24] selected the direct estimation and meteorological factor regression
methods to predict the diurnal variation in litter moisture content and found that direct estimation was
better than the regression method, but the study was only conducted during the daytime, indicating
that the applicability of the diurnal variation prediction model has limitations. Nelson [17] used the
10 h humidity bar as the object and obtained a diurnal variation model of moisture content. However,
the driving mechanism of moisture content change between the humidity bar and surface litter layer
was quite different, and the error was large and not suitable for forest fire forecasting when applied to
the surface litter layer. Among these studies, the direct estimation and meteorological factor regression
methods are the two most commonly used methods. In summary, although the diurnal variation of
surface litter moisture content has been studied and relevant prediction models have been established,
the diurnal variation in the moisture content of litter layer has not been fully revealed due to the
limitations of previous research, including the structure of the litter layer, research duration, and
research objects. Therefore, in this study, the litter moisture content was monitored hourly in the field
both during daytime and nighttime, and the driving factors of moisture content change were analyzed.
The direct estimation method and the meteorological factor method were selected to establish the
1 h step prediction model. Which method is more suitable for the prediction of diurnal changes in
moisture content was also assessed.

Heilongjiang Province is the most serious fire-risk region in China [24]. We selected two important
types of forest, Mongolian oak (Quercus mongolica) and Korean pine (Pinus koraiensis), which are widely
distributed in this region. The leaf litter of Mongolian oak is large and easily collapses, making it easy
to ignite; thus, oak forest often carries a higher fire risk [41]. Korean pine plantations also face a high
risk of fire due to their high lipid content. Therefore, we selected the surface litter layers of oak and
pine forests as the research object, and used a non-destructive sampling method to monitor the diurnal
variation in litter moisture content in 1 h steps. Meteorological data were simultaneously recorded and
used to analyze the driving factors of diurnal variation in litter moisture content. The direct estimation
and meteorological factor regression methods were used to establish a prediction model with 1 h steps
and to quantify the accuracy of the model and the difference between forest types, which will be of
great significance for improving the prediction accuracy of moisture content prediction and forest fire
forecasting in the future.

2. Methods

2.1. Study Area

The study area was located at the Maoer Mountain Experimental Forest Farm of the Northeast
Forestry University, Shangzhi City, Heilongjiang Province, China (45◦24′–45◦25′ N, 127◦34′–127◦40′ E),
30 km from north to south and 26 km from east to west, with an area of approximately 260 km2

(Figure 1). In this area, the forest coverage is 85% and the total forest stock is 20,500 km2, with an
elevation of 200–805 m. The climate is a temperate continental monsoon climate. The annual average
temperature is 2.8 ◦C, the lowest temperature in January is –31.9 ◦C, and the highest temperature in
July is 26.1 ◦C. The annual rainfall is 720 mm and is mainly concentrated in July and August, which
accounts for more than half of the total value for the year. The vegetation mainly includes Mongolian
oak (Quercus mongolica), Korean pine (Pinus koraiensis), walnut (Juglans mandshurica), ash (Fraxinus

mandchurica Rupr.), and poplar (Populus davidiana Dode).
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Figure 1. Location of the study site.

2.2. Field Experiment

Although the slope, aspect, and canopy density influence the dynamics of litter moisture content,
taking these factors into consideration when studying the diurnal process of moisture content and
establishing prediction models would result in large uncertainties that are unsuitable in practice.
Therefore, this study selected only one plot for each type of forest, and plots of 20 × 20 m were set
up in both the Mongolian oak forest and Korean pine plantations (see Table 1 for plot conditions).
The moisture content of the surface litter was monitored from 18 May 2017 to 24 May 2017 (spring fire
prevention period).

Table 1. Basic information of the two sample plots.

Forest Type Location
Elevation

(m)
Mean

Height (m)
Mean Diameter at
Breast Height (cm)

Canopy
Density

Litter Load
(t·ha−1)

Mongolian oak
(Quercus mongolica)

Upper slope 544 12 23 0.45 3.68

Korean pine
(Pinus koraiensis)

Middle slope 382 15 21 0.55 6.22

In this study, a non-destructive sampling method was adopted to monitor moisture content.
To ensure that the structure of the surface litter layer was consistent with the original state and that
water exchange could be carried out in a wild state, plastic baskets were selected for holding litter.
The length, width, and height of the plastic baskets were 300, 300, and 45 mm, respectively, and the
baskets were covered with nylon mesh (1 × 1 mm mesh size) at the bottom and around the plastic
basket. Three plastic baskets were arranged for each plot. The samples were weighed once every 1 h
for a total of 7 days. After the experiment, the baskets were dried at 105 ◦C for 24 h, and the dry mass
of the litter was recorded. The surface litter bed moisture content was then obtained according to the
formula for calculating the moisture content (the ratio of the water to the dry mass of the litter). A total
of 24 × 7 = 168 records of data were obtained for each basket and a total of 168 × 3 = 504 sets of data
were obtained for each plot. The arithmetic means of the moisture content of the three baskets of each
plot were calculated as the moisture content value of the plot.

A HOBO meteorological station, developed by Onset Company (US) that can automatically record
weather data in the field and was installed in each plot. The sensors were placed on the ground and
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the temperature, humidity, wind speed, and rainfall meteorological factors were recorded every 1 h.
The recording of meteorological factors occurred earlier than the moisture content monitoring start
time, although the recording of meteorological factors was synchronized with the moisture content
monitoring when they overlapped.

2.3. Model Description

2.3.1. Direct Estimation Method

Catchpole [26] proposed a direct estimation method to predict litter moisture content. Based on the
equilibrium moisture content, the field litter moisture content data and meteorological data were used
to directly predict litter moisture content. This method can directly use meteorological data to predict
the moisture content, so has a better applicability and higher accuracy than an indoor simulation [42].
For the response equation of the equilibrium moisture content in the direct estimation method, the
Nelson model [27] was selected based on semiphysical conditions, and the Simard model [43] was
chosen based on statistics to achieve better prediction results [44]. Therefore, when the direct estimation
method was selected to establish the prediction model, the Nelson and Simard equilibrium moisture
content prediction models were used to calculate the equilibrium moisture content. Hereinafter, they
are simply referred to as the Nelson method and the Simard method.

The main equation of the direct estimation method was based on the differential equation of litter
moisture content proposed by Byram [42]. The form of the equation is shown in Equation (1):

dm

dt
=

M− E

τ
(1)

where M indicates the litter moisture content (%), E is the equilibrium moisture content (%), and τ
represents the time lag (h); the same applies to the equations below.

The equilibrium moisture content prediction model in Equation (1) was calculated by the Nelson
and Simard models, respectively. The forms of the Nelson model [27] and the Simard model [43] for
the equilibrium moisture content are shown in Equations (2) and (3):

E = α+ βlog(−
RT

m
logH) (2)

where R is the universal gas constant (8.314 J·K−1
·mol−1); T and H indicate the air temperature (K) and

relative humidity (%), respectively; m indicates the molecular mass of water (18.0153 g·mol−1); and α
and β are empirical parameters.

E =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.03 + 0.2626H − 0.00104HT i f H < 10

1.76 + 0.1601H − 0.0266T i f 10 ≤ H ≤ 50
21.06− 0.4944H + 0.005565H2

− 0.00063HT i f H > 50
(3)

where T indicates the air temperature (◦C) and H indicates the relative humidity (%).
When the direct estimation method is used to predict the moisture content of litter, the time lag τ

of the litter must be fixed [45]. Because the monitoring step of litter moisture content was 1 h, Δt was
equal to 1 h. Discretization of the differential Equation (1) for moisture calculation yielded a discrete
equation for the moisture content calculation (Equation (4)).

Mi = λ
2Mi−1 + λ(1− λ)Ei−1 + (1− λ)Ei (4)

where Mi indicates the moisture content of the litter at time i; Mi−1 is the moisture content of the litter
at time i− 1; and Ei and Ei−1 are the equilibrium moisture contents at time i and i− 1, respectively.

The Nelson and Simard methods were separately selected for moisture content prediction.
The ordinary least squares method was used to obtain the parameters.
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2.3.2. Meteorological Factor Regression Method

With the litter moisture content as the dependent variable, the meteorological factors with
significant influence were used as the independent variables in the stepwise regression method.
The equation employed for this has the form of a multivariate linear equation, as shown in Equation (5).

M =
∑n

i=0
Xibi (5)

where M is the litter moisture content; Xi indicates the weather variable, such as the current or n-hour
earlier (n < 10 h) temperature, humidity, wind speed, or rainfall; and bi is the estimated parameter.

2.4. Data Analysis

When the litter moisture content is higher than 35%, it is difficult for it to ignite and cause forest
fires [46]. Therefore, all the data in this paper were analyzed for a moisture content of less than 35%.
For the oak litter, a total of 133 data records were collected from 18 May 2017 at 9:40 to 23 May 2017 at
21:40, and for the pine litter, a total of 125 data records were collected from 18 May 2017 at 17:40 to 23
May 2017 at 21:40.

2.4.1. Basic Statistics

Statistical analysis was performed on the surface litter moisture content data to calculate the
minimum, maximum, and average changes in the monitoring interval of litter moisture contents in
the oak and pine plots. Using the sampling sequence as the abscissa and the moisture contents of the
litter bed as the coordinates, the daily variation in the moisture contents of the two types of litter bed
was plotted.

2.4.2. Correlation Analysis

Changes in litter moisture content are driven by meteorological factors, and the moisture content
responds differently to different meteorological factors. Therefore, it was necessary to analyze the
correlation between the litter moisture content and meteorological factors. This study specified that
the meteorological factor before n (≤10) hours was represented by the angle n, that is, T5 indicates the
air temperature 5 h before. Pearson correlation analysis was carried out, and the correlation coefficient
was plotted as a function of time.

2.4.3. Model

In this study, the methods of direct estimation and meteorological factor regression were used
to establish the prediction model of diurnal variation in litter moisture content (see Section 2.3 for
the methods). N-fold cross-validation was selected to test the accuracy of the model, and the mean
absolute error (MAE) and mean relative error (MRE) of the prediction model were then calculated.
The calculation formulas are shown in Equations (6) and (7), and error bars were drawn to compare
the errors of the prediction model.

MAE =
1
n

∑n

i=1

∣∣∣Mi − M̂i

∣∣∣ (6)

MRE =
1
n

∑n

i=1

∣∣∣Mi − M̂i

∣∣∣
Mi

(7)

where Mi indicates the observed moisture content (%) and M̂i indicates the predicted moisture
content (%).

The forecasting performances of the three models at different time periods of the day were
compared by drawing polyline maps. A 1:1 scatter plot of the three methods was drawn by taking the
measured values as the abscissa and the predicted values as the vertical coordinates. The prediction
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effects of the three prediction models were then compared according to different sections of litter bed
moisture contents.

3. Results

3.1. Diurnal Variation in the Litter Moisture Content

Table 2 shows the changes in the litter moisture contents for the two forest types. The minimum,
maximum, and mean of the litter moisture content for oak were 17.91%, 32.37%, and 22.02%, respectively.
The range of moisture content of the pine plantation was greater than that of the oak forest, with an
average of 15.35%. The change in the litter moisture contents was calculated at 1 h steps. The minimum
change in the litter moisture content of the oak and pine was 0. The maximum change for oak was
11.49%, and the mean was 1.06%. Additionally, the maximum change for pine was only 2.94%, and the
average change value was 0.58%.

Table 2. Basic statistics of the moisture content of surface litter.

Litter Type N Mean (%)
Minimum

(%)
Maximum

(%)
Mean Change

in 1 h (%)
Minimum

Change in 1 h (%)
Maximum

Change in 1 h (%)

Mongolian oak 134 22.02 17.91 32.37 1.06 0.00 11.49
Korean pine 125 15.35 9.28 33.89 0.58 0.00 2.94

The litter moisture contents exhibited obvious diurnal variations. Because there was rainfall
(8 mm in total) before the beginning of the monitoring period, the litter moisture contents of the two
forests began to decline on the first day. The litter moisture content of the oak showed obvious changes
from the second to sixth days, and the pine planation showed a similar trend from the third to the
sixth day; that is, the litter moisture content increased from early morning to a peak at approximately
8:40 AM, and then began to decline. The litter moisture content was lowest from 13:40 to 15:40, and
then began to increase again. In this process, due to the effect of wind speed, the changes in litter
moisture content in different time periods of the day displayed some fluctuations, but the overall trend
was similar (Figure 2).

Figure 2. Diurnal variation of litter moisture contents of the Mongolian oak forest and Korean
pine plantation.
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3.2. Correlation Analysis

The change in the moisture content of the oak litter as a response to meteorological factors was
stronger than that of the pine. The litter moisture content was negatively correlated with the air
temperature and positively correlated with the relative humidity. The correlation coefficient first
increased and then decreased with lagging time. For the oak, the temperature and humidity 3 h
before had the most significant effect on the litter moisture content. For the pine, the temperature and
humidity 5 h before had the most significant effect on the litter moisture content (Figure 3). Wind
speed had no significant effect on the change in litter moisture content.

Figure 3. The coefficient of cross correlation between meteorological factors and the moisture content
lagged with different times. * Indicates significant correlation.

3.3. Model

3.3.1. Model Parameters

Table 3 shows the estimated parameters and errors of the litter moisture content prediction
model. The time lags of oak obtained by the Nelson and Simard methods were 2.0261 and 16.0968 h,
respectively, and those of the pine litter were 12.2335 and 18.4463 h, respectively, indicating that the
time lag of oak was shorter than that of pine. For the same litter type, the Simard method obtained a
higher time lag than the Nelson method. In the meteorological factor regression method, the relative
humidity 3 h before and the air temperature 4 h before were selected as the meteorological factors for
oak litter, and the relative humidity values at 3, 4, and 5 h before were selected as the meteorological
factors for pine litter moisture content.

Table 3. Estimated parameters and errors of all the models established using three different methods.
MAE and MRE indicates the mean absolute error and mean relative error, respectively).

Method Parameters Mongolian Oak MAE (%) MRE (%) Korean Pine MAE (%) MRE (%)

Nelson
method

α 0.2458

1.02 4.76

0.0039

0.50 3.53
β −0.0261 −0.0023
λ 0.7813 0.9600
τ 2.0261 12.2335

Simard
method

λ 0.9694
1.03 4.73

0.9732
0.50 3.59

τ 16.0968 18.4463

Direction
regression

method

b0 19.7130

1.46 6.65

15.009

1.95 13.26
b1 0.0630 −08400
b2 −0.1211 0.4130
b3 - 0.079
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3.3.2. Model Error Comparison

For Mongolian oak, the MAEs based on the Nelson, Simard, and meteorological factor regression
methods were 1.02%, 1.03%, and 1.46%, respectively, with corresponding MREs of 4.76%, 4.73%, and
6.65%. The MAEs of the three prediction models for the diurnal variation in litter moisture content of
the pine litters were 0.50%, 0.50%, and 1.95%, respectively, and the corresponding MREs were 3.53%,
3.59%, and 13.26%. For the direct estimation method, the prediction performance of the litter moisture
content model was better for pine than for oak, while the opposite performance trend was observed in
the case of the meteorological factor regression method for the two forest types. The direct estimation
method was better than the regression method for both forest types (Figure 4).

Figure 4. Comparison of litter moisture content model errors for the Mongolian oak and Korean pine.

3.3.3. Comparison of Measured and Predicted Values of Diurnal Variation

For the prediction model of diurnal variation in litter moisture content of oak, the Nelson and
Simard methods produced similar predictions, but the prediction effect of the two methods depended on
the daily stage, and the meteorological factor regression method had the worst prediction performance.
When the peak litter moisture content (maximum and minimum) of the oak began to change, the
Nelson and Simard methods had the largest error, although the Simard method was slightly better and
its error was lower than that of the Nelson method. The predicted value of the meteorological factor
regression method always had a certain lag for the measurements (Figure 5).

The performance of the prediction of litter moisture content model for pine was similar to that for
oak. The meteorological factor regression method had the worst prediction effect but also showed a
certain lag. The predicted results of the Nelson and Simard methods were also similar to each other, but
the errors between the predicted values and the measured values at different stages of the day showed
a certain regularity; that is, from approximately 9:40 to 17:40, the measured values were slightly higher
than the predicted values, while in the remaining stages of the day, the measured values were lower
than the predicted values. The error of the direct estimation method mainly occurred when the litter
moisture content reached its peak value, and the model performance was good for all other times
(Figure 6).
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Figure 5. Measured and predicted values of the diurnal variation in litter moisture content of
Mongolian oak.

Figure 6. Measured and predicted values of the diurnal variation in litter moisture content of
Korean pine.

3.3.4. 1:1 Comparison of Measured and Predicted Values

As seen in Figure 7, variation in the litter moisture content range resulted in differences between
the predicted and measured values for the different methods. For the litter moisture content of oak, the
Simard method value was closer to the measured value and could be evenly distributed on both sides
of the 1:1 line, particularly when the moisture content was low. When the moisture content increased,
the Simard method slightly underestimated the litter moisture content. When the litter moisture
content was low, the Nelson method values were almost uniformly distributed near the 1:1 line.
When the moisture content exceeded 30%, the litter moisture content was substantially underestimated.
By contrast, the predicted and measured values of the meteorological factor regression method were
irregularly distributed near the 1:1 line, and the model overestimated when the litter moisture content
was lower, but underestimated when the litter moisture content was higher than 25%. The model
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performance for pine was similar to that for oak. With different moisture content intervals, the Simard
method had the best prediction effect, followed by the Nelson method, and the meteorological factor
regression method had the worst prediction effect. Regardless of the method, the prediction model
performance for pine with a low moisture content was better than that with a high moisture content.

Figure 7. Comparisons of measured and predicted values. (a–c) indicate the comparisons of measure
and predicted values of Mongolian oak by Nelson, Simard and Direct regression methods, respectively;
(d–f) indicates the comparisons of measure and predicted values of Korean pine by Nelson, Simard
and Direct regression methods, respectively.

4. Discussion

4.1. Correlation Analysis

The diurnal variation in the litter moisture contents of oak and pine was significantly correlated
with the air temperature and relative humidity, and was not related to the wind speed. As the collection
time of the meteorological factor progressed, its influence on litter moisture content first increased
and then decreased, indicating that the litter moisture content had a specific lag associated with the
meteorological factor, which is in line with the results of numerous studies [26,47–49]. The wind speed
had no significant effect on the diurnal variation of litter moisture contents, which is different to the
research results published by Zhang et al. [50]. This difference may have been because the influence of
wind speed on the moisture content of the litter needed to be analyzed over a longer time interval.

4.2. Model Parameters

The litter moisture contents of oak and pine were established using the Nelson method with
an hourly step prediction model, and the α values were 0.2458 and 0.0039, respectively. Catchpole
et al. [26] found that the α value ranged from 0.26 to 0.37, whilst Slijepcevic et al. [51] found that
the α value ranged from 0.28 to 0.41. Additionally, Sun et al. [24] obtained an α value of 0.087 to
0.594 for Dahurian larch forests. These different research results may be related to the litter type,
test conditions, and setting time period. In the Nelson method, β reflects the degree of response
of the equilibrium moisture content to the air temperature and relative humidity. The larger the
absolute value of β, the more sensitive the response of the litter moisture content to temperature and
humidity [27]. The absolute value of β of the oak (0.0261) was higher than that of the pine (0.0023),
indicating that the water holding capacity of the broad-leaf layer was lower than that of the needle
layer, and that the change in moisture content was more sensitive to temperature and humidity for
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the former. The packing ratio and physical properties of the litter layer have a significant impact on
the dynamic change of litter moisture content [52]. Consequently, the differences in the estimated β
and water holding capacity between the two forest types may have been caused by differences in the
structure and physical properties of the litter layer.

4.3. Time Lag

The observed time lags for the oak and pine litter beds were 2.0261 and 12.2335 h, respectively, as
calculated using the Nelson method. Sun et al. [24] studied Dahurain larch litter and obtained a time lag
from 2.375 to 4.180 h. Yu et al. [53,54] obtained a time lag from 1 to 8 h for a broad-leaved bed, and that
of the needle bed they studied was between 1 and 4 h. Furthermore, Lu [55] used the Nelson method
to obtain time lags of broad-leaved and needle beds of 29.1 and 15.6 h, respectively. The results of this
study were different to those of previous investigations. In addition to the differences in litter structure
and morphology, there were also differences associated with the research monitoring time intervals. In
this paper, the moisture content was monitored continuously for 7 days at 1 h steps. Sun et al. [24]
only monitored the moisture content data from 8:00 to 16:00, i.e., during the daytime, but the water
vapor exchange at night is different from that in the daytime. Therefore, the time lag may be different
between studies. The time lag of the broad-leaved Mongolian oak was shorter than that of the pine
needle, which may also have been related to the packing ratio of the litter layer. The average packing
ratios of the litter layer of the oak and pine stands were 0.0138 and 0.0236, respectively, which suggests
that the water vapor exchange between litter and air was faster, and the response to meteorological
factors was stronger for oak litter. Therefore, the time lag of oak litter layer was shorter than that of
pine litter layer.

The time lags of the oak and pine litter layer obtained using the Simard method (16.0968 and
18.4463 h, respectively) were higher than those obtained using the Nelson method. This difference
occurred mainly because the equilibrium moisture content value obtained by the Simard equilibrium
moisture content formula was approximately 4% higher than that obtained using the Nelson method
at the same temperature and humidity. Sun et al. [24] concluded that the time lag of Dahurian larch
litter was 5.705 to 18.880 h using the Simard method, and the time lags of the broad-leaved and needle
specimens obtained by Liu [56] using fixed indoor temperature and humidity were 9.35 and 25.3
h, respectively—similar to the Simard results presented in this paper. This results showed that the
time lag value obtained using the Simard method was more reliable than that obtained using the
Nelson method.

4.4. Model Accuracy

Using the Nelson and Simard methods, the accuracies in litter bed moisture content daily variation
prediction models for oak were 1.02% and 1.03%, respectively, and those for pine were 0.5% and 0.5%,
respectively. The results were similar to the 0.41%–1.30% reported by Sun et al. [24] and the 0.8%–1.9%
reported by Catchpole et al. [26], indicating that a direct estimation method can be used in prediction
models for the diurnal variation of oak and pine litter moisture content in this region. Its prediction
accuracy meets the accuracy requirements for fire behavior prediction and fire risk forecasting [16].
The MAEs of the prediction model of the oak and pine obtained by meteorological factor regression
were 6.65% and 13.26%, respectively, which did not meet the forecast accuracy requirements.

5. Conclusions

This study showed that the moisture contents of two types of litter had strong diurnal variation.
The diurnal variation of the litter moisture content was significantly correlated with the air temperature
and relative humidity at 1 h intervals, but not with the wind speed. The time lags of the oak litter
bed obtained using the Nelson and Simard methods were 2.0261 and 16.0968 h, respectively, and the
time lags for the pine were 12.2335 and 18.4463 h, respectively. The moisture content of the Mongolian
oak litter bed was more sensitive to meteorological factors than that of pine. The accuracy of the
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two kinds of litter moisture content diurnal variation prediction models established by the direct
estimation method met the fire behavior prediction and forest fire risk forecast accuracy requirements,
but the prediction model obtained by the meteorological factor regression method did not meet
the requirements.

This study had certain limitations. For example, specific litter types, different stand characteristics,
bed packing ratios, slopes, and aspects have significant impacts on litter moisture content [57], but this
research did not consider the impacts of stand characteristics. The use of the equilibrium moisture
content prediction model using a direct estimation method is limited, i.e., to only the spring fire season
research. In future, the diurnal variation of litter moisture content in various stand and topographic
conditions should be considered comprehensively, and the time scale should be expanded, which will
be of great significance for improving the accuracy and practical application of litter moisture content
prediction models.
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Abstract: Research highlights: Moisture diffusion coefficients for stems and branches of degenerated
Calluna vulgaris L. have been obtained and a mathematical model for the drying process has been
developed and validated as an input to future fire danger modeling. Background and objectives:
In Norway, several recent wildland–urban interface (WUI) fires have been attributed to climate
changes and accumulation of elevated live and dead biomass in degenerated Calluna stands due to
changes in agricultural activities, i.e., in particular abandonment of prescribed burning for sheep
grazing. Prescribed burning is now being reintroduced in these currently fire prone landscapes.
While available wildfire danger rating models fail to predict the rapidly changing fire hazard in such
heathlands, there is an increasing need for an adapted fire danger model. The present study aims
at determining water diffusion coefficients and develops a numerical model for the drying process,
paving the road for future fire danger forecasts and prediction of safe and efficient conditions for
prescribed burning. Materials and methods: Test specimens (3–6 mm diameter) of dead Calluna

stems and branches were rain wetted 48 h and subsequently placed in a climate chamber at 20 ◦C
and 50% relative humidity for mass loss recordings during natural convection drying. Based on
the diameter and recorded mass versus time, diffusion coefficients were obtained. A numerical
model was developed and verified against recoded mass loss. Results: Diffusion coefficients were
obtained in the range 1.66–10.4 × 10−11 m2/s. This is quite low and may be explained by the very
hard Calluna “wood”. The large span may be explained by different growth conditions, insect attacks
and a varying number of years of exposure to the elements after dying. The mathematical model
described the drying process well for the specimens with known diffusion coefficient. Conclusions:
The established range of diffusion coefficients and the developed model may likely be extended for
forecasting moisture content of degenerated Calluna as a proxy for fire danger and/or conditions for
efficient and safe prescribed burning. This may help mitigate the emerging fire risk associated with
degenerated Calluna stands in a changing climate.

Keywords: drying tests; humidity diffusion coefficients; wildfire; prescribed burning; modeling

1. Introduction

Wildfires represent an increasing threat to people and property in the wildland–urban interface
(WUI) worldwide, in particular in the USA, Canada, Australia and the countries surrounding the
Mediterranean Sea [1–3]. In Europe, the number of fires has in recent years decreased while the impact
of the WUI fires has generally become more severe both with respect to the number of fatalities and the
number of lost structures [4]. Recently, this has also been an issue in coastal Norway [5–7]. This area
was part of the North-Western Europe cultural landscape that originated soon after the introduction
of livestock husbandry, stretching from Portugal to the Arctic Circle. The heathlands of Western
Norway was thus managed by anthropogenic fire regimes to increase pasture value and herbivore
production [8], keeping the landscapes virtually free of severe fires. The combination of grazing and
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prescribed burning was vital for maintaining vegetation composition and successional dynamics in
this semi-natural environment [9,10]. Fire removed old vegetation and prevented shrubs and trees
from re-establishing in the habitat and was therefore of ecological importance [11]. Fire frequencies
were set by the local landuse, and 10–20-year burning rotations were common, although regional and
local variation occurred [12,13]. After the fire, a number of grasses and herbs established, including
the Calluna regenerating from seeds and through resprouting from stems and subterranean organs [14].
Despite some years with difficult weather conditions, prescribed fire management generally worked
well [15]. The Calluna stands in coastal Norway are adapted to these burning cycles to the extent that
smoke-adapted germination is observed [16].

A lack of prescribed burning and fire suppression leaves the Calluna to grow larger. Today, this
unique coastal landscape is therefore endangered through the lack of traditional management, resulting
in older Calluna stands, much accumulated biomass, nature-type degeneration and a succession of
bushes and shrubs [14]. This process also results in increasing amounts of dead material on the
ground (as litter) as well as in the standing vegetation (dead plants). Due to these changes, the
heathlands are now, according to the EC Habitat Directive 92/43/EEC, of international conservation
importance [17–19]. Similar trends are also observed in Mediterranean Calluna stands, where scrub and
woodland encroachment can be observed. There, combinations of prescribed fire, mowing and increased
grazing/browsing will be necessary to achieve the long-term conservation of heathlands [20,21]. In old
Calluna stands, dead branches constitute the lower canopy [22]. Spot and line fire ignited field burns
revealed much more intense fires in old stands (more than 50 years since last burning), compared to
young stands (approximately 10 years old) [23]. When unmanaged, Norwegian heathlands gradually
develop vegetation compositions where species such as juniper, pine, spruce and birch enter the
heathlands as part of a succession. This additionally contributes in the biomass build-up and in
particular, junipers (Juniperus communis L.) with their highly flammable resinous foliage contribute
considerably to rapid spread of fire [24].

In addition to the fire safety aspect, there are a number of motivations for the increased interest
in resuming heathlands in coastal Norway. Among the most important motivations we find, e.g.,
biodiversity [17], cultural values [25], aesthetics [26], tourism [27] and concerns regarding the trend to
increase local food production. Farmers may ask for some limited economic support for prescribed
burning and the application success rate is currently high. Grazing is important to keep the heathland
habitat. The Old Norse Sheep breed is particularly suited for being kept outside all year grazing the
evergreen Calluna, i.e., a practice that stems back to the Viking Age. In the 1970s, the breed was reduced
to about 1000 individuals at the islands of Austevoll community, Norway, but now counts 30,000+
individuals. The breed, which is locally branded as Norsk Villsau (Norwegian Wild Sheep), is even
protected by a national regulation [28]. Many bird species depend on open landscapes, and the current
local decline in, e.g., the majestic Eurasian eagle-owl (Bubo bubo L.) population is of national concern [17].
This comes along with early 19th century introduction of the black-listed Sitka spruce (Picea sitchensis L.)
currently invading large areas of Norwegian heathlands [29,30]. Due to all these reasons, managing
heathlands by fire to remove old Calluna plants and invasive species, and support Calluna regeneration,
is increasingly popular. For resuming prescribed burning, the fire danger needs to be known.

Modern methods, such as remote sensing, may be used for assessing the current fire danger [31,32].
In contrast to remote sensing presenting the current fire danger, fire weather index systems have
previously been developed to predict wildfire risk a few days into the future. Anderson and
Anderson [33] refined the fine fuel moisture code (FFMC) of the Canadian Fire Weather Index
System to predict the fine gorse (Ulex europaeus L.) shrub fuel moisture content, i.e., branches less than
5 mm diameter. The elevated dead fuel moisture content was poorly predicted by the FFMC. Their effort
to improve the FFMC prediction accuracy through regression modeling was also unsuccessful. Another
approach to predict fire behavior in such fuels is therefore required.

Fire behavior in heathlands is influenced by several factors, such as stand age influencing fuel
load, structure and height [33], the fraction of dead fuel [34], fuel moisture content [35,36] and
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wind speed [37–39]. Recent results also indicate that critical differences in fire severity and fuel
consumption, including possible destruction of soil seedbanks, can also be linked to the ground fuel
layer flammability [30]. Davies et al. [22] revealed that for dry periods during wintertime, live Calluna

stems showed no moisture gradient along the height. They also experienced rapid changes in live stems
moisture content when the ground was frozen. During field studies in Scottish heathlands, Davies and
Legg [40] for on-site spot and line fire ignition discovered a threshold value of lower canopy dead fine
fuel moisture content for sustained burning. This shows that keeping track of the dead fuel moisture
content is important for evaluating the fire danger of degenerated Calluna dominated heathlands.
Being able to predict the fuel moisture content and the wind conditions, fire danger warnings may be
issued, and when the fire danger is in a low range, conditions for safe prescribed burning may also
possibly be predicted. This would require knowledge of the moisture diffusion coefficient in the critical
fuel component, i.e., the elevated dead Calluna stems and branches acting as kindling fuel for engaging
the whole Calluna plants in fire [40]. There is indeed a need for understanding and predicting how fast
this biomass dries in order to issue valid fire danger ratings.

In Norway, there was no record of subzero temperatures wildfires until January 2014. However,
due to decreasing snow cover during recent decades, in combination with accumulated live and dead
biomass, the probability for such wildfires was on the rise, though unnoticed by the fire brigades.
During January 2014, two surprising wildfires took place in the Atlantic heathlands at Flatanger and
Frøya, Norway, 1.9◦ (210 km) south of the Arctic Circle. The first of these, the 15 km2 Flatanger fire,
destroyed more structures than any fire in Norway since 1923 [5]. The reasons for the destruction were
many, such as a fire start in the darkness, storm strength wind, extremely rugged terrain, few hours of
daylight, no access roads, frozen lakes, rivers and creeks limiting the access to fire water as well as the
long distances covered by the fire [7]. On top of that, the climatic conditions had also resulted in the
wooden structures, mainly homes, farm buildings, huts and boat sheds, being very susceptible to fire
due to a period of dry air exposure [41]. These fires, as well as severe fires in South Western Norway
heathlands in April 2019, one of these a result of lost control in prescribed burning, have demonstrated
that there is a need for improved fire danger predictions.

In other areas, e.g., the Gulf of Mexico coastal region, prescribed fire is increasingly used as a
management tool to restore declining native ecosystems. However, since treated sites are more susceptible
to biological invasion of, e.g., Chinese tallow (Triadica sebifera L.) [42] this is a delicate balance. A review
on the dynamics of prescribed burning, tree mortality and injury in managing oak natural communities
to minimize economic losses in North America was done by Dey et al. [43]. This is indeed easier in the
Calluna dominated heathlands, which represent an anthropogenic landscape that used to be managed
by regular burning. However, given the current condition of the heathland, the fire risk is considerably
higher than for managed heath and there is an urgent need for research to get a grip on the fire danger
associated with degenerated heathlands in need of prescribed burning to (a) reduce the accumulated
biomass representing the potential fire fuel and (b) return the landscapes to the previous farmland.

Sorption curves for most wildland fuel, Calluna stems and branches included, are not available,
i.e., the sorption data for wood [44] currently represents the best available alternative. Diffusion
coefficients are, however, established for some plant species. Pith diffusion coefficient for sunflower
obtained by Sun et al. [45] was about 1–2.5 × 10−9 m2/s. Diffusion coefficient for willow stems was
reported by Gigler et al. [46] to be 3 × 10−10 m2/s. The value reported for willow stems match with
the typical diffusion coefficients for humidity transport in wood, i.e., 1–5 × 10−10 m2/s as reported by
Baronas et al. [47]. Studying dehydration kinetics of fermented cocoa beans, Adrover and Brasiello [48]
found typical diffusion coefficients of 7.5 × 10−11 m2/s at 25 ◦C. Domínguez-Pérez et al. [49] found for
roasted cocoa beans moisture diffusion coefficients in the range 1.26–5.70 × 10−10 m2/s. For lemongrass,
Nguyen et al. [50] found effective diffusion coefficient in the range from 7.64× 10−11 to 1.48 × 10−10 m2/s.
Schmalko and Alzamora [51,52] studied shrinking, apparent density, sorption curves and moisture
diffusion coefficients for yerba mate. For the xylem, the values varied between 1.7 × 10−10 and
8.3 × 10−9 m2/s. Faggion et al. [53] analyzed drying of yerba mate twigs ranging from 3.5 to 10 mm
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thickness and established that convection dominated the heat and mass transfer. Betie et al. [54]
recorded and modeled the power and instrument transformers insulation paper drying process
by thermogravimetric analyses to ensure safe transformer operations. Similar moisture diffusion
coefficient studies have, however, not been found for Calluna stands.

The purpose of the present study is to analyze the drying processes of representative elevated
dead biomass associated with degenerated (old) Calluna stands, i.e., similar to stands resulting in the
January 2014 fires in Flatanger and Frøya [5–7], Trøndelag and the April 2019 fires in Tysvær and
Sokndal, Rogaland. Based on drying tests, the moisture diffusion coefficient is obtained for selected
test specimens at controlled ambient conditions. A numerical model for the involved mass and heat
transfer is developed and the modeled results are compared to the results from the drying tests.
The potential future outcome is that the model may later on be integrated in, e.g., the Canadian Fire
Danger Rating Model for providing reasonable hour by hour fire danger modeling of the degenerated
Calluna dominated heathlands currently representing an increasing fire threat in coastal Norway. It may
also be used as a tool for assessing safe conditions for prescribed burning. The test specimens and
climate chamber mass loss recordings are presented in Section 2. The results from drying tests and
numerical modeling are presented and discussed in Section 3. Possible future impact and possible
obstacles for future use is also presented in Section 3. Concluding remarks are presented in Section 4.
The background theory and numerical model are outlined in Appendix A.

2. Materials and Methods

In heathland fires, the lower Calluna canopy fuel moisture content (FMC) is of high importance
regarding sustained fire spread [40]. The drying experiments were therefore arranged to determine the
drying rate of dead Calluna stems and branches. Test specimens were collected from Calluna stands in the
degeneration phase, i.e., old Calluna stands, from an area south of Haugesund (H), N 59.362, E 5.325 and
Ytstevika (Y), N 61.941, E 5.027. These Calluna stands, which are quite representative of the Norwegian
coastal heath, had been left unmanaged and not been exposed to prescribed burning or natural fires
over the last 50+ years. Some of the plants in these stands died through age while others died through
extreme desiccation during the winter of 2014. Such die backs have also been observed in Scotland [55].
Since the Calluna plants may spread by sprouting, test specimens were collected with a minimum of 50 m
separation to make sure that they were collected from different plants. The test specimens were stored
dry (40–50% relative humidity (RH)) at room temperature prior to further treatment.

The test specimen diameter was recorded with a caliper at 10 different locations, and it was rotated
to get a proper average reading. Test specimens of 3–7 mm diameter were cut to about 200 mm length,
placed on a stainless steel grid and gently sprayed with deionized water for 48 h (rate 1 mm/h) prior to
the drying tests. After wetting, each test specimen was then cut to 110–160 mm length. They were then
equipped with short (3–4 mm) plastic lids to prevent axial drying, as seen in Figure 1.

Figure 1. Sample holder and test specimen ready for climate chamber drying.
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The drying tests were performed in a climate chamber (Binder KBWF 720) at 20 ◦C and 50% RH.
To ensure vibrational noise dampening, the procedure as explained by Log et al. [7] was used. This included
placing a 50 mm thick Styrofoam plate on the lowest grid shelf for noise dampening. A 5 mm thick glass
plate rested on the Styrofoam plate and the balance (Sartorius CP324S, resolution 0.1 mg) was placed on
top of the glass plate. To limit humidity accumulation in the vicinity of the drying test specimens, the
balance side doors were kept open. The air drafts close to the test specimens were recorded to be in the
order of 1 cm/s, i.e., practically stagnant air conditions. This set-up has been previously shown to give a
noise ratio of as low as ± 0.3 mg root mean square and a ramping of less than 0.01 mg/h [7].

The test specimens were put on stainless steel tripod sample holders designed to minimize the
contact area, and the mass loss was recorded every minute until equilibrium moisture content was
achieved. This corresponded to a fractional mass loss of less than 10−7/h (10−5%/h). This could typically
take a week of drying. After each drying test, the test specimen dry mass was recorded after oven
drying for 48 h at 80 ◦C and then for 48 h at 105 ◦C. This allowed comparison with results obtained by
Davies and Legg [40], who dried their Calluna test specimens at 80 ◦C to minimize the loss of volatile
organic compounds, and for comparison with recommended drying at 105 ◦C [56].

Based on the recorded mass loss versus time it is possible to obtain the test specimen humidity
diffusion coefficient. In the present study, this requires knowledge about the test specimen diameter
and the time needed to dry half way (t1/2) and three quarters of the way (t3/4) towards the new
equilibrium condition. The total number of test specimens was 12 and each drying experiment lasted
for one week. All tests revealed the t1/2 (s) and t3/4 (s), i.e., respectively the time to reach half and
three quarters of the final mass loss. The individual test specimen humidity diffusion coefficients were
calculated using Equation (A14), as outlined in Appendix A.

A numerical model was developed for calculating the drying of similar rain wetted Calluna stems
and branches. The theory behind the model and the numerical approach is outlined in Appendix A.
The modeled mass loss during drying was compared to the results obtained in the climate chamber.

3. Results and Discussion

3.1. Drying Test Results

The mass loss versus time for a 6.01 mm (±0.11 mm SD) diameter and 129 mm long test specimen
is first presented in detail. When put in the climate chamber, the mass was 2.8767 g. After 164 h
(6.8 days) in the climate chamber the strict relative mass loss (based on the dry mass) requirement
of 10−7/h was met. The mass was then 2.0964 g, which corresponds to a water mass loss of 0.7803 g.
The mass loss as a function of time for the first 96 h (4 days) is presented in Figure 2.

Figure 2. Recorded mass as a function of time for a 6.01 mm (±0.11 mm) diameter Calluna test specimen.
The final mass after 164 h, the mass after oven drying at 80 ◦C and the mass at a 30% fuel moisture
content (FMC) threshold value for sustainable fire in Calluna stands [34] are also marked on the figure.
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Subsequent oven drying the test specimen at 80 ◦C for 48 h resulted in a dry mass of 1.8523 g.
According to Davies et al. [34], 30% FMC for dead Calluna stems and branches represents the limit
for sustained burning succeeding on-site spot and line fire ignition. For the presented test specimen
this corresponds to a mass of 2.4080 g, which was reached at 27,970 s (7.77 h). This indicates that
degenerated Calluna stands in 50% RH and 20 ◦C could change from rain wet to combustible within 8 h.

Drying in stagnant air, and starting from rain wet conditions, must be considered as very special
conditions. In real conditions, the relative humidity may not be 100% during the nights or succeeding
rainy conditions. Hence, the dead branches and stems may be partially dry when possibly exposed to
sunlight, lower RH or windy conditions, or a combination thereof. Sunny weather usually generates
thermal effects, which in elsewise stagnant conditions may initiate buoyantly driven wind. This would
then significantly increase the associated drying rates. The fast drying under real conditions may
explain the local prescribed burner groups experience that while not being able to get the Calluna

dominated heather alight in the morning, it may burn at dangerous rates in the early afternoon.
The dimensionless mass of water being evaporated during drying is shown in Figure 3.

The recorded values for t1/2 and t3/4, respectively 21,005 s (5.83 h) and 42,650 s (11.85 h), are also
marked on the figure. Using the recorded values for t1/2, t3/4 and the test specimen radius, the moisture
diffusion coefficient according to Appendix A, Equation (A14), was found to be 4.73 × 10−11 m2/s.
When the moisture diffusion coefficient is known, it may be used for the numerical model presented
in Appendix A.4.

Figure 3. Dimensionless (normalized) mass as a function of time for a 6.01 mm (±0.11 mm) diameter
Calluna twig. The time to reach t1/2 and t3/4, i.e., 5.83 h and 11.85 h, are also marked on the figure.

3.2. Variation in Recorded Diffusion Coefficients

A total of 12 degenerated Calluna branches were wetted and subsequently dried separately on the
balance in the climate chamber at 50% RH as previously described. The test specimen data and the
calculated moisture diffusion coefficient for these test specimens are given in Table 1.

It is quite clear from these drying experiments that the obtained moisture diffusion coefficients
vary considerably, i.e., from 1.66 × 10−11 to 10.4 × 10−11 m2/s. The average diffusion coefficient was
4.16 × 10−11 m2/s, with a standard deviation as high as 2.69 × 10−11 m2/s. Two of the test specimens
displayed a moisture diffusion coefficient close to twice the value of the third highest one, respectively
8.96 × 10−11 m2/s and 10.4 × 10−11 m2/s. The drying time is according to Appendix A, Equation (A12),
a function of radius squared. Normalizing the drying time by the radius squared may then be used
to demonstrate the difference in drying time due to varying diffusion coefficients. This is shown in
Figure 4 for selected drying tests involving low, medium and high diffusion coefficients.
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Table 1. Growth place, diameter, length and resulting moisture diffusion coefficient of the degenerated
Calluna test specimens.

Test Specimen Location
D

(mm)
L

(mm)
Dw,s

(m2/s)

1 Haugesund 1 6.01 ± 0.66 129 4.73 × 10−11

2 Haugesund 1 5.47 ± 0.50 157 4.35 × 10−11

3 Haugesund 1 6.90 ± 0.46 160 8.96 × 10−11

4 Haugesund 2 5.00 ± 0.54 160 2.32 × 10−11

5 Haugesund 2 5.32 ± 0.59 132 1.78 × 10−11

6 Haugesund 2 6.07 ± 0.60 130 10.4 × 10−11

7 Nerlandsøy 1 5.48 ± 0.35 150 2.33 × 10−11

8 Nerlandsøy 1 5.21 ± 0.63 135 1.88 × 10−11

9 Nerlandsøy 1 4.76 ± 0.24 130 1.66 × 10−11

10 Nerlandsøy 2 6.45 ± 0.68 129 4.04 × 10−11

11 Nerlandsøy 2 3.54 ± 0.66 130 3.56 × 10−11

12 Nerlandsøy 2 6.43 ± 0.60 110 3.96 × 10−11

Average - - 4.16 ± 2.69 × 10−11

Figure 4. Dimensionless mass as a function of time normalized by the radius squared for selected low,
medium and high diffusion coefficient test Calluna test specimens. The curves are labeled by their
respective diffusion coefficients (in units 10−11 m2/s).

The present study is, however, not the only study revealing large ranges in moisture diffusion
coefficients. Baronas et al. [47] reports typical diffusion coefficients for moisture transport in wood in
the range 1–5 × 10−10 m2/s. For lemongrass, Nguyen et al. [50] found effective diffusion coefficient
in the range from 7.64 × 10−11 to 1.48 × 10−10 m2/s. Schmalko and Alzamora [51,52] recorded xylem
moisture diffusion coefficients for yerba mate in the range from 1.7 × 10−10 to 8.3 × 10−9 m2/s.

There may be several reasons for the large differences in observed moisture diffusion coefficients
in the present study. To name a few: the Calluna plants may have grown in areas where there were
differences in nutrients giving faster or slower growth rates and thereby softer or harder wood.
The dead branches collected may have been dead for a varying number of years, and insect attacks
may have made some of them more permeable than others. Cycles of freezing and thawing may in
some locations have resulted in crack development and crack expansion thereby resulting in increased
porosity for some of the test specimens. Additionally, not to forget, the diameter was varying along the
quite tortuous branches, as seen in Figure 1, which in the present study were assumed to be perfect
cylinders. It was, however, surprising for the author that the obtained diffusion coefficient varied
nearly an order of magnitude from 1.66 × 10−11 to 10.4 × 10−11 m2/s. Given the many factors making
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impact on the degenerated Calluna plants during years of exposure to the elements, as well as possible
insect attacks, it may be assumed that collecting more samples could have revealed both higher and
lower diffusion coefficients.

For future fire danger modeling, the observed variation makes it clear that one cannot assume one
single value for the moisture diffusion coefficient. When modeling, the best approach may rather be to
use a range of diffusion coefficients, ranging from 1 × 10−11 to 20 × 10−11 m2/s, and probably putting
more weight on the recorded average value, i.e., about 4 × 10−11 m2/s.

3.3. Numerical Modeling Results

Recorded and modeled mass as a function of time for the 6.01 mm (±0.11 mm) diameter Calluna

test specimen is shown in Figure 5. The modeled mass during drying generally follows the recorded
values quite well. Some deviations between these two curves may, however, be observed.

Figure 5. Recorded and modeled mass as a function of time for a 6.01 mm (±0.11 mm) diameter Calluna

test specimen.

There may be several explanations for the deviation between the recorded and modeled mass
loss as seen in Figure 5. It may partly be due to the moisture diffusion coefficient varying some with
water concentration. The engineering expressions for the convective heat transfer coefficient may also
be imprecise. The convective heat transfer to the test specimen may also be slightly increased due
to minor air currents in the climate chamber, however, without being too severe. According to the
modeling, the heat transfer to the test specimen was dominated by convection. This is in agreement
with the findings by Faggion et al. [53]. The heat transfer by radiation is, however, not negligible.
The assumption of constant emissivity of the Calluna twig surface may not be strictly correct since the
emissivity may vary with the surface water content.

The modeling does, however, give a good indication about the mass loss during free convection
drying, and the deviations shown in Figure 5 were quite representative also for the other test specimens.
The main reason for the quite good fit is that the model uses a moisture diffusion coefficient established
from the drying test, i.e., the modeling is therefore not strictly independent but validates that the
modeling method is reliable. It may therefore be concluded that when the moisture diffusion coefficient
is known, the modeling gives quite reliable results. If adjusted to the engineering equations describing
forced convection drying, it is therefore likely that extending the model for forced convection may
work well also for field conditions.
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3.4. Future Possibilities

In the present study the drying tests were performed in a climate chamber with stagnant, or at least
very close to stagnant ambient conditions, i.e., under free convection. With knowledge of the moisture
diffusion coefficients for dead elevated parts of degenerated Calluna stands, modeling drying under
forced convection should be possible. By collecting field data about the average branch thicknesses,
modeling of drying of complete Calluna plant communities may be possible.

Anderson and Anderson [33] were not able to predict the elevated dead fuel moisture content
of gorse (Ulex europaeus L.). By recording moisture diffusion coefficients of elevated dead branches
and stems of gorse, it is quite likely that the approach presented in the present study can solve the
difficulties encountered for gorse, as well as for similar potential fire fuels.

Based on hourly temperature, relative humidity, wind and insolation forecasts, the presented
mathematical model may be expanded to predict the fire danger conditions of degenerated Calluna

stands. Getting good estimates of the fire danger 48 h into the future would be very beneficial for the
fire brigades. Being better prepared may assist in preventing losses as experienced in the Flatanger
WUI fire [5–7]. Permanent manning of rural fire stations on high risk days, allowing for a significantly
faster response in the case of a fire, could also be decided based on proper fire danger modeling. This is
in line with fleet allocations, as suggested by Pérez et al. [57] according to the seasons, although for
shorter periods, or even single days, when the fire risk is expected to be particularly high. The fire
brigades could also ban prescribed burning on days of too high fire danger predictions. This would
help reduce the fire disaster risk as suggested by Log et al. [58].

Modeling real conditions, e.g., 48 h ahead would also be of great value when planning to perform
prescribed burning. Knowledge about days when prescribed burning can be done efficiently and
knowledge about days when the risk of losing control is too high would be very valuable and may
result in less contradiction regarding prescribed burning [59].

4. Conclusions

Drying of rain wet degenerated Calluna stems and branches under free convection condition
at 50% relative humidity revealed moisture diffusion coefficients in the range from 1.66 × 10−11 to
10.4 × 10−11 mm2/s. The mean value was 4.16 ± 2.69 × 10−11 mm2/s. Numerical modeling of the
natural convection drying process gave results close to the recorded mass loss. This is promising
regarding future expansion of the numerical model to field conditions, i.e., forced convection, wind
and insolation. Based on weather forecasts, this may pave the road for forecasting the dryness of the
degenerated Calluna stands for safe prescribed burning as well as for alarming about high fire danger.
The fire brigades may use such predictions to be better prepared if the conditions are likely to develop
into high danger and may use this information to ban prescribed burning on high risk days.
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Appendix A. (Theory and Model Description)

Appendix A.1. Water Vapor Concentration in Air

The exchange of humidity adsorbed, H2Oad, to water in the gas phase, H2O(g), may be described by:

H2Oad = H2O(g) (A1)
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and the process may thermodynamically be described by:

ΔG = ΔHvap − T × ΔSvap (A2)

where ΔG (J/mol), ΔH (J/mol) and ΔS (J/mol·K) are the Gibbs energy, enthalpy and entropy of the
vaporization process described in Equation (A1). The drying process is entropy driven, and as the
enthalpy of water evaporation is very high, the evaporation process results in temperature depletion
during drying. The heat required for the drying process of a suspended stem or branch is supplied
through convection and heat radiation.

The saturation vapor pressure of water is an almost exponential function of temperature, Tc (◦C),
and may be expressed by [60]:

Pw,sat = 610.78× e(
17.2694·Tc
Tc+238.3 )(Pa), (A3)

The corresponding vapor concentration of water at a given temperature, T (K), may then be
obtained by:

Cw,sat =
Pw,sat ×Mw

R× T
(kg/m3), (A4)

where Mw (0.01802 kg/mol) is the molecular mass of water and R (8.314 J/K·mol) is the universal gas
constant. The dryness of the air relative to the saturation conditions is usually expressed as the air
relative humidity (RH), i.e., RH = Pw/Pw,sat = Cw/Cw,sat.

In Western Norway coastal areas, the relative humidity is generally quite high. In conditions
of adiabatically heated air, e.g., due to high pressure subsidence or foehn wind, clear skies are often
experienced. During the spring months of March and April, the sun’s heat radiation adds significantly
to the ambient air temperature increase. This further lowers the relative humidity of the ambient air.
The sun also directly heats the wildland fuel, which thereby experience very low humidity air in the
close vicinity of the fuel surface. This results in drying of the heather, and in particular, drying of the
dead biomass fraction, which has no access to soil humidity. This drying renders the accumulated and
elevated dead heathland biomass very prone to fires.

Appendix A.2. Wooden Fuel Equilibrium Moisture Content (EMC)

Dependent on the previous sorption history and the current conditions, dead cellulose based
biomass, such as wood and dead Calluna stems and branches, adsorb humidity from or release humidity
to, the surrounding air. Cellulosic materials consists of complicated molecular structures with free
hydroxyl groups, which may result in hysteresis effects when exposed to cycles of dry and humid
air [61,62]. However, given a very long time, i.e., t → ∞, the corresponding equilibrium moisture
content (EMC) for representative wooden materials may be calculated by [44]:

EMC =
1800

W

{
K·RH

1−K·RH
+

K1K·RH + 2K1K2K2RH2

1 + K1K·RH + K1K2K2RH2

}
(A5)

where
W = 349 + 1.29T + 0.0135T2

c

K = 0.805 + 0.000736Tc − 0.00000273T2
c

K1 = 6.27− 0.00938Tc − 0.000303T2
c

K2 = 1.91 + 0.0407Tc − 0.000293T2
c

The wood EMC corresponding to Equation (A5) at 22 ◦C is presented in Figure A1 and the inverse
curve is shown in Figure A2.
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Figure A1. Equilibrium moisture content (EMC) at 22 ◦C as a function of relative humidity (RH).
Data from Equation (A6) [44].

Figure A2. Relative humidity (RH) as a function of equilibrium moisture content (EMC) at 22 ◦C.
Data from Equation (A6) [44].

For modeling purposes, the 4th order polynomials developed by Log [63] based on the data
presented in Figures A1 and A2 is used in the present study, i.e.,

FMC = 0.0017 + 0.2524×RH− 0.1986×RH2 + 0.0279×RH3 + 0.167×RH4 (A6)

RH = 0.0698 + 1.258× FMC− 125.35× FMC2 + 809.43× FMC3 + 1583.8× FMC4 (A7)

The regression coefficients obtained for Equations (A6) and (A7) were very close to unity. For simplicity,
assuming that the hysteresis does not dominate the sorption processes, Equations (A6) and (A7), can
then be used to model transport of humidity between Calluna twig surfaces and the surrounding air.
It should be noted that the “wood” in Calluna stems and branches do not necessarily follow exactly the
same relationship as a representative wooden material. Since such data is missing for most wildland fuel,
Calluna twigs and stems included, the data for wood [44] currently represents the best available alternative.

Appendix A.3. Transport of Humidity in Dead Calluna Stems and Branches

The transport of humidity in solids may be expressed by Fick’s law of diffusion:

.
m
′′

= −Dw,s × dC/dx×
(
kg/m2

·s
)

(A8)
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Twigs and branches of dead Calluna may mathematically be best described as cylindrical objects,
where the internal humidity transport may be described by the associated heat equation:

∂C

∂t
=

1
r

∂

∂r

(
rDw,s

∂C

∂r

)
×

(
kg/m3

·s
)

(A9)

If the stem/branch has a uniform concentration at t = 0, for simplicity assumed to be unity, and
for t > 0 the surface concentration is, due to the supply of dry air, kept at a new lower concentration,
for simplicity zero, the dimensionless concentration within the cylinder is given by [64]:

C∗ = −1 + 2Σ
∞

n=1 exp

⎧⎪⎪⎨⎪⎪⎩−β2
nFo

J0

(
r
Rβn

)
βnJ1(βn)

⎫⎪⎪⎬⎪⎪⎭ (A10)

where J0(β) and J1(β) are Bessel functions of the first kind for integers 0 and 1, respectively, and where
±βn, n = 1, 2, . . . are the roots of J0(β) = 0. The Fourier number, Fo, is in this case given by:

Fo =
Dw,s × t

R2
(A11)

The dimensionless concentration given by Equation (A10) as a function of dimensionless radius
is shown in Figure A3a for selected Fourier numbers. The average (integrated) dimensionless
concentration as a function of Fourier number is shown in Figure A3b.

Figure A3. Dimensionless concentration (Equation (A10)) as a function of the relative radius and
Fourier number (a) and dimensionless average concentration as a function of the Fourier number (b).

The time needed to achieve a certain level of average dryness, i.e., a relative mass loss as shown in
Figure A3b, may then be calculated from Equation (A11) by:

t =
R2

Dw,s
Fo (A12)

As an example, at Fo = 0.0630, the average humidity, as shown in Figure A3b, has reached half
the way towards the new EMC value. In a drying test, the heat required for the evaporation of water
from the drying twig will, however, reduce the test specimen temperature. This results in a reduced
water vapor concentration driving force to the bulk air in the vicinity of the drying stem or branch,
i.e., a reduced drying rate. The temperature depletion is most conspicuous during the early phase of
the drying process, i.e., when the drying rate is highest. However, during the last part of the drying
phase, the test specimen temperature depletion is significantly reduced due to the low drying rate.
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This part of an experimentally obtained drying curve may then be used for estimating the water
diffusion coefficient, e.g., by:

Dw,s = R2 Fo2 − Fo1

t2 − t1
(A13)

where the subscript refers to situations where a certain fraction of the mass loss towards the new
equilibrium concentration is achieved. Taking the time and Fourier numbers from half the mass loss
(Fo1/2 = 0.0630) to three quarters of the mass loss (Fo3/4 = 0.1763), the diffusion coefficient may simply
be calculated by:

Dw,s = 0.1133
R2

t3/4 − t1/2
(A14)

where t1/2 (s) and t3/4 (s) are the time recorded to half and three quarters of the infinite time
mass loss, respectively. As long as t1/2 is on the order of hours, the temperature depletion below
ambient conditions will not be significant from that time and onwards. This assumption may be
verified numerically.

To make this technique work properly, the experimental boundary conditions need to be kept
strictly constant. This is best achieved by performing drying tests in a carefully controlled atmosphere,
e.g., a climate chamber, where both the temperature and relative humidity is kept constant through
the complete drying period. Ideally, the test specimen should also be a perfect cylinder with no axial
humidity transfer.

Appendix A.4. Numerical Model for the Drying Process

When a cylindrical test specimen is exposed to dry air, the heat consumption required for the
water vaporization will decrease the test specimen temperature. Other objects in the vicinity will then
radiate heat to the colder test specimen, and even in stagnant air, the temperature differences will
trigger buoyant flow and thermal convection. The heat radiation may be expressed by:

.
Q
′′

rad = εrσ
(
T4

a − T4
s

)
(A15)

where εr is the resultant emissivity of the surface and the surroundings, Ta (K) is the ambient
temperature and Ts (K) is the surface temperature. Sun radiation may also add to the received thermal
radiation. In a dense Calluna stand, the objects surrounding a stem or a branch may to a large extent be
other stems and branches at similar temperature as the one of interest. Unless exposed to sunlight,
it may therefore be assumed that the heat radiation is of minor importance. In a climate chamber,
it can, however, not be ignored since each drying test specimen is dried individually.

The convective heat transfer to the test specimen is given by:

.
Q
′′

h = h(Ta − Ts) (A16)

where the convective heat transfer coefficient h (W/m2
·K) may be estimated through engineering

expressions for the Nusselt number:

Nu =
h×D

k
(A17)

where k (W/m·K) is the ambient air thermal conductivity and D (m) is the diameter. Considering free
convection, the Nusselt number may be calculated by nondimensional expressions of the Grashof
number and the Prandtl number. The Grashof number is an expression for the ratio between the
buoyant force and the resisting viscous drag:

Gr =
gβ(Ta − Ts)D3

ν2
(A18)
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where g (m/s2) is the acceleration of gravity, ν (m2/s) is the kinematic viscosity of air and β = 1/Ta (K−1).
The Prandtl number describes the relationship between the between momentum diffusivity and thermal
diffusivity a (m2/s):

Pr =
ν

a
(A19)

The product of the Grashof number and the Prandtl number is often expressed as the
Rayleigh number:

Ra = Gr× Pr (A20)

For Ra < 1012, the following expression has been shown to be generally valid for average Nusselt
numbers for cylinders [65]:

Nu =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝0.60 +
0.387Ra1/6

(
1 +
(

0.559
Pr

)9/16
)8/27

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(A21)

In wood, the thermal diffusivity is in the range of 10−7 m2/s while the water mass diffusion
coefficient is 3–4 orders of magnitude lower. The transport properties involved are therefore not limited
by thermal diffusion. Whether the heat flow to, and into, the test specimen is limited by convection or
internal conduction may be evaluated by considering the Biot number:

Bi =
h×R

kw
(A22)

where kw (W/mK) is the thermal conductivity of the test specimen and R (m) is the test specimen radius.
For dense wood, the thermal conductivity is typically in the range 0.14–0.17 W/mK. Given h ≈ 1 W/m2K
(may be verified by Equation (A21) during the modeling), kw ≈ 0.15 W/m2K and maximum radius of
0.0035 m gives Bi ≈ 0.02. This clearly shows that modeling of internal heat transfer is not necessary,
i.e., the heat transfer may be treated as a lumped thermal capacity analysis. This is also supported
by the research done by Faggion et al. [53]. This is also in agreement with the results obtained by
Mortensen [66] where the boundary layer only became a limiting parameter when studying humidity
transfer from thin layers of paper to indoor air. It was also confirmed by testing for larger and smaller
diffusion boundary layers within reasonable limits in the present study.

The mass transfer from the surface to the surroundings may then be expressed by:

.
msurface = 2πRL

Dw,a

∂

(
RH(t)Csat(Ta) −RH1(t)Csat(T1)

)
(A23)

where RH(t) is the ambient air relative humidity, RH1(t) is the relative humidity at the surface,
Csat(Ta) is the ambient air water saturation concentration, Csat(T1) is the water saturation concentration
corresponding to the surface temperature of the cylinder, L (m) is the length of the cylinder, ΔCa (kgm−3)
represents the difference in water concentration of the ambient air and the air in intimate contact with
the solid surface and δ (m) is the boundary layer thickness.

The parameter Dw,a
δ

(m/s) corresponds to the convective heat transfer coefficient, h, in heat transfer.
In free convection, the hydrodynamic and thermal boundary layers are inseparable as the flow is
created by buoyancy induced by the temperature boundary layer and the ambient air. Based on the
thermal conductivity of air, i.e., 0.026 Wm−1K−1, the boundary layer thickness may be calculated.

In order to model the transport of moisture within the cylinder, the cylinder is sliced in N hollow
cylinders of thickness Δr (m). For the surface layer, i.e., n = 1, Equation (A9) may be discretized as:

C1(t+Δt) = C1(t) +
Δt·

.
msurface

2πr1Δr
+

Dw,a·Δt

2πr1Δr2

(
r1

2
+

r2

2

)(
C2(t) −C1(t)

)
(kg/m3) (A24)

210



Forests 2020, 11, 759

For the internal layers, the heat equation may be discretized as:

Cn(t+Δt) = Cn(t) +
Dw,a·Δt

Δr2

(
Cn−1(t) − 2Cn(t) + Cn+1(t)

)
+

Dw,a·Δt

2·Δr·r(n)

(
Cn−1(t) −Cn+1(t)

)
(kg/m3) (A25)

For simplicity, a fictitious layer number N + 1 was introduced as a reflection plane, i.e., mirroring
the concentration of layer N. This eliminated the need for a separate working equation for layer N.

Since the temperature would change as a result of the water evaporation process, and thereby the
vapor equilibrium concentration at the cylinder surface, the heat required for water evaporation was
taken into consideration by:

.
Qvap =

.
msur f aceΔHvap,w (A26)

where ΔHvap,w (2.444 MJ/kg) is the heat of vaporization of water.
During drying, the corresponding temperature depletions sets up a buoyant flow, whereas the

corresponding Gr and Ra can be calculated for each time interval Δt, and the convective heat transfer
coefficient determined through the calculated Nu. The heat flux to the cylinder surface can then be
calculated by:

.
Qs = 2πRLh(Ta − T1) + εrσ

(
T4

a − T4
1

)
(A27)

where σ (5.67 × 10−8 Wm−2K−4) is the Stefan–Boltzmann constant and εr is the resultant emissivity
given by:

εr =
1

1/εa + 1/εs − 1
(A28)

where εa is the emissivity of the surfaces surrounding the cylinder and εs is the emissivity of the
cylinder surface.

For each time interval, Δt, the new test specimen temperature was calculated by:

Tt+Δt = Tt +

.
Qs −

.
Qvap

πR2LρCP
Δt (A29)

It should be noted that the integration time interval, Δt, must comply with a Fourier number
less than 0.5 to ensure numerical stability, where the Fourier number for the numerical calculations is
given by:

Fonum =
Dw,s × Δt

Δr2
(A30)
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Abstract: Understanding of the characteristics of water-soluble inorganic ions (WSI) in fine particulate
matter (PM2.5) emitted during forest fires has paramount importance due to their potential effect on
ecosystem acidification. Thus, we investigated the emission factors (EFs) of ten most common WSI
from combustion of leaves and branches of ten dominant tree species in Chinese boreal and sub-tropical
forests under smoldering and flaming combustion stages using a self-designed combustion unit.
The results showed that EF of PM2.5 was three times higher for the boreal (6.83 ± 0.67 g/kg) than
the subtropical forest (1.97 ± 0.34 g/kg), and coniferous species emitted 1.5 times more PM2.5

(5.35 ± 0.64 g/kg) than broadleaved species (3.45 ± 0.37 g/kg). EF of total WSI was 1.27 ± 0.08 g/kg
for the boreal and 1.08 ± 0.07 g/kg for the subtropical forest and 1.28 ± 0.09 and 1.07 ± 0.06 g/kg for
broadleaved and coniferous species, respectively. Individual ionic species also varied significantly
between forest types and species within forest types, and K+ and Cl− were the dominant ionic species
in PM2.5, accounting for 25% and 30% for the boreal forest and 23% and 27% for the subtropical
forest, respectively. Emissions of NO2

− and SO4
2− were the lowest, accounting for 3% and 5% for the

boreal forest and 4% for each of the subtropical forests, respectively. Combustion of leaves emitted
significantly more ionic species (1.29 ± 0.05g/kg) than branches (1.05 ± 0.07 g/kg), and smoldering
consistently emitted more ionic species (1.49 ± 0.09 g/kg) than flaming combustion (0.88 ± 0.03 g/kg).
The cation to anion ratio was ≥1.0, suggesting that the particulate matter is neutral to alkalescent.
As a whole, our findings demonstrate that forest fire in these regions may not contribute to ecosystem
acidification despite the emission of a considerable amount of WSI during forest fires.

Keywords: acid rain; aerosol; biomass burning; forest fire; PM2.5

1. Introduction

Forest fire releases a large volume of smoke into the atmospheric environment, accounting for up
to 42% of biomass-burning particulate emissions [1]. The smoke released from biomass-burning is
mainly composed of particulate matter (PM) of different aerodynamic diameter, of which PM with a
diameter less than 2.5 μm (PM2.5) accounts for more than 90% of the total PM emitted from biomass
combustion [2]. The PM derived from biomass-burning consists of condensed hydrocarbons, a mixture
of elemental carbon and water soluble inorganic ionic species.

There is a growing concern about the emission of water-soluble inorganic ions, such as ammonium,
nitrate, sulfate, and chloride, in PM emissions, as they modify the degree of acidity of the PM;
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thereby resulting in acidification of ecosystems and contributing to the visibility reduction by
light scattering [3,4]. Acid deposition and/or acid rain have a considerable impact on growth and
productivity of forest and other ecosystems [5] by increasing foliar damage and soil acidity by acid water.
The potential effects of acid rain on plants include foliar damage, disturbance to normal metabolic
processes, inhibition of seed germination and seedling growth and predisposing the plants to other
environmental stress factors [6,7]. Thus, characterizing water-soluble inorganic ions in atmospheric
aerosol from mixed sources of emission has been a subject of many studies [3,4,8–10]. However, studies
characterizing water-soluble inorganic ions in PM emitted from woody biomass burning are limited,
particularly in China [11–13], where large forest fires occur annually. Given the predicted increase in
the frequency and severity of forest fires in different parts of the globe as a consequence of climate
change and vegetation encroachment, it is of paramount importance to understand the characteristics
of water-soluble ions in PM emitted during forest fires.

Thus, the present study investigated the emissions of ten common water-soluble inorganic ions
(Na+, NH4

+, K+, Mg2+ and Ca2+ as well as F−, Cl−, NO3
−, NO2

− and SO4
2−) in PM2.5 from burning of

leaves and branches of ten main tree species from boreal and subtropical forests of China under two
combustion states, smoldering vis-à-vis flaming. The Chinese boreal and sub-tropical forest ecosystems
are among China’s four major forest management regions. The sub-tropical region, located in southern
China, is an area that experiences high annual forest fire incidence, with nearly 15,000 forest fires
occurring from 2000 to 2010 [14]. The Chinese boreal forest in northeastern China is prone to frequent
wildfires [15,16] and has the largest average annual burned area in China, 1,300,000 ha between 1980
and 2005 [17].

The main objective of the study was to evaluate whether forest fire contributes to acidity of fine
PM by characterizing the water-soluble composition of PM2.5 emitted from forest fire according to
combustion condition, fuel typologies, and forest type. The study specifically addressed the following
questions: (1) Does emission of water-soluble ions vary among species and between forest types?
(2) Does emission of water-soluble ions vary with fuel typologies, i.e., leaves versus branches, which are
the common fuels during surface fire? (3) Does emission of water-soluble ions vary with combustion
state, flaming versus smoldering? and (4) Is there a relationship between anions and cations in
water-soluble ions? The emission of PM2.5 has been shown to vary with tree species and combustion
conditions, as more PM2.5 is emitted during the smoldering stage, leaves release more PM2.5 than
branches, and conifer trees emit more PM2.5 than broad-leaved trees [13]. Thus, it was hypothesized
that the emission of water-soluble inorganic ions may vary among tree species, between forest type
and combustion condition.

2. Materials and Methods

2.1. Samples and Collection of PM2.5

A total of ten main tree species that are common in the boreal and subtropical forests of China,
five from each forest type, were selected. The coniferous tree species included Larix gmelinii (Rupr.)
Kuzen. and Pinus sylvestris var. mongolica Litv from the boreal forest region and Pinus massoniana L.
and Cunninghamia lanceolata L. from the subtropical forest region. The broadleaved species from the
boreal forest region included Betula platyphylla Suk., Quercus mongolica Fisch. ex Ledeb and Populus

davidiana L. while those from the subtropical forest region were Cinnamomum camphora L., Eucalyptus

robusta Smith, and Phoebe bournei (Hemsl.) Yang. Leaves and branches from these species were collected
from the Nanying research station, Daxing’an mountains and the research forest of Fujian Agriculture
and Forestry University in July and October, 2017, and the samples were evenly mixed and air-dried
at a controlled relative humidity of 40% for three days until constant mass to avoid the confounding
effect of seasonal variations in moisture and photosynthesis on the chemical composition of samples.
All targeted trees were selected far away from the urban area to mitigate the influence of urban air
pollutants. In addition, the branches and leaves of the same tree species were collected from different
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individual trees to ensure consistency of samples, and the samples were then mixed. The branch and
leaf samples were then divided into three replicates (testing samples) using a 1/1000 electronic balance
(50 g per testing sample).

The indoor combustion experiments were conducted by using a self-designed biomass combustion
unit (Figure 1; [18]). The combustion device consists of a combustion chamber, temperature controller,
flue gas analyzer, particle analyzer and sampler, and other additional components. The Flue Gas
Analyzer (Testo350, Testo Instruments International Trading Co., Ltd., Lenzkirch, Germany) determines
the pollutants in the flue gas based on infrared on-line monitoring and requires calibration with
standard gas before each experiment. The calibrated instrument was used to identify the background
concentrations of pollutants in the combustion chamber, which were recorded and then deducted from
the final results. The instrument has a recording interval of 5 s, and the sensitivity of the instrument is
0.01% for CO2 and 1 ppm for CO, CH and NOx. The fine particulate matter (PM2.5) was monitored
using a particle analyzer (TSI8533, TSI Incorporated, Shoreview, MN, USA) throughout the combustion
process, which works based on infrared on-line monitoring and requires calibration with standard gas.
Background concentration identification is also required. The instrument has a recording interval of
5 s, and the background concentration of PM2.5 for this experiment was 0.001 mg/m3. The Deployable
Particulate Sampler (DPS) System (SKC Incorporated, Eighty Four, PA, USA) is ideal for ambient and
indoor air sampling of PM2.5. The system includes a fully programmable Li-Ion-powered sample pump
(SKC Ltd., Dorset, UK) for 24-hour sampling. The system pump provides a constant and accurate
airflow with a flow rate of 10 L/min.

Figure 1. Schematic diagram of the self-designed biomass burning device.

Before starting the combustion test, the temperature controller was adjusted to control the
temperature of the chamber to create either smoldering or flaming conditions. The combustion status
was characterized by a Modified Combustion Efficiency (MCE), defined as the ratio of CO2 to the
change in CO and CO2, calculated using the following formula:

MCE =
ΔCO2

ΔCO + ΔCO2
(1)

A combustion stage was considered as flaming when MCE reaches 0.99 and smoldering stage when
MCE is between 0.65–0.85 [19,20]. After several preliminary experiments, the smoldering temperature
was controlled at around 180 ◦C and the flaming temperature at around 270 ◦C. After adding samples
into the combustion chamber, the flue gas analyzer and the particle analyzer were turned on for
real-time monitoring, and the concentrations of various pollutants were measured and recorded within
5 s in order to calculate the emission factor of particulate matter and correct combustion efficiency.
The particle sampler was then turned on when the combustion conditions remained stable and cooled
down to room temperature. Teflon-polytetrafliuoroethylene (PTFE) membrane filters (SKC Ltd., Dorset,
UK) were used to collect PM2.5 during different combustion stages and were weighed before and
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after sample collection using a microbalance with 1 mg sensitivity. Control experiments were also
performed using blank filters. Three replicates were conducted for each sample collection and analysis.

2.2. Extraction and Analysis of Water-Soluble Inorganic Ions

The concentrations of five anions (F−, Cl−, NO3
−, NO2

− and SO4
2−) and five cations (Na+,

NH4
+, K+, Mg2+ and Ca2+) were determined in aqueous extracts of the sample filters. To extract the

water-soluble ions from the filters, the portions of the filters used for the gravimetric analysis were
placed in separate 12 mL vials containing 10 mL of distilled–deionized water (18.2 MΩ resistivity).
The vials were placed in an ultrasonic water bath and shaken with a mechanical shaker for 1 h to
extract the ions. The extracts were filtered through 0.45 μm pore size microporous membranes, and the
filtrates were stored at 4 ◦C in clean tubes before analysis.

A Dionex-1100 Ion Chromatograph (Dionex Inc., Sunnyvale, CA, USA) was used for determining
both the cations and anions in the aqueous extracts of the air filters. For the cation analyses,
the instrument was equipped with an IonPacCS12A column (20 mmol/L methanesulfonic acid as
the eluent), while an ASRS-4num column (25 mmol/L KOH as the eluent) was used for anions.
The measurements were taken under the following conditions: column temperature: 30 ◦C; flow rate:
1.0 mL/min; injection volume: 20 μL; flow precision < ± 0.1%; flow rate maximum error 0.1%. Detection
limits were 4.5 mg L−1 for Na+, 4.0 mg L−1 for NH4

+, 10.0 mg L−1 for K+, Mg2+ and Ca2+, 0.5 mg L−1

for F− and Cl−, 15 mg L-1 for NO2
− and NO3

−, and 20 mg L−1 for SO4
2−. Standard reference materials

produced by the National Research Center for Certified Reference Materials (Beijing, China) were
analyzed for quality control and assurance purposes. Data from blank samples were subtracted from
the corresponding sample data after analysis [21].

2.3. Calculation of Emission Factors for Water-Soluble Ions in PM2.5

The emission factor (EF) of a given ion is defined as the amount of this ion emitted to the
atmosphere per unit mass of fuel consumed by the fire. The emission factors of particulate matter and
water-soluble ions were calculated in this study using the carbon mass balance method. The specific
calculation procedure can be found in Zhang et al. [22]. The carbon mass balance method offers an
advantage such that it is not necessary to collect all emitted pollutants, and the sampling position in
the plume is adjustable [23].

2.4. Statistical Analysis

Two-way analysis of variance (ANOVA) was performed to determine the significant differences
in EF of PM2.5 and water-soluble inorganic ions (WSI) between forest types (boreal versus sub-tropical)
and between species (conifer versus broadleaved), followed by least significant difference test for
comparison of means. A t-test was performed to determine significant differences between species
within each forest type and between combustion of leaves and branches as well as between smoldering
and flaming stages of combustion. Correlation analysis between cations and anions was also conducted
to examine the relationship between ionic species in PM2.5.

3. Results

3.1. Emission of PM2.5 and Water-Soluble Inorganic Ions

The EF of PM2.5 varied significantly (p < 0.05) between forest types and species (Table 1). The EF of
PM2.5 was three times higher for the boreal (6.83± 0.67 g/kg) than the subtropical forest (1.97 ± 0.34 g/kg)
when both coniferous and broadleaved species were burnt, and coniferous species emitted 1.5 times
more PM2.5 (5.35 ± 0.64 g/kg) than broadleaved species (3.45 ± 0.37 g/kg). However, combustion of
coniferous species from the boreal forest emitted more PM2.5 than the broadleaved species and species
from sub-tropical forest. Similarly, the EF of WSI exhibited significant differences between forest types
and species (Table 1). The EF total WSI was higher for the boreal forest (1.27 ± 0.08 g/kg) than for
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the subtropical forests (1.08 ± 0.07 g/kg), and combustion of broadleaved species emitted more WSI
(1.28 ± 0.09 g/kg) than coniferous species (1.07 ± 0.06 g/kg). Combustion of broadleaved species from
the boreal forest resulted in higher EF of WSI than the coniferous species as well as species from the
subtropical forest. As a whole, the EF of WSI was higher for boreal than subtropical species. The heat
of combustion of leaves and branches was 19,182 ± 294 kJ and 18,319 ± 264 kJ for coniferous and
broadleaved species from the boreal region, respectively. For subtropical region, it was 19,115 ± 286 kJ
and 18,054 ± 293 kJ for coniferous and broadleaved species, respectively (Table 1).

Table 1. Emission factors of PM2.5 (EFPM2.5) and water-soluble inorganic ions (EFWSI) released during
combustion of both leaves and branches of coniferous and broadleaved species from the boreal and
sub-tropical forests together with heat of combustion of fuels.

Forest Type Species EFPM2.5 (g·kg−1) EFWSI (g·kg−1) Heat of Combustion (kJ)

Boreal
Conifer 9.03 ± 0.97a 1.03 ± 0.06a 19 182 ± 294a

Broadleaved 4.62 ± 0.38b 1.51 ± 0.10b 18 319 ± 264b
Mean 6.83 ± 0.67A 1.27 ± 0.08A 18 751 ± 289A

Subtropical
Conifer 1.66 ± 0.31c 1.11 ± 0.06a 19 115 ± 286a

Broadleaved 2.28 ± 0.37c 1.05 ± 0.09a 18 054 ± 293b
Mean 1.97 ± 0.34B 1.08 ± 0.07B 18 584 ± 290B

Means followed by different lower and upper case letter across the columns are significantly different between
species and between the boreal and sub-tropical regions, respectively, at the 5% probability level.

With regard to the emission of individual ionic species, significant differences were observed
between forest types and species for some ions (Table 2). The EF of Na+, K+, Mg2+, Ca2+, Cl− and NO3

−

were higher for the boreal than subtropical forest while the EF of F− was higher for the subtropical than
boreal forest. Combustion of broadleaved species emitted more Na+, Cl−, SO4

2− and NO3
− than that

of coniferous species. Comparison of the EF of WSI between species within each forest type (Table 3)
revealed that broadleaved species from the boreal forest emitted significantly more ions, except K+ and
Ca2+, than coniferous species. For the subtropical forest, combustion of coniferous species resulted in
higher EF of NH4

+, Mg2+ and F− than broadleaved species. The dominant water-soluble ions in PM2.5

released during burning of coniferous and broadleaved species were K+ and Cl−, accounting 25% and
30% for the boreal forest and 23% and 27% for the subtropical forest, respectively. Emissions of NO2

−

and SO4
2− were the lowest, accounting 3% and 5% for the boreal forest and 4% each for the subtropical

forests, respectively. The EF of individual ionic species was in the order of K+ > Cl− > Ca2+ >Na+ >
NH4

+ >Mg2+ > NO3
− > F− > NO2

− > SO4
2− for coniferous species from the boreal region; Cl− > K+ >

Ca2+ >Na+ >Mg2+ >NH4
+ >NO3

− > F− > SO4
2− >NO2

− for broadleaved species from the boreal
region; Cl− > K+ > F− > NH4

+ > Ca2+ >Mg2+ > Na+ > NO2
− > SO4

2− > NO3
− for coniferous species

from the subtropical region; and Cl− > K+ > Ca2+ > F− > SO4
2− > Na+ > NH4

+ >Mg2+/NO3
− > NO2

−

for broadleaved species from the subtropical region.

Table 2. Emission factor (g/kg) of water-soluble inorganic ions in PM2.5 released during combustion of
leaves and branches of coniferous and broadleaved species from the boreal and sub-tropical forests.

Forest Type Species

Ions Boreal Subtropical Conifer Broadleaved

Na+ 0.101 ± 0.008a 0.061 ± 0.005b 0.067 ± 0.005A 0.091 ± 0.008B
NH4

+ 0.083 ± 0.009a 0.073 ± 0.006a 0.076 ± 0.006A 0.079 ± 0.008A
K+ 0.326 ± 0.012a 0.248 ± 0.015b 0.280 ± 0.015A 0.292 ± 0.013A

Mg2+ 0.085 ± 0.008a 0.052 ± 0.005b 0.061 ± 0.005A 0.073 ± 0.008A
Ca2+ 0.125 ± 0.008a 0.099 ± 0.009b 0.111 ± 0.008A 0.112 ± 0.008A

F− 0.054 ± 0.004a 0.109 ± 0.008b 0.080 ± 0.009A 0.082 ± 0.006A
Cl− 0.392 ± 0.027a 0.286 ± 0.010b 0.287 ± 0.011A 0.374 ± 0.023B

SO4
− 0.043 ± 0.004a 0.062 ± 0.010a 0.033 ± 0.004A 0.066 ± 0.008B

NO3
− 0.071 ± 0.009a 0.041 ± 0.004b 0.039 ± 0.003A 0.067 ± 0.008B

NO2
− 0.041 ± 0.006a 0.046 ± 0.005a 0.038 ± 0.004A 0.047 ± 0.006A

Means followed by different lower and upper case letters across the rows are significantly different between the
boreal and sub-tropical regions and between confer and broadleaved species, respectively, at the 5% probability level.
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Table 3. Comparison of the emission factor (g/kg) of water-soluble inorganic ions in PM2.5 released
from combustion of conifer and broadleaved species within each region.

Within Boreal Within Subtropical

Ions Conifer Broadleaved Conifer Broadleaved

Na+ 0.078 ± 0.006a 0.117 ± 0.013b 0.055 ± 0.008A 0.064 ± 0.006A
NH4

+ 0.058 ± 0.004a 0.099 ± 0.014b 0.094 ± 0.009A 0.058 ± 0.007B
K+ 0.326 ± 0.024a 0.326 ± 0.012a 0.234 ± 0.015A 0.257 ± 0.022A

Mg2+ 0.057 ± 0.004a 0.103 ± 0.012b 0.065 ± 0.009A 0.043 ± 0.012B
Ca2+ 0.129± 0.011a 0.122 ± 0.011a 0.093 ± 0.012A 0.103± 0.011A

F− 0.029 ± 0.003a 0.070 ± 0.006b 0.132 ± 0.008A 0.093 ± 0.011B
Cl− 0.275 ± 0.018a 0.470 ± 0.037b 0.299 ± 0.012A 0.278 ± 0.016A

SO4
− 0.017 ± 0.001a 0.060 ± 0.005b 0.048 ± 0.006A 0.071 ± 0.016A

NO3
− 0.039 ± 0.005a 0.092 ± 0.013b 0.038 ± 0.005A 0.043 ± 0.006A

NO2
− 0.022 ± 0.003a 0.053 ± 0.009b 0.053 ± 0.006A 0.041 ± 0.007A

Means followed by different lower and upper case letter are significantly different between conifer and broadleaved
species within the boreal and sub-tropical region, respectively, at the 5% probability level.

3.2. EF of Water-Soluble Ions in Relation to Combustion of Leaves and Branches

The EF of WSI varied significantly between combustion of leaves and branches of species group
within each forest type (Figure 2). For coniferous species from the boreal region, combustion of leaves
emitted more NH4

+, K+, Mg2+ and Ca2+ than combustion of branches, while the EF of the rest of
the ions did not differ between leaves and branches. For broadleaved species from the boreal region,
significantly higher NH4

+, K+, Ca2+ and Cl− were emitted during combustion of leaves than branches.
Combustion of leaves of coniferous species from the subtropical region emitted more Na+, K+, Mg2+

and Cl− but less Ca2+ than combustion of branches. For broadleaved species from the subtropical
region, combustion of leaves resulted in higher EF of all water-soluble ions than the combustion
of branches.

Figure 2. Comparison of the emission factor (g/kg) of water-soluble inorganic ions in PM2.5 between
combustion of leaves and branches of each group of species within each region. Bars with asterisks
(** p < 0.01 and * p < 0.05) indicate significant differences between leaves and branches of conifer and
broadleaved species within the boreal and sub-tropical region at the 5% probability level.
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3.3. EF of Water-Soluble Ions in PM2.5 Emitted During Smoldering and Flaming

For each species group within each forest type, significant differences were observed in the EF
of WSI between smoldering and flaming stages of combustion (p < 0.05). Generally, smoldering
released more WSI than flaming for most of the species (Figure 3). Smoldering resulted in significantly
higher emissions of all ionic species, except K+, than flaming for coniferous species from the boreal
region while EFs for all WSI were higher during smoldering than flaming stages of combustion for
broadleaved species from the boreal region. While smoldering resulted in higher EFs of all WSI, except
Cl− and NO3

−, it yielded higher EFs of all WSI for coniferous species from the subtropical region.

Figure 3. Comparison of emission factor (g/kg) of water-soluble inorganic ions in PM2.5 between
smoldering and flaming stages of combustion of leaves and branches of each group of species within
each region. Bars with asterisk (** p < 0.01, * p < 0.05) indicate significant differences between leaves
and branches of conifer and broadleaved species within the boreal and sub-tropical region at the 5%
probability level.

3.4. Correlation Between Ionic Species in PM2.5

Significant correlations were observed between ionic species in PM2.5 (Table 4). For the boreal
species, there were strong correlations (r > 0.75) between Na+ and SO4

2− and NO2
− while the

correlations between Na+ and F− and NO3
− were moderate (r = 0.5–0.75). NH4

+ and Mg2+ were
strongly correlated with SO4

2−, NO3
− and NO2

− but moderately correlated with F− and Cl−. While K+

had no correlation with any of the anions, Ca2+ had a moderate correlation with NO3
−. For sub-tropical

species, Na+ was moderately correlated with NO3
− while NH4

+ was strongly correlated with F−,
Cl− and NO2

−. K+ was moderately correlated with NO3
−, Mg2+ was strongly correlated with F−

but moderately correlated with Cl−, and Ca2+ was strongly correlated with SO4
2− but moderately

correlated with the rest of the anions.
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Table 4. Correlations between cations and anions of water-soluble inorganic ions in PM2.5 released
during the burning of woody species.

Boreal Species Sub-Tropical Species

F− Cl− SO4
2− NO3

− NO2
− F− Cl− SO4

2− NO3
− NO2

−

Na+ 0.58 * 0.18 0.82 ** 0.53 * 0.81 ** Na+ 0.14 0.02 0.41 0.53 * 0.14
NH4+ 0.58 * 0.55 * 0.79 ** 0.80 ** 0.86 ** NH4+ 0.95 ** 0.77 ** 0.34 −0.10 0.77 **

K+ −0.23 −0.06 0.18 0.19 0.07 K+ 0.21 0.21 0.41 0.71 ** 0.23
Mg2+ 0.69 ** 0.54 * 0.85 ** 0.74 ** 0.89 ** Mg2+ 0.78 ** 0.57 * 0.46 −0.17 −0.61
Ca2+

−0.28 0.36 −0.23 0.57 * 0.29 Ca2+ 0.55 * 0.69 ** 0.91 ** 0.57 * 0.70 **

* p < 0.05; ** p < 0.01.

4. Discussion

Our result showed regional differences in emission factors of PM2.5 and total water-soluble ions;
combustion of coniferous species from the boreal region emitted more PM2.5 while combustion of
broadleaved species emitted more WSI than the subtropical region (Table 1). This difference could be
related to the flammability and surface area-to-volume ratio of the fuel and inter-species variation in
chemical composition in the biomass. Coniferous fuels have high flammability and energy content
and often result in high EFPM2.5 [24,25]. Fuels with a large surface area-to-volume ratio require less
heat for ignition, thereby favoring rapid and thorough flaming combustion. This is further evidenced
in the present study where the heat of combustion was significantly higher for coniferous species
(19,149 kJ) than the broadleaved species (18,187 kJ) (Table 1). Thus, rapid combustion of species
from the boreal region emitted a larger proportion of water-soluble ions than the subtropical region.
Furthermore, significant differences in the EFWSI in particulate matter could be related to the chemical
composition of the species [26–29]. The chemical composition of the biomass is influenced by nutrient
biogeochemistry, which in turn varies between sites [30]. Similar emission differences in ambient
smoke plumes between vegetation types were observed during controlled burning of the Brazilian
cerrado vegetation and tropical rainforest [31].

The dominant ionic species in PM2.5 were K+ and Cl− irrespective of the forest type and species
burnt (Tables 2 and 3), which is in line with previously reported studies, which sampled smoke particles
in the field and indoors [13,31,32]. The presence of K+ as the major cationic species in PM2.5 is the
result of primary production through volatilization of plant tissue material during the combustion
process [13], and K+ is often considered as a marker of biomass burning [11,12]. Emissions of all
ionic species except F− was higher for the boreal than subtropical regions and emissions of Na+, Cl−,
SO4

2− and NO3
− were higher for broadleaved than coniferous species (Tables 2 and 3). This difference

suggests that not only the species composition but also the geochemical differences between regions
have an impact on the chemical composition of the fuel. Previous studies have shown that particulate
matters released in smoke plumes during biomass burning were rich in K+ and Cl− [30,32] and the
major water-soluble inorganic ions in PM2.5 during forest fire were K+, Na+, NH4

+, Ca2+, Cl−, NO3
−

and SO4
2− [30,33].

Our result also showed significant differences in EFs of WSI between combustion of leaves and
branches (Figure 2). Generally, combustion of leaves emitted more ionic species in PM2.5 than branches.
This could be related to high flammability of leaves [25] and structural differences between leaves
and branches attributed to the denser structure and higher lignin content of branches than leaves [34].
The combustion stage had also a significant effect on emissions of ionic species in PM2.5; smoldering
generally emitted more WSI than flaming combustion (Figure 3). High concentrations of water-soluble
ions associated with increased release of particulate matter in the smoke are emitted under limited
oxidation during smoldering. Guo et al. [13] reported a similarly higher EF of ionic species in PM2.5

during smoldering than flaming combustion while Liu et al. [12] demonstrated a higher content of total
water-soluble ions in particulate matter released from the burning of dry branches during smoldering
compared with flaming combustion.

222



Forests 2019, 10, 994

There were strong correlations between Na+ and SO4
2− and NO2

−, between NH4
+ and SO4

2−,
NO3

− and NO2
− as well as between Mg2+ and SO4

2−, NO3
− and NO2

− for species from the boreal
region (Table 4). This suggests that the PM could be composed of sodium, ammonium and magnesium
sulphate and nitrate during burning of boreal species, while ammonium fluoride, ammonium
chloride, ammonium nitrite, potassium nitrate, magnesium fluoride and calcium sulphate were major
constituents of PM during the burning of subtropical species. We also calculated the cation to anion
ratio, as this is considered to be a good indicator of the acidity of the particulate matter [3]. The ratio
was 1.2 for the boreal forest and 0.98 for the subtropical forest. Thus, the particulate matter released
during forest fires is neutral to slightly alkaline rather than acidic. The slight increase in pH associated
with wet and dry deposition of WSI on the soil surface could possibly improve availability of nutrients,
particularly phosphorus which is limited in subtropical forest ecosystems due to the acidic nature of
the soil and fixation by iron and aluminum [35]. This, in turn, may favor growth and productivity
of forests. However, the relatively high emission of Cl− compared to other anionic species calls
for attention as wet deposition of chlorides may contribute to ecosystem acidification. As a whole,
the study demonstrates that forest fire plays a minor role in the emission of acidic particulate matter.

5. Conclusions

Emission of PM2.5 and its water-soluble ionic component was higher in the boreal forest region
than in the subtropical forest region, and coniferous species emitted more than broadleaved species.
EFs of WSI were generally higher during combustion of leaves than branches and consistently higher
during smoldering than during flaming combustion. The water-soluble ionic component in PM2.5 was
dominated by K+ and Cl− irrespective of the forest ecosystem and species. As a whole, our findings
demonstrate that forest fire could contribute a considerable amount of water-soluble ions to atmospheric
emission depending on the forest type and species. However, the cation to anion ratio is higher than 1.0,
particularly for the boreal forest, suggesting that the particulate matter is alkalescent. Thus, forest fire
in these regions may not contribute to ecosystem acidification through emissions of water-soluble ions.
Our data are crucial for understanding emissions of WSI during different phases of forest fires and
how different typologies of biomass can affect the profile of speciation emissions.
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