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Preface to ”Wildland Fire, Forest Dynamics,
and Their Interactions”

As a consequence of changing climates and human pressure on fire-prone systems, wildfire 
regimes are changing over much of the globe. The same environmental change that is altering the 
nature of fire in our forests is likewise affecting various aspects of system dynamics (e.g., productivity, 
reproduction, insects and disease) that, in turn, influence both the outcome and the drivers of fire 
regimes. Forests may thus face stresses to which they may be resilient or which may degrade their 
ecological integrity and ultimately undermine their ability to provide necessary ecosystem services.

This book, derived from a special issue published in Forests, includes 18 articles that examine 
diverse aspects of wildland fire and forest dynamics in many fire-prone parts of the world. Several 
articles offer new perspectives on basic fire and forest interactions and surmise how altered dynamics 
may arise in the future. Similarly, articles in this book address the growing concern of cumulative 
impacts of multiple natural disturbances (drought, insect outbreaks) whose incidence is also 
changing, sometimes drastically. Also represented in the book is a topic that is—rightfully—gaining 
recognition across the globe: the impact of humans on wildfire regimes.

Whereas the above mentioned articles shed light on fundamental (and often mutating) first-order 
effects and interactions in fire-prone forests, other papers in this book provide insights for increased 
resilience to fire-induced change. That is, they offer ecologically based advice and guidance to land 
managers, forest practitioners, and forest conservationist alike. Overall, the collection of articles in 
this special issue reinforce the notion that wildfire fires do not act in isolation in a given forest system: 
they constantly interact with an environment that is dynamic and complex.

Marc-André Parisien, Enric Batllori, Carol Miller, Sean A. Parks

Special Issue Editors
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Revisiting Wildland Fire Fuel Quantification
Methods: The Challenge of Understanding
a Dynamic, Biotic Entity

Thomas J. Duff 1,*, Robert E. Keane 2, Trent D. Penman 3 and Kevin G. Tolhurst 3

1 School of Ecosystem and Forest Sciences, Faculty of Science, University of Melbourne,
Burnley 3121, Australia

2 Missoula Fire Sciences Laboratory, Rocky Mountain Research Station, US Forest Service,
5775 Highway 10 West, Missoula, MT 59808, USA; rkeane@fs.fed.us

3 School of Ecosystem and Forest Sciences, University of Melbourne, Creswick 3363, Australia;
trent.penman@unimelb.edu.au (T.D.P.); kgt@unimelb.edu.ai (K.G.T.)

* Correspondence: tjduff@unimelb.edu.au; Tel.: +61-418-552-726; Fax: +61-353-214-166

Received: 24 August 2017; Accepted: 13 September 2017; Published: 18 September 2017

Abstract: Wildland fires are a function of properties of the fuels that sustain them. These fuels are
themselves a function of vegetation, and share the complexity and dynamics of natural systems.
Worldwide, the requirement for solutions to the threat of fire to human values has resulted in the
development of systems for predicting fire behaviour. To date, regional differences in vegetation and
independent fire model development has resulted a variety of approaches being used to describe,
measure and map fuels. As a result, widely different systems have been adopted, resulting in
incompatibilities that pose challenges to applying research findings and fire models outside their
development domains. As combustion is a fundamental process, the same relationships between
fuel and fire behaviour occur universally. Consequently, there is potential for developing novel
fuel assessment methods that are more broadly applicable and allow fire research to be leveraged
worldwide. Such a movement would require broad cooperation between researchers and would
most likely necessitate a focus on universal properties of fuel. However, to truly understand fuel
dynamics, the complex biotic nature of fuel would also need to remain a consideration—particularly
when looking to understand the effects of altered fire regimes or changing climate.

Keywords: bushfire; grassfire; flammability; forest fire; quantitative methods; wildland fire;
vegetation dynamics

1. Introduction

Fire behaviour is the product of the weather, topography, human intervention and, importantly,
the fuel properties at the time a fire occurs [1,2]. In the case of wildland fires, this consists of vegetative
matter, both living and dead [3]. Wildland fires, while essential to ecosystem processes, impose costs on
societies including the loss of life, productivity, property, infrastructure, and ecosystem services [4–7].
The management of the landscape to minimise these costs requires that fire and, by necessity, fuel,
be understood [8–11].

Fuels have particular importance to managers as they are the only element of the landscape
that can be modified to influence the behaviour of future fires [10–12]. Substantial efforts are put
into the treatment of fuel for risk reduction [9–11,13,14] and parameterisations of fuel are a core
component of fire prediction systems [12,15–17]. Dead fine fuels in particular, have long been a focus
of fire managers and researchers as they respond to weather over short time scales [18,19] and so are
important determinants of fire occurrence and behaviour [3,20–22].

Forests 2017, 8, 351 1 www.mdpi.com/journal/forests
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Effective fire management before, during and after fire events demands an understanding of
the properties of fuel that will contribute the greatest hazard to values of interest, and methods to
quantify and represent these spatially [23,24]. While parameterisations of fuel for risk assessment and
modelling purposes have been a chief focus of land managers over recent decades, recognition of the
dynamic, biotic nature of fuel is also increasing [25–27] due to the magnitude of effects that changing
vegetation composition can have on fire behaviour (e.g., [28,29]), particularly in the face of a changing
climate [6,30–33].

The development of methods to describe, quantify and map fuels has occurred relatively
independently between regions, leading to a wide diversity of approaches and standards,
including multiple ways of describing the same fuel properties. In this paper, we provide a critical
review of current approaches for wildland fuel description, summarization and mapping in use
worldwide. To conclude, we make recommendations on future directions in methods for the evaluation
of fuel that have the potential to increase accuracy, utility and our understanding of fuel dynamics.

2. Quantifying Fuel

At a fundamental level, wildfires are uncontrolled and sustained combustion reactions that spread
between organic fuel elements in the landscape [3,34]. These elements have intrinsic and extrinsic
properties that influence the occurrence, rate and intensity of combustion of fires. These properties
include chemical composition, particle density, size, shape, arrangement (both vertical and horizontal)
and moisture content [16]. Here, we refer to fundamental fuel properties as ‘attributes’ and measured
abstractions used for modelling as ‘parameters’ sensu Hollis et al. [35]. The actual values used in
models are referred to as ‘arguments’. We use the term ‘fuelbed’ to refer to the entire live and dead
fuel complex at a site including surface, shrub and canopy sensu Riccardi et al. [36].

The behaviour of a fire is a function of the components of a fuelbed, and fuelbed is a function of
the vegetation community at a site, including species composition, condition, and structure [21,27,29].
The vegetation community itself is a function of complex processes including climate, geology, herbivory
and disturbance [37–39]. Methodologies for representing fuelbed properties have predominantly been
driven by a need to forecast and manage fire impacts rather than understand dynamic processes [3].

Forecasting the progression of fires requires that methods be developed to describe, measure,
summarise and map fuelbeds across the landscape. The methods selected to quantify and map
fuel fundamental properties can have consequences on the applicability, accuracy, precision and
compatibility of the modelled outcomes [40–45]. Creating fuel maps is a multi-stage process; it requires
(A) having defined and measureable fuel parameters; (B) a method for assessment of parameters in
the field; (C) a method to summarise or convert information to conform to model input argument
requirements; and (D) a method for mapping summarised units [3]. These four steps and the
implications of various approaches are discussed separately below.

2.1. Parameterising Fuel

Due to the need to manage fire, there is a long history of the assessment of fuels in wildland
landscapes (e.g., [46] and [47]). However, a particular driver for the development of new fuel
description and quantification methods was the advent and development of wildfire modelling
in the 20th century [3], in which numerous models were created for a range of vegetation types,
fuel conditions and regions [17,48,49]. To predict fire behaviour, it is necessary to parameterise the
fuel attributes that are most influential over fire behaviour. However, the combustion of vegetation
is a complex process [34,50] and there is no universal set of parameters common to all models.
Fire behaviour is strongly determined by the properties of vegetation and consequently, features that
are important in one system may be absent in another. Additionally, any parameterisation requires
a degree of abstraction of the real world into something measurable; the degree of abstraction can vary,
resulting in fuel parametrizations that vary along a spectrum from those thought to be fundamental
to fire behaviour processes (as in the Rothermel Model [16]), to representations of vegetation type
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linked to fire behaviour through empirical observation (as in the Canadian Fire Danger Prediction
System [51]). Some examples of operationally used models and the diversity of their key fuel input
parameters are presented in Table 1. Further details of the contrasting inputs for the Australian
models are presented in [52]. Although methods of quantification vary greatly, there are commonalities
between approaches; operational fire models invariably include some form of consideration of the
amount, physical characteristics and spatial configuration of fine fuels (<6 mm diameter [53]—the
fuels that readily ignite in a flaming fire front).

Early fire models provided estimates of fire rate of spread for a defined set of conditions—they
were inherently aspatial. To predict fire spread, their outputs had to be interpreted and mapped by
hand [54–56]. To achieve this, maps of fuel were necessary to select the appropriate model to use and
obtain the necessary fuel arguments. More recently, driven in-part by increasing computational power,
models have been developed to be spatially explicit. Fire behaviour simulators are now routinely used
operationally to solve large-scale real-time fire prediction problems to provide emergency decision
support, e.g., FARSITE [57] and PHOENIX RapidFire [58,59]. Additionally, the applications of fire
models are increasingly being extended, including applications such as strategic risk assessment [60,61],
the assessment of ecological fire regimes [62,63] and carbon accounting [6]. In addition to modelling,
fuel maps are also important for strategic purposes to enable managers to visualise fuels across the
landscape relative to topography and vulnerable assets.

The development of spatial fire models has substantially increased demand for high quality
maps of input arguments. Models developed for the management of fire risk typically require that
predictions be made faster-than-realtime so wildfire spread can be forecast as they occur. As fires can
be very large (i.e., 10’s of square kilometres), this has influenced the practicality of data collection and
affected the precision adopted in parametrising fuel. However, with increases in computer processing
power, there has also been development of complex physical models that, while generally slower than
real time, allow insight into the physical processes within fires, e.g., WRF-Fire [64], FIRETEC [65] and
the Wildland Fire Dynamics Simulator [66]. The development of such models of fire poses additional
challenges to fuel quantification as physical models require that the physio-chemical properties of
fuel elements be known at the scale of the processes being emulated—these scales are typically much
smaller than used in empirically models [49]. Furthermore, as empirical models are statistically
fit, the fitting process can somewhat compensate errors in measurements—a luxury not afforded to
physical models. Physical models are crucial to understanding fundamental combustion processes,
so being able to accurately quantify fuels in the field to allow their verification and validation against
real-world fire outcomes remains important.

To date, the development of fuel quantification and mapping systems has predominantly focused
on providing arguments for specific fire models rather than representing the fundamental properties
of fuel important to fire behaviour [67,68]. This means that the information collected is highly regional
and focused on the limited number of parameters and methods specific to local vegetation types
(e.g., Eucalyptus forests [69] or grasslands [70]).

One attempt to reduce this model-centric focus has been the development and implementation of
the ‘Fuel Characteristic Classification System (FCCS)’ in the USA. Within this system, fuel beds are
described in great detail with the aim of being able to provide inputs to a wide variety of models that
operate at different scales and for different purposes [71].
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Table 1. Selection of fire models used for operational faster-than-real-time fire behaviour prediction
by landscape managers, and the fuel input arguments required for their computation *. The models
presented utilise unique functions for deriving fire behaviour from fuel. Modelling systems that utilise
these functions are not considered here.

Model Region of Use Intended Vegetation Fuel Arguments

Anderson shrublands 1 Australia, Europe Shrublands Vegetation height

Buttongrass model 2 Australia Buttongrass plains Cover
Fuel load
% dead

Canadian FFDPS 3 Canada, New Zealand Various Fuel type
Grass curing

CSIRO Grass 4 Australia Temperate grasslands Grassland structure
Grass curing

CSIRO Tropical grass 5 Australia Tropical grasslands Grassland type
Grass curing

Mallee-Heath model 6 Australia Mallee Heath Vegetation height
Vegetation cover
Near surface fuel load

McArthur 7 Australia Southern Australian
forests

Fine fuel load
Soil dryness / fuel availability

PHOENIX Rapidfire 8 Australia Various Surface fine fuel load
Near surface fine fuel load
Bark fuel fine fuel load
Shrub fine fuel load
Grassland structure
Grass curing
Wind reduction factor

Rothermel 9 USA, Europe Various Fuel load by size class and category
Surface area: volume by class and category
Fuelbed depth
Dead fuel extinction moisture content
Heat content of live and dead fuels

Vesta 10 Australia Southern Australian
forests

Surface fine fuel load
Near surface fine fuel load
Shrub fine fuel load
Bark fuel fine fuel load

* Short-term dynamic fuel properties (e.g., moisture content) are computed separately using weather data. 1 [72];
2 [73]; 3 [51]; 4 [74]; 5 [75]; 6 [76]; 7 [12]; 8 [58]; 9 [16]; 10 [15].

2.2. Assessing Fuel Attributes in the Field

The effective spatial representation of fuel requires some level of assessment or verification in
the field [77]. Extensive vegetation surveys are expensive, so invariably some form of sampling is
required [78,79]. In designing a fuel inventory, the questions of what to measure within a sampling
unit and how units should be sampled (including number and stratification) need to be resolved [3].
An ideal method for sampling within measurement units is one that can be completed efficiently and
accurately with minimal expertise. As some fire model arguments are not easily measurable outside
of a laboratory (e.g., fuel element energy, oil and mineral content) and others are time consuming
to measure directly (e.g., bulk density and surface area to volume ratio), an alternative has been
to undertake a number of simple measurements combined with visual estimates. This commonly
involves textual descriptions combined with photos, keys and simple measurements (e.g., [77,80]) to
approximate parameter arguments (or groups of parameter arguments) from a limited number of
classes. Such class-based approaches can greatly increase the efficiency of field surveys; however, there
is a cost in terms of the degree of accuracy and precision [81,82]. Additionally, error can be introduced
due to variation in the way assessors interpret classification guidelines [83,84].

To understand fire behaviour processes from a scientific point of view, the ideal field assessments
of fuel within a site would be comprehensive evaluations that quantify fuel element attributes in
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three dimensions to allow virtual fuelbed reconstruction. In addition, non-fuel details such as species
composition, canopy cover and soil type would also be recorded as they can provide insight into the
dynamics that result in particular fuel configurations [27,85]. Apart from the FCCS, such intensive
fuel audits are rare outside research. However, recent developments in technology have the potential
to improve the efficiency, accuracy and precision of highly detailed field assessments, in particular
terrestrial LiDAR [86,87] and photogrammetry [88]. These enable the rapid quantification of structure
in three dimensions, enabling sites to be digitally represented at extremely fine scales.

Fuels can have high levels of spatial variation [25] which can be important determinants of fire
behaviour and impacts [43,44]. The capture of such variation necessitates a large number of sampling
plots, resulting in trade-offs between the level of detail measured at a sampling unit and the number
of sampling units that can be collected. To resolve this requires an understanding of the sensitivities of
fire models to the relevant inputs (e.g., [89,90]), although ideally this would be driven by fundamental
fire theory [91].

2.3. Summarizing Fuel to Develop Maps

The process of summarizing measured fuel attributes at a site level and developing mapping
methodologies is often concurrent, as site level classes are typically used as mapping units. During a site
fuel survey, a diversity of attributes is independently considered. However, it is rare to map each
attribute directly—values are usually first summarised using a single, exclusive site-level class.
Attributes are given values that apply to the entirety of the assigned class. An example is the use of
Fire Behaviour Fuel Models in the US to represent fuel loading, depth and moisture of extinction [92].
When assigning classes, there are three approaches that are used: association (using existing vegetation
classifications), classification by fuel fundamental properties (using statistical or descriptive methods),
and abstraction (grouping fuels based on a common secondary property such as fire behaviour).
These approaches are comprehensively summarised in Keane [41].

Regardless of classification approach, the summarization of measurements into site level classes
results in a loss of information if sites that have properties of more than one class are forced into a single
class [93]. This effectively compresses information, resulting in approaches that do not represent the
heterogeneity or potential range of values present in these systems. There is also an assumption that
the site attributes consistently co-vary—i.e., that bulk density and crown base height are at consistent
ratios for a particular vegetation class. This assumption may not be always valid as natural systems
often have gradients of change [94] and high levels of independent variation occur in space and time in
both species composition and fuel attributes [25,27,38,95]. The importance of considering this variation
is particularly evident at the interface between wildlands and urban environments where vegetation
is heavily modified (resulting in novel fuel configurations that are not well represented by existing
classifications) and there are high concentrations of values at risk (so there are potentially greater
consequences for errors) [96].

Variation within classes can be accounted for with the addition of intermediate classes [67,97];
however, large numbers of classes can provide additional challenges, such as difficulty in identifying
or verifying them in the field [41]. This is a particular issue where fuels change rapidly post fire—fixed
classifications have limited potential to represent the continuum of change that occurs as a forest
recovers. One method that has been used to account for this is the adjustment of class attribute values
to account based on other landscape properties. This approach is applied in Australia in systems where
the forest overstorey typically survives fires and vegetation (and consequently fuel) re-accumulates
after fire following a negative exponential pattern [27,53,98]. This pattern is used to moderate fuel
loading from class equilibria based on time since last fire [59]. While this approach is unique to
Australia, such patterns of recovery are not (e.g., [99,100]). Furthermore, with variation in post fire
conditions [27] or fire severity [101,102] having the potential to influence vegetation recovery, using
time since fire as the sole moderator of fuel properties may not necessarily deliver outcomes that meet
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manager’s expectations. Additionally, fire is only one of many potential disturbances that can impact
fuels—it may also be important to recognise other disturbances such as timber harvesting or drought.

The continuous and dynamic nature of vegetation through space and time means that high
within-class heterogeneity and independent variation of attributes will remain a challenge with any
fuel classification, necessitating monitoring or biophysical modelling to maintain reliability [3].

2.4. Creating Maps of Fuel

Mapping fuels at large scales faces challenges typical of mapping vegetation; practicality limits
the proportion of the landscape that can be measured directly and high inherent heterogeneity limits
the potential for interpolating between measured sites [103,104]. For broad-scale fuel mapping,
there are three main approaches that can be applied; direct (where methods directly measure
properties of interest—such as measuring canopy structure with LiDAR), indirect (where methods
use the direct measurement of a proxy for the properties of interest—such as using images to create
classes based on overstorey tree species as a proxy for fuel structure) or derived (where values are
derived statistically from a range of sources including combinations of biophysical variables and
indirect measurements—such as modelling fuel loading using climatic and vegetation community
data) [23,105,106]. The methods available for mapping fuel are highly dependent on the ways fuel has
been sampled and classified. Many of the parameters used in fire behaviour models (e.g., bulk density
of fine fuels or surface fuel depth) are impractical to quantify with direct measurement so their values
must be determined through other means.

Indirect assignation of classes, in particular assigning estimated fuel attributes to existing
classifications, has been common as it allows managers to apply existing maps—often of
vegetation type—as fuel maps, reducing the need for extensive surveys or mapping programs [41].
However, the value of such maps will be dependent on (1) how well they represent existing vegetation
type classes (as the accuracy of the derived fuel map cannot be greater than the vegetation map it
is derived from); (2) how representative the existing classifications are of fuel attributes in space
and time; and (3) how internally consistent the units are. Additionally, having a fuel map based on
extant classifications means there is limited flexibility in adjusting values where there are known
inconsistencies, such as those resulting from changing abundances of particular species that have
unusual flammability properties (e.g., [28,29]).

Where there are site level classifications of fuel that can be discriminated aerially, remote sensing
approaches can be used to directly assess and classify them [107]. While obscuration by tree canopies
has provided a challenge for directly measuring many fuel properties [23], in recent years there have
been rapid developments in technologies that allow the measurement of sub-canopy fuel properties,
including airborne LiDAR [108], hyper and multi-spectral imagery [109], and radar [110]. These have
the potential to yield detailed measurements of attributes that have been difficult to measure over large
areas, in particular vertical and horizontal structure. Additionally, remote sensing approaches can
now provide information on the status of fuels, including the degree of curing [111] and live moisture
status [112–114].

Derived approaches are becoming increasingly available to allow attributes that are not so
readily measurable remotely to be estimated using statistical approaches [115]. They have the
strength of being able to use modelling to combine disparate sources of data to predict attributes in
a parsimonious manner [23,27,116–118]. Advantages include the ability respond to dynamic changes
(such as incorporating observations [119]) as well as being able to spatially quantify uncertainty around
attribute values. Understanding uncertainty can be important for prioritizing the collection of data
and for Monte Carlo style fire risk analysis [120].

The accuracies of fuel maps reflect the approaches used in their creation. There are a number of
sources of error that may contribute to poor results. These include (1) inappropriate fuel sampling
methods and designs; (2) improper classifications; (3) errors in the application of methods; (4) improper
geo-registration; and (5) scale incompatibilities (both between fuel attributes at a site and between
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sampling scale and mapping scale) [3,95]. The level of error in using classes can be high: a review
of the LANDFIRE fuel mapping products found that correlation between mapped units and fuel
properties was relatively low (ranging between 5% and 85% correct, regardless of mapping approach)
due to scale and resolution mismatches and the possible insensitivity of the attributes used [121].

3. Future Directions, Opportunities and Needs

3.1. Parameterising Fuel

It is important that the quality of fuel data is commensurate with the gravity of the decisions
being made using them. Fuel maps are a key input in wildfire modelling systems; such systems are
becoming increasingly important to land managers. Despite this, there are no universal standards
used for quantifying and representing fuel worldwide. Single purpose methodologies are widespread,
but incompatibilities in the parameters that are represented limits the ease at which models can be
applied outside their development localities. This is because where one model is used operationally,
the appropriate measurements for alternative models are rarely collected, necessitating unit conversion
and approximation. The adoption of a more universal system would increase the applicability of
fire models and research findings, foster collaboration and reduce research duplication by allowing
findings to be generalised across regions [35,68,122].

While there is a great diversity of ecosystems prone to wildland fire worldwide, the fundamental
processes behind combustion and fire propagation are common to all. As a result, fuel quantification
systems that have a basis in fundamental fire properties will have a degree of universality by default.
The adoption of a hierarchical system could provide for abstraction while allowing for base level fuel
attributes to be reconstituted [25,123]. Such a hierarchy could be considered in terms of:

• Primary attributes; those that can be directly linked to fire behaviour (e.g., fuel element dimensions,
chemistry, moisture content and spatial configuration);

• Secondary attributes; those that can measured in the field but require transformation to be linked to
the primary attributes (e.g., plant species may be used as a proxy for element chemical composition);

• Tertiary attributes; those that summarise primary and secondary attributes (e.g., vegetation type
may be used to describe the likely properties at a site) and can be used for mapping;

• Accessory attributes; those that are not directly related to fuel, but are important for understanding
processes, such as species composition, site age and soil properties.

Due to the diversity in vegetation community properties worldwide, the development of
a practical and functional system is a great challenge. However, by considering primary attributes
as directly as possible and ensuring that any secondary attributes can be readily transformed into
primary attributes, a basis for commonality can be maintained. A sample of measurable secondary fire
behaviour attributes, their related primary attributes, and their effect on fire behaviour is presented in
Table 2. One thing that is immediately evident from this table is the complexity of the problem—each
secondary attribute may influence multiple primary attributes.

Increasing detail in the parameterisation of fuel is likely to exacerbate the issue where the standard
site level classifications currently used for mapping are too coarse to represent the known variation
between components of the fuel bed. It is regressive to discard detailed information (such as from
LiDAR) to constrain fuel information to a fixed classification. An alternative could be to treat fuel
attributes as independent continuous variables. While separate maps of each fuel parameter of interest
may cause difficulties in human interpretation, simulation models should be able to process the
values directly.
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Table 2. Some commonly measured fuel attributes that are assessed at a site level (secondary attributes),
the associated (primary) attributes of these that affect fire behaviour, and the fundamental fire
behaviour processes they influence [16,34,50,77]. Processes may be associated with more than one
primary attribute.

Secondary Attributes Primary Attributes Associated Fire Behaviour Processes *

Fuel element geometry
Size
Shape
Surface area to volume ratio

Heat transfer (including cooling)
Ignitability
Residence time

Fuel type (species)
and condition

Stratum particle density
Stratum bulk density
Stratum packing ratio
Species composition
Moisture content
Fuel availability
Chemistry (Fats, Salts, Ash
content, Carbohydrates, Sugars
and other extractives)
Proportion dead
Decomposition state

Ignitability
Energy balance
Air: fuel mixture
Reaction chemistry
Heat transfer
H2O Latent heat absorption
Combustible air: fuel mixture
Heat conductivity
Residence time
Combustion efficiency
Smoke production
Proportion of fuel remaining unburnt

Horizontal continuity
fuel continuity

Distance between fuel elements
Distance between fuel clumps

Connectivity/sustainability
thresholds (i.e., wind and flame properties)
Heat transfer efficiency
Combustible air: fuel mixture

Mass and location of
fuel in different strata

Fuel element spatial configuration
Stratum particle density
Stratum bulk density
Stratum packing ratio
Wind adjustment factor
Wind profile and turbulence
Overall fuel load

Flame height/depth
Energy output
Ignitability
Preheating of fuel
Residence time
Spread rate

Firebrand potential
Mass of loose material
Nature of loose material
Location of loose material

Number of viable embers produced
Aerodynamic properties of embers
Likelihood of lofting
Sustainability of embers

Ideally, fuel quantification would be purely directed by fundamentals; however, areas of ambiguity
remain as fire science is not settled. There is not yet a fundamental framework describing the process
of wildfire spread [124], and there are clear challenges in transferring the concepts of flammability
from the laboratory to landscape scales, as fire is more complex than a spreading flame front [125–128].
For example, the different dimensions of flammability (for example, ignitability and combustibility)
take on different meanings at different scales, each of which may require particular fuel information in
order to be understood [126]. Other processes, such as the spread of fire through spotting (considered
in Australian fire models due to the nature of Eucalyptus bark) incorporate firebrand generation,
transport and spot fire ignition [129]—this cannot be replicated in totality in a laboratory. Despite these
issues, there are a number of attributes that are already currently common components of fire models
including fuel element size, amount, spatial distribution and status (live or dead) that are already
quantified and mapped in various forms. A review of these would be a potential starting point for
considering a more universal system.

The adoption of a new set of universal model parameters would require unit conversion for
the majority of existing fire models. Ideally, models would be updated to process primary attributes
without the use of intermediate units—or alternatively, novel models could be developed to supersede
the current ones. It is unlikely, due to the complexity of natural systems and the vastly different scales
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of processes (i.e., from molecular decomposition to terrain wind channelling), that any single model
(or fuel quantification system) will meet all needs at all scales. However, in principle, a universal fuel
quantification system could support the development of a universally applicable fire model. There are
substantial benefits that could be realised from this—in particular, increased leverage of research and
development, and greater availability of wildfire data for testing.

3.2. Cooperative Development

Many parts of the world subject to wildfire are likely to have fuel quantification systems currently
in place based on contemporary fire models, as evidenced by the Canadian and US field assessment
systems [130,131]. As moving to a new system would require investment, a compelling case needs to
be made as to what the benefits would be. These are likely to include:

• The ability to share research and apply models developed elsewhere;
• The ability to adopt new systems as science progresses;
• The ability to combine fire behaviour and fire effects systems.

Furthermore, increasing the breadth and applicability of fuel information has the potential to
increase efficiency and reduce costs by avoiding duplication between localities and providing for
research leverage. This is particularly important when considering the research of rare events, such as
extreme fire behaviour, where small sample sizes are an issue.

Any move towards universality in fuel quantification systems would require the cooperation of
a broad range of users in multiple jurisdictions to ensure all needs are considered. Unless a system
is able to meet the majority of needs of potential users, there is the risk of merely introducing an
additional competing system [132]. Ideally, such a system would proceed as part of broader fire
management information sharing agreements, allowing ecological, fire behaviour and operational
data to be pooled internationally [133]. Such a process would require consensus on how to quantify
various attributes, data formats, minimum levels of precision and accuracy, and units of measurement
to allow interoperability between jurisdictions. Open ended standards have the benefit over set
specifications of allowing higher quality information to be integrated where available so they do
not impede improvement as technology advances. For example, this issue is already apparent with
recent developments in remote sensing—we are beginning to have more detailed data (e.g., describing
the nature of ladder fuels to the canopy using LiDAR [134]) than existing fire models can utilise.
The operational fire simulation models discussed in this paper (FARSITE, PHOENIX RapidFire
and Prometheus) are all based on point rate-of-spread models that were developed in the previous
century [57,59,135], and so are not able to directly utilise more detailed information as it becomes
available. These models were constrained by the processing and informational limitations at the time.
Ideally, as improved fuel information becomes available, so too does the potential to develop new fire
behaviour models that can process such data directly.

There is precedence for multijurisdictional cooperative development in fire sciences—for example,
within Europe, the Paradox project [136] and within the US the Joint Fire Science Program [137]. There are
also examples of multidisciplinary approaches to model development—for example, the FIREX climate
and air study [138]. Ideally, such programs could be used to provide a framework for developing a broader
framework for unifying approaches in localities with wildfire problems worldwide.

While it would be expected that the initial focus would be on the subset of attributes currently
being used for fire models, it would be ideal to agree on protocols for as broad a set of attributes
as possible. Such an attribute set would provide for the development of new, improved models,
would allow integration with other ecological modelling systems and would allow broader uses of
the data such as the analysis of ecological processes and spatial patterning in three dimensions [123].
An enduring challenge with the development of such a system is that there are multiple needs that
require the quantification of fuels, in particular:

• The need for quantifying the fundamental properties of fuel that contribute to fire behaviour;
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• The need for estimating fire effects such as smoke, carbon loss or watershed impacts;
• The need to have methods for evaluating fuel hazard and model verification in the field; and
• The need for understanding how fuel properties relate to vegetation, climate, and

environmental variation.

These needs have different requirements (Table 3) and the levels of detail required for each
are not the same. For example, simplicity and efficiency are priorities when conducting field fuel
hazard assessments; however, the data collected are unlikely to have suitable resolution, accuracy or
precision for developing landscape fuel dynamics models. Currently, no system is available that is
suited to all phases of fire management [41]. Due to the diversity of fire prone ecosystems worldwide,
the assessment of secondary and tertiary attributes may require different assessment methods and
no ‘one-size-fits-all’ approach is likely to be feasible for all uses. A fundamental fire basis for fuel
quantification will greatly help understand what the current conditions are. To understand how and
why they will change, we need to continue to develop our understanding of the ecological processes
behind fuel development.

Table 3. Uses of fuel quantifications and key features required to fulfil desired use.

Use of Fuel Quantification Features Required for Efficacy

Field identification of fuel hazard Limited number of classes to select from
Potential for rapid assessment with limited expertise
Distinctive classes that can be field identified
Ability to provide dichotomous keys

Modelling of fire behaviour Element moisture content
Element arrangement (vertically and horizontally)
Element dimensions
Element load (in relation to spatial arrangement)
Element chemical composition
Element bulk density

Modelling of fire effects Fuel element fundamental properties (as above)
Expected fire/fuel interaction (fire behaviour outputs)
Fuel/impact relationships (e.g., fuel type/sediment flow)
Properties of less flammable components (e.g., duff, logs)

Spatio-temporal fuel/vegetation models
Spatial information Species abundances and properties

Community dynamics (co-occurring species, dominance
other interactions)
Species—fuel relationships
Seasonal variation

Temporal information Fuel condition (e.g., current status)
Live: dead ratio or curing properties
Life cycle properties
Fire responses

Accessory attributes Disturbance history (e.g., landuse, fire)
Biophysical attributes (e.g., soil, climate)

3.3. Rethinking Fuel–Fuel as an Ecological Entity

While fuels can be parameterised solely in terms of their potential contribution to fire behaviour,
in order to understand their properties through time, it is important to also recognise that they are
biological products that are a product of complex and dynamic processes [3,27,123]. To date, there has
been a tendency to consider fuel separately from the vegetation it is derived from; however, to be
truly understood, the biotic nature of fuel needs to be taken into consideration. Importantly, what is
thought of as ‘fuel’ by land managers is, in essence, potential fuel—it only acts as fuel when it
is involved with combustion; otherwise, it is vegetable matter. At broad scales, the occurrence of
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wildfires is dependent on a suitable combination of climate, weather, vegetation and ignitions [139–141].
Furthermore, climate is a key driver of the composition of plant species at a particular location
(combined with other environmental tolerances, competition and disturbance [142]). With a changing
climate, range shifting species and communities have the potential to alter fuel properties at a landscape
level, resulting in changes in the relative distribution of fuel hazard through space and time by
altering flammability [33,126,143]. Additionally, altered fire regimes driven by increased fire weather
have the potential to cause abrupt shifts in vegetation communities, potentially resulting in rapid
changes [39,144,145]. Even within communities, changing abundances of individual species may result
in changes to flammability at the landscape scale [28,146,147]. The ecological aspects of wildland
fuels are also strongly evident in the way fuel recovers after fire or other disturbances. The rate of
vegetation recovery and the composition of a community is a function of the weather conditions
before, during and after a fire—weather affects both the severity of a fire and resources available for
growth [27,30,32,101]. The severity of a fire could also be considered in terms of the fuels that do not
burn in a fire—understanding the availability of the lesser flammable fuels (logs, duff, soil etc.) to burn
under particular conditions is important for predicting how a system recovers after fire in terms of
fuel and important ecosystem services (carbon storage, faunal habitat, water quality). Other non-fuel
properties of vegetation communities can also influence short-term fuel dynamics, for example,
the overstorey of a forest plays a role in defining the understorey microclimate, influencing the water
available for both plant growth and fuel moisture dynamics [148,149]. In the face of changing climates,
understanding the interactions between plant ecology, fuel properties and fire regimes [150–153]
will be critical for understanding future fire. A focus on processes can provide insight into fuel
properties as they exist today and provide an indication of what may change with different forms of
disturbance [145,153,154] or changing environmental conditions [155,156].

Due to ecosystem complexity, finding the best way to incorporate ecological processes and
fuel quantification methods is likely to remain an enduring challenge. To begin to understand
such relationships, the first step would be to begin to consider fuel data collection in a holistic
manner and ensure that information about ecosystem properties are collected in conjunction with
fuel surveys (for example, including assessing species abundances, their structural roles and site
properties under which they occur). While such information may not add immediate value to a survey
intended to provide a snapshot of the current fuel status, ultimately, consideration of ecosystem
processes (i.e., looking at fuel types and components through an ecological lens) can both assist in the
development of more appropriate and accurate sampling techniques and support the development of
dynamic fuel models that improve estimates of fuel properties through time [41].

4. Conclusions

There is currently a wide variety of practices used in measuring wildland fuels worldwide.
This has resulted in challenges in applying research findings and models outside of their development
regions, limiting collaboration and resulting in duplicated efforts. Methods could potentially be focused
in a hierarchical manner using the universal fundamental physical processes of wildfire behaviour
as a basis. Additionally, it remains important to appreciate that fuel is of biotic origins—while it can
be described in terms of fundamental fire properties, it can only be understood by ensuring that the
complex biological processes are also recognised.

The movement towards a more universal approach to fuel quantification would require
a deliberate concerted effort from many parties. A new system would be disruptive to many existing
management systems; however, the benefits could be expected to be substantial. There have been
regional scale multijurisdictional and multidisciplinary programs in fire science—the challenge now is
to gain support for such an approach internationally.
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Abstract: Fires are the major disturbances in the Greater Hinggan Mountains, the only boreal forest in
Northeast China. A comprehensive understanding of the fire regimes and influencing environmental
parameters driving them from small to large fires is critical for effective forest fire prevention and
management. Assisted with satellite imagery, topographic data, and climatic records in this region,
this study examines its fire regimes in terms of ignition causes, frequencies, seasonality, and burned
sizes in the period of 1980–2005. We found an upward trend for fire occurrences and burned areas and
an elongated fire season over the three decades. The dates of the first fire in a year did not vary largely
but those of the last fire were significantly delayed. Topographically, spring fires were prevalent
throughout the entire region, while summer fires mainly occurred at higher elevations under severe
drought conditions. Fall fires were mostly human-caused in areas at lower elevations with gentle
terrains. An ordinal logistic regression revealed temperature and elevation were both significant
factors to the fire size severity in spring and summer. Other than that, environmental impacts were
different. Precipitation in the preceding year greatly influenced spring fires, while summer fires were
significantly affected by wind speed, fuel moisture, and human accessibility. An important message
from this study is that distinct seasonal variability and a significantly increasing number of summer
and fall fires since the mid-1990s suggest a changing fire regime of the boreal forests in the study area.
The observed and modeled results could provide insights on establishing a sustainable, localized
forest fire prevention strategy in a seasonal manner.

Keywords: Greater Hinggan Mountains; boreal forest; fire regime; fire season; ordinal logistic
regression

1. Introduction

Forests are important natural resources and play a significant role in regulating climate and the
carbon cycle. Boreal forests, also known as Taiga in high northern latitudes across North America
and Eurasia, account for 29% of the world’s forests, and store 37% of global terrestrial carbon [1,2].
Forest fire is primarily a natural process in boreal ecosystems [3]. With a low decomposition rate,
the post-fire productivity of boreal forests could decline for up to 80 years before the organic leaf litter
layer is reestablished [4]. Under the pressure of climate warming and accelerated human activities,
fire behavior in boreal forests has been found to be undergoing dramatic changes [5]. It is crucial
to understand these changes of fire characteristics and to identify the driving factors for sustainable
forest management.

Fire regime defines the combined characteristics of fire in terms of its frequency of occurrences,
size, intensity, seasonality, cause, and severity. Instead of considering a forest fire as a singular random
event, fire regime treats it as a landscape-level spatial process, which helps us understand the forest
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fire and its causal factors at a larger spatial extent in a climate change context [6,7]. The interaction
of top-down and bottom-up factors governs forest fire regimes over a range of spatial and temporal
scales. The bottom-up controls usually act at fine scales by regulating fire physics and behavior [8].
For instance, fire propagation is mainly controlled by weather, local terrain plus fuel load, moisture
content, and fuel continuity. Topographic factors (i.e., elevation, slope, and aspect) also strongly
influence the forest environment in aspects of potential incident radiation and temperature. On the
other hand, climate acts as a top-down control, which impacts fire occurrence through intra- and
inter-annual climatic variations. Studies have shown that the impact of intra-annual precipitation
variability on fire frequency is greater than the total annual precipitation in forests of the eastern United
States [9]. It is not clear whether the top-down or bottom-up factors are leading factors. In years of
extreme drought, climate would create weather and fuel conditions to overtake the bottom-up controls,
allowing fires to cross natural barriers like streams or roads. Controlling factors vary in different
biophysical scenarios and, sometimes, are a combination of multiple factors [10]. Anthropogenic forces
also play a significant role in influencing forest fire regime. It is reported that more human-induced
fires in Russian boreal forests have occurred due to the lack of control and ineffectual fire management
policies since the creation of the Russian Federation [11]. In Northeast China, extensive logging
increases the forest vulnerability to future burning and the half-century fire suppression policy has
greatly altered its fire patterns [12]. It is challenging to understand how these factors interact to
regulate the fire regime.

Boreal forests of China are mainly distributed in the Greater Hinggan Mountains that are located at
the southern end of Siberian boreal forest. Fire regimes vary spatially across the region due to different
species compositions, physiographic conditions, climate characteristics, and characteristics of the local
economies. Intensive studies have been conducted to examine the controlling factors on fires in this
region. For instance, Wu et al. found that climate was the primary factor influencing fire occurrence,
while human activities were the secondary control [13]. Another study from Hu et al. reported that
climatic factors were dominant drivers for lightning-caused fires, but not for human-caused ones [14].
Three fire environment zones were identified in this area through spatial clustering of environmental
variables [15]. Chang et al. utilized a binary logistic regression to predict the fire occurrence patterns
and to assess fire risks in Heilongjiang Province, China [16]. Forest fire regime and the surrounding
environments usually exhibit dramatic seasonal variations; however, few studies have examined it
from this perspective.

Forest fires in the Greater Hinggan Mountains have been analyzed in a seasonal manner, with
spring season from March to June, summer season from July to August, and fall season starting
in September and generally lasting to October when it begins to snow [17]. Moreover, extremely
large fires, sometimes named mega fires, are catastrophic and their impacts to the landscape are
complex and far reaching [18]. Usually a small number of large fires constitute the majority of burned
areas [19]. Studies have also shown that fire burning sizes varied with environmental conditions such
as vegetation, topography, and weather [20,21]. It is necessary to examine how these environmental
factors regulate the fires in terms of fire sizes in different seasons, which could be of great help for
effective fire control in this remote, boreal forest.

However, there exist some challenges to carry out such quantitative fire studies at the landscape
scale. One is the data availability. Taking fuel conditions as an example, it is difficult to obtain
actual in-field fuel conditions when a fire occurs. Remote sensing imagery becomes a promising data
source for its frequent updating and synoptic coverage. Studies have shown that vegetation index
is correlated with fuel moisture content. For example, the Normalized Difference Vegetation Index
(NDVI) products from the Advanced Very High Resolution Radiometer (AVHRR) [22] and Moderate
Resolution Imaging Spectroradiometer (MODIS) [23] imagery have been successfully used to estimate
fuel moisture content. Therefore, vegetation index could serve as a good proxy for fuel moisture
at the landscape scale. Another challenge is the difficulty of quantifying human impacts on fires.
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In limited studies, distance to the most nearby road was used to approximate the accessibility to a fire
location [24]. Road network density could be an indicator of the intensity of human activities.

The primary goal of this study is to identify the forest fire regimes in the Greater Hinggan
Mountains, and to characterize the controlling environmental factors in spring, summer, and fall
seasons. Integrating multiple sources of data sets, this study analyzes how these factors regulate the
fire severity through a statistical analysis approach in this boreal region.

2. Materials and Methods

2.1. Study Area

The Greater Hinggan Mountains, covering an approximate area of 7.3 million ha in Northeast
China (Figure 1), is one of the largest national forests of China. It lies between the Inner Mongolia
Plateau and the Northeast China Plain, covering a large geographic area between 51◦30′–53◦33′N
and 121◦10′–127◦08′E. It comprises about 10% of the boreal ecosystems in the Northern Eurasia
region [25]. Located within the sub-arctic climatic zone, winters of the study area are long, dry, and
cold. The annual average temperature ranges from −4 ◦C to −2 ◦C and annual precipitation ranges
from 400 to 500 mm, with almost half of the precipitation falling in summer, especially in July and
August [25]. As a southern extension of Eurasia’s boreal ecosystem, vegetation is dominated with
deciduous coniferous tree species. From the 1:1,000,000 China Vegetation Atlas at the Environmental
and Ecological Science Data Center for West China (http://westdc.westgis.ac.cn), larch (Larix gmelini)
covers 55.4% of the study area. Other tree species include evergreen coniferous such as Mongolian pine
(Pinus sylvestris var. mongolica) and spruce (Picea koraiensis), and deciduous broadleaved trees such as
birch (Betula platphylla) and aspen (Populus tremuloides). Non-forest land covers are limited, mostly in
forms of herbaceous grasses and shrubs in the valleys and croplands in the plains at lower elevations.

The study area is one of the major timber production bases in China. It is composed of five counties.
From northwest to southeast are Mohe, Tahe, Huzhong, Xinlin, and Huma counties (as marked in
Figure 1). Mohe has the highest forest cover of 93.3% across the county, while Huma has the least.
Huma is the only county relying on an agriculture-based economy. The population in the study area
is approximately 500,000 according to the 2010 census from the National Bureau Statistics of China.
Tahe has the largest population, followed by Mohe and Huma.

Figure 1. The study area and historic fire points in 1980–2005.
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2.2. Data Sets

2.2.1. Historical Fire Records

The 26-year fire data (1980–2005) in the Greater Hinggan Mountains were obtained from the Forest
Fire Prevention Office, China Forest Bureau. A total of 404 fires were recorded in 1980–2005. Points of the
recorded fires are marked in Figure 1. These fires were real-time observations by field staff at China
Forest Bureau. Attributes of a fire record include: fire location, time and date of ignition (start date) and
extinction (end date), burned size (burned area of a fire), and cause of ignition. Complying with strict
fire prevention policies in Northeast China, fires were often rapidly extinguished. The average time to
put out a fire was 26.33 h in the study area, although there was an exception of the “Black Dragon”
fire on 6 May–2 June 1987, the largest fire in this area that burned 1.3 million ha of forests in 26 days.
Among all fire records, the lightning-caused fires accounted for 63% (254 fires); 29% (117 fires) were
caused by human activities such as smoking, debris burning, equipment usage, and short circuit of
power lines. A small portion (8%) of the records were fires with unknown causes (34 fires).

2.2.2. Topography and Road Network

The digital elevation model (DEM) was acquired from the Shuttle Radar Topography Mission
(SRTM) global products at 1 arc-second cell size (approximately 30 m). As shown in Figure 1, the terrain
of the study area is mountainous, rising from east to west at elevations ranging from 130 to 1500 m
with an average of 560 m. Slopes and aspects of terrain surfaces were derived from the DEM. Road
infrastructure is limited in this natural forest. Provincial-level and township-level road data were
obtained from the National Geomatics Center of China.

2.2.3. Meteorological Data

The meteorological data were downloaded from the U.S. National Oceanic and Atmospheric
Administration (NOAA) Earth System Research Laboratory. The gridded climate data, with a 0.5◦

(approximately 50 km) cell size, include monthly mean temperature and monthly total precipitation in
the period of 1901 to 2014, and long-term mean of the monthly mean temperature and that of monthly
total precipitation. Wind speed was obtained from the China Meteorological Administration. Five weather
stations are evenly distributed in the study area, and have monitored daily wind speed (km/h) since
the 1950s. Adopting the Beaufort Scale [26], wind speeds were transformed to the categorical scales
from 1 to 5, representing breeze, moderate, strong, very strong, and stormy winds, respectively.

2.2.4. Vegetation Data

Fuel moisture condition is an essential control of forest fires. Studies have shown that vegetation
index is correlated with fuel moisture content [27]. The bi-weekly NDVI product of the Global
Inventory Modeling and Mapping Studies (GIMMS), namely the AVHRR GIMMS NDVI3g with a pixel
size of 8 km, were obtained from the U.S. National Aeronautics and Space Administration (NASA)
Earth Exchange (NEX) platform. At each fire point, the accumulative NDVI in the snow-free growing
season (May–September) of the preceding year was computed to serve as a surrogate for fuel moisture
condition (representing the organic layers). It was referred to as ΣNDVIpreceding in this study, with
a range of [−10, 10] accumulated in the 6-month period.

2.3. Approaches

2.3.1. Data Processing

Fire records in the study area were grouped into categories of spring (March–June), summer
(July–August), and fall (September–October) fires according to their igniting dates. The burned area
of each fire was recorded in the fire data. Since the degrees of fire severity were not recorded in this
historical data set, here we took the burned area as a measure of fire size severity, or FSS. Note that it is
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different from the terms fire severity and burn severity which are often interchangeably used based on
the loss of soil and aboveground organic matter [28]. Following the standards of the Chinese Forest
Fire Prevention Office, fires were assigned into four ordinal levels on basis of burned areas, i.e., ≤1 ha,
≤100 ha, ≤1000 ha, and >1000 ha, corresponding to low, moderate, moderate/high, and high FSS,
respectively. With these FSS data, the causes of ignition (lightning vs. human) and seasonality (spring,
summer, fall) of fire regimes in the study area were examined.

With the data sets described in Section 2.2, environmental parameters were extracted to assess the
environmental influences on fires in the study area (Table 1). Considering fire as a natural process that
behaves in a spatial extent, environmental effects on a fire are a spatial representation within this extent.
For this reason, parameters in Table 1 are retrieved from an areal buffer instead of merely at a single
fire point. For the fire records in this study, the average burned area was 4864 ha/fire. To extract the
environmental parameters for each fire, we approximated each fire as a circular buffer centered at the
fire point with a radius of 4000 m. For each fire, the environmental parameters in Table 1 are calculated
as the average values within this buffer. Although the spatial coverage of the burned area of each
fire was not available, the spatial average within such a buffer fairly represented the environmental
variables when this fire broke out.

Table 1. Environmental parameters used in this study.

Data Category Abbreviation Parameter Format Unit Cell Size

Topography
Slope Continuous Degree 30 m

Elevation Continuous m 30 m

Aspect Continuous Unitless 30 m

Climate

MAT Mean Annual Temperature Continuous Celsius 0.5◦

TAPcurrent
Total Annual Precip.

(current year) Continuous mm 0.5◦

TAPpreceding
Total Annual Precip.

(preceding) Continuous mm 0.5◦

MTP Monthly Temperature
Percentage Continuous % 0.5◦

MPP Monthly Precipitation
Percentage Continuous % 0.5◦

Wind Speed Daily Mean Wind Speed Categorical 1 to 5 0.5◦

Vegetation ΣNDVIpreceding Continuous Unitless 8 km

Road
Distance to Nearest Road Continuous m /

Road Density Continuous km/km2 /

For topographic data, the average values of elevation, slope, and aspect within each buffer
represented the three topographic parameters at this fire point. For vegetation data, the average
GIMMS NDVIg3 value accumulated in May–September in the preceding year was the ΣNDVIpreceding
at this fire point.

Using the province- and township-level road network, the distance from any fire point to the
nearest road was extracted. We used the distance to the nearest road as a proxy of human accessibility
at a given pixel. A shorter distance indicated higher accessibility and therefore higher possibility of
human-induced fires. Local dirt roads and pathways were rare in this remote boreal forest with low
population. Fire behavior such as fire spread at a landscape was not considered in this study. The road
density map in the study area was generated using the kernel density tool in ArcGIS (Figure 2).
Road density at each fire point was thus extracted.

For meteorological data, the annual climatic variables, mean annual temperature (MAT) and
total annual precipitation (TAP), were extracted at each fire point. Also, studies have shown that
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meteorological conditions in the preceding year could directly affect fire risks for the coming spring [29].
For example, several severe spring fires broke out in Huma County in 2003, which directly followed
the prolonged drought in 2002 when the annual precipitation was reduced by 50–90% in comparison
to normal years [30]. Hence, in addition to the precipitation of the current year (TAPcurrent) when a fire
broke out, a variable of total precipitation over the past year (TAPpreceding) was also analyzed.

Figure 2. Road density map in km/km2.

To examine the weather abnormality of a fire, we calculated the ratios of monthly precipitation
and temperature over their long-term means, respectively. This process effectively alleviated the spatial
and temporal bias of fire points across the study area in the 26-year period. All temperature measures
were converted to the unit of Kelvin. Given the LTM(T) and LTM(P) as the long-term monthly mean
temperature and monthly total precipitation, the ratios at a fire point can be calculated as:

Monthly Temperature Percentage (MTP) =
monthly mean temperature

LTM(T)
(1)

Monthly Precipitation Percentage (MPP) =
monthly total precipitation

LTM(P)
(2)

With Equations (1) and (2), the climatic data are standardized to represent local variations at
the same scale. The standardization also reduces the spatial correlation between these explanatory
variables and therefore, benefits the logistic modeling in the next section.

The wind speed at each fire point was assigned as the daily mean wind speed recorded at the
nearest station on the ignition date.

2.3.2. Analytical Approaches

Descriptive statistics were implemented to explore the fire regimes and their decadal trends from
1980 to 2005 in terms of ignition causes, fire occurrence frequencies, fire burned areas (sizes), and
seasonality. The Welch’s ANOVA tests were applied to examine the variations of the explanatory
variables, including topographic factors, weather/climate conditions, human impacts, as well as
fuel conditions in different seasons. For the categorical variable (wind speed), the non-parametric
Kruskal-Wallis test was applied.
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An ordinal logistic regression was developed to quantitatively examine the driving factors that
impact the fire size severity (FSS) in each season. Defining the FSS as the response variable, y, and the
environmental parameters as the set of independent explanatory variables, X, the logistic regression is
described as [31]:

logit[P(y ≤ j)] = log
[

P(y ≤ j)
P(y > j)

]
= αj + β ∗ X, (3)

where j = 1, 2, · · · , c − 1, with c = 4 in this study (the four FSS levels). Each cumulative logit uses all
FSS levels.

Equation (3) is an ordinary logit model for a binary response in which categories 1 to j form one
outcome and categories j + 1 to j form the other [31]. The Pearson’s r and rank-based Spearman’s rho
(for categorical data) are used to identify the correlation among all explanatory variables.

The rule of thumb for the sample size in a logistic regression is that there are at least 10 events
for each explanatory variable [32]. Only 30 fall fires were recorded in our study period, which was
not a sufficient number for model establishment with the 12 explanatory variables listed in Table 2.
Therefore, the ordinal logistic analysis was only conducted for spring and summer fires.

Table 2. The mean and standard deviation values of the extracted environmental parameters for fires
in each season and the ANOVA tests for their seasonal differences.

Parameters Statistics Spring Summer Fall
Welch’s ANOVA

p-Value

Elevation (m)
Mean 538.8 641.0 440.7

p < 0.0001 #
Std. Dev. 211.2 208.1 189.6

Slope (◦) Mean 6.35 8.15 4.61
p < 0.0001 #

Std. Dev. 3.13 3.49 2.77

Aspect Mean −0.03 −0.02 −0.01 p = 0.5108
Std. Dev. 0.15 0.14 0.14

MTP (%)
Mean 100.39 100.36 100.30 p = 0.5630

Std. Dev. 0.53 0.24 0.43

MPP (%)
Mean 71.33 59.11 79.89

p = 0.0005 #
Std. Dev. 41.95 22.15 46.62

MAT (◦C)
Mean −3.58 −3.40 −2.22

p < 0.0001 #
Std. Dev. 1.60 1.26 1.53

TAPcurrent (mm)
Mean 454.8 325.2 399.2

p < 0.0001 #
Std. Dev. 82.3 58.3 62.3

TAPpreceding (mm) Mean 423.9 425.6 444.5 p = 0.3283
Std. Dev. 83.28 63.55 69.36

Wind Speed (Beaufort scale 1–5) Mean 2.6 2.3 2.4
p < 0.0001 *,#

Std. Dev. 0.65 0.49 0.67

ΣNDVIpreceding
Mean 7.89 7.87 7.78 p = 0.4682

Std. Dev. 0.39 0.37 0.44

Distance to road (m)
Mean 2694.3 3400.2 2358.4

p = 0.0751 #
Std. Dev. 3122.1 3504.6 1883.0

Road density (km/km2)
Mean 0.174 0.147 0.182

p = 0.0478 #
Std. Dev. 0.111 0.095 0.095

* Wind Speed was tested with the Kruskal Wallis test; # indicated significant differences.

When implementing the ordinal logistic regression in the SAS package, the response variable
(FSS) was entered in a descending manner. In this way, the resulted positive coefficient of each
explanatory variable (environmental parameter) represents a positive influence of this parameter,
i.e., the increased value of a specific parameter produces higher odds of larger fires, and vice versa.
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The interpretation of the results is as follows. Assume the coefficient for a parameter in the logistic
model is β1. For a continuous variable such as elevation, given that all other parameters in the model
are held stable, with 1 m increase of elevation, the odds of a larger fire would be computed as eβ1 of
a smaller fire. For categorical parameters (e.g., wind speed), a base level is required. In this study, the
wind speed scale 1 (i.e., breeze wind) was chosen as the base level. With 1 scale increase of wind speed,
the odds of a larger fire would be eβ1 over breeze wind.

A significance level α = 0.1 was set in the Wald Chi-square Test to examine the significance of the
environmental parameters in the logistic model. With the ordinal logistic model, the environmental
parameters that play a significant role in spring and summer fires were thus identified.

3. Results

3.1. Characteristics of Fire Regimes in the Study Area

The 26-year variations of fire occurrences are plotted against three causal factors: lightning,
human-induced, and unknown (Figure 3). Total occurrences showed relatively stable counts in years
before 2000 and an obvious increase after then, especially in 2000, 2002–2003, and 2005.

Figure 3. The occurrences of lightning- and human-caused fires in 1980–2005.

Lightning fires were dominant in the study area, accounting for ~63% of total occurrences. For the
two different causal factors, an apparent increase of lightning fires was observed (r = 0.53, p = 0.009).
As shown in the inset of Figure 3, the counts of human-induced fires did not display a statistically
significant change in 26 years (p = 0.23).

Fire season length in each year was calculated as the duration between the start date of the
first fire and the end date of the last fire in this year. In Figure 4, the first fire date did not show
a statistically significant trend (p = 0.58), with most outbreaks having occurred in late April. On the
contrary, the last fire date showed a significantly increasing trend, revealing a prolonged fire season
length in past decades (r = 0.60, p = 0.003). An apparent change to fire season length was caused by fall
fires (Day of Years (DOY) > 240). In the 1980s to early 1990s, there were no fall fires except in 1989.
After 2000, however, fall fires occurred every year except 2003.

Fire seasonality (i.e., the season when a fire broke out) in the study area was analyzed with all
fire records in 1980–2005. Figure 5a fairly reflects the seasonal categorization of this study which
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groups all fire records into spring, summer, and fall fires. Spring fires (March–June) accounted for the
largest proportion (64%) of all fire counts, followed by summer fires (July–August) at 29% and fall fires
(September–October) at 7%. The causal factors of fire ignition showed apparent seasonal variations.
For fire counts, spring fires were fairly split between lightning-caused (54%) and human-caused
(35%). Oppositely, almost all summer fires (96%) were lightning-caused, and most fall fires (74%)
were human-caused. More specifically, lightning-caused fires mainly occurred from spring through
summer (May to August), while human-caused fires were split between early spring (April–May) and
fall (September–October). In Figure 5b, spring fires had the largest burned areas, followed by fall fires
(October). The extremely high burned areas in May came from the catastrophic “Black Dragon” fire in
1987. The burned areas of summer fires were limited, probably because of ground wetness in peak
growing season.

R² = 0.0147 R² = 0.3574

50

100

150

200

250

300

350

19
80

19
81

19
83

19
84

19
85

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
99

20
00

20
01

20
02

20
03

20
04

20
05

Da
y
of

Ye
ar

First fire Last fire

Figure 4. The 26-year variations of fire season length (the first and last fires in a year).
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In addition to the increased fire occurrences and extended fire season length, the annual total
burned area also showed an upward trend (r = 0.55, p = 0.007). In Figure 6, the area (ha) on the y-axis
is transformed to logarithmic form for better visualization of the plot. Before 1994, burned areas were
predominantly from spring fires. In later years, areas burned from fall fires dramatically increased.
Summer fires were rare in the 1980s to 1990s, but burned large areas in 1999, 2002, and 2004–2005.
While areas burned from spring fires remained relatively stable, more areas were burned from summer
and fall fires in recent years, contributing to a significant increase in total burned areas. It is therefore
reasonable to assume that the fire regime in the study area has changed in comparison to past decades.

The total burned area in 1980–2005 was about 1.97 million ha, and a small number of severe fires
disproportionately burned excessive areas. Among the 404 fire records, 27 severe fires with high FSS
(>1000 ha) composed 98.8% of the total burned area. The majority of these high FSS fires took place
in spring (for example, the most catastrophic fire in 1987). From Figure 5, spring fires accounted for
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the largest number of fires as well as the most burned areas. No high FSS fire (>1000 ha) broke out in
summer during our studied period.
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Figure 6. The 26-year variations of total burned areas by season.

The kernel densities of fire occurrences in three seasons are extracted in Figure 7. The density maps
highlight the fire hotspots in spring (Figure 7a), summer (Figure 7b), and fall (Figure 7c). Both spring
and fall fires were common in Huma County, which had the most agricultural lands in the study area.
Summer fires were mostly located in Huzhong County at higher elevations. While fall fires mostly
occurred in the agriculture-based Huma County, spring and summer fires spread across the forested
mountains in other counties.

(a) (b)

(c)

Figure 7. Kernel densities of fire occurrences in spring (a); summer (b); and fall (c).
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3.2. Seasonal Variations of the Explanatory Variables

Descriptive statistics of the environmental parameters in Table 1 are summarized (Table 2).
The Welch’s ANOVA tests were performed to examine if a parameter showed significant differences
in the three different seasons. A significant difference indicated that this parameter played an active
role on the seasonality of fire occurrences. For topographic parameters, elevation and slope showed
significant impacts on fire seasonality (p < 0.0001), while aspect was irrelevant. As shown in Figure 7a,
spring fires were distributed across the whole study area, from Mohe at higher elevations to Huma at
lower elevations. In Figure 7b, summer fires exhibited a higher density in Huzhong at higher elevations
(average = 641 m) and steeper slopes (average = 8.15◦) than spring and fall fires. There was a higher
tendency for lightning strikes at higher elevations, which explained how lightning mainly caused
summer fires (as revealed in Figure 5). Around two-thirds of fall fires occurred in Huma County, which
had more cultivated lands and higher populations in plain areas. Therefore, topography (elevation
and slope) had different impacts on fire occurrences in different seasons in the study area.

For meteorological parameters, the monthly temperature percentage (MTP%) was slightly higher
than 100.0% in all three seasons. This indicated that temperature in each season had been slightly
increasing from 1980 to 2005. However, this inter-annual increase of temperature was not seasonally
different in the ANOVA test. Oppositely, the MPP% was much lower than 100% (in a range of 59–80%),
indicating that there was dramatically decreased precipitation in this period. The ANOVA test
confirmed that the inter-annual decrease of precipitation was seasonally different (p = 0.0005). In other
words, the decreased precipitation casted a significant impact on fire seasonality. There also existed
significant seasonal variations for the mean annual temperature (MAT) and total annual precipitation
(TAPcurrent) (both with p < 0.0001). Considering both MTP% and MPP%, it was reasonable to assume
that fire seasonality could be related to seasonal temperature and precipitation in current years as well
as precipitation reduction from the preceding year. For example, fall fires were often accompanied by
higher mean annual temperature while summer fires were associated with much lower precipitation.
While some studies indicated the effects of precipitation in the preceding year [29], this study found
that precipitation in the preceding year did not cast a significant effect on fire seasonality (p = 0.3283).
Wind speed was a categorical variable. The Kruskal Wallis test was performed to examine its seasonal
differences in Table 2 (p < 0.001). Statistics also showed that spring and fall fires suffered more severe
wind conditions than summer. The strong to stormy (scale 3 to 5) winds composed 53.7% of all wind
scales for spring fires and 46.7% for fall fires, while all wind speeds were within the category of strong
wind (scale 3) for summer fires.

For vegetation, no significant variations of ΣNDVIpreceding were found (p = 0.4682), indicating
that fuel moisture conditions were not significantly different among the three seasons.

Regarding human impacts, the road density had a strong significant impact on fire seasonality
(p < 0.048). The distance to roads had a weaker impact (p < 0.075). Summer fires exhibited the longest
distance to roads and lowest road density in comparison to spring and fall fires. Oppositely, fall fires
held the highest road density and shortest distance, while spring fires were in middle. These results
were consistent with the distributions of ignition causes in Figures 5a and 7, revealing that summer
fires occurred in more remote areas at higher elevations. Fall fires were in more populated areas at
lower elevations. Spring fires featured both aspects.

In short, forest fires exhibited distinct seasonal variability in terms of topographical, meteorological,
and human-related conditions in this area. Specifically, summer fires mainly occurred in drier
conditions by lightning and were located at high elevations and remote areas. Fall fires were in
relatively flat areas and were mostly human-caused fires. Spring fires took place across the whole
region. In the following analysis, we simulated how these environmental parameters regulate the fire
size severity in each season.
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3.3. Environmental Influences with the Ordinal Logistic Regression

The collinearity analysis showed that two topographic factors, elevation and slope, were highly
correlated in both spring and summer fire datasets (ρ > 0.8, p < 0.001). For forest fires in mountainous
areas, the critical slope threshold is 25 degrees beyond which the burning behavior changes [33].
The maximum slope for all fires was <20 degrees in the study area. Therefore, slope was not used in
our model. There was no significant correlation among meteorological variables (|ρ| < 0.45, p > 0.05) in
spring fires. However, in summer fires the monthly precipitation was highly correlated with annual
precipitation (ρ = 0.75, p < 0.001), probably because summer was the primary rain season in this region.
The Spearman’s correlation showed that monthly precipitation had higher correlation with FSS than
annual precipitation, hence annual precipitation was not used. Variables of human influence proxy
(road density and distance) did not show significant correlation (|ρ| < 0.2, p ≈ 0.05). The environmental
parameters used in the model are listed in Table 3.

Table 3. Ordinal logistic regression of spring and summer fires.

Parameter Coefficient Wald Chi-Square p-Value

Spring fires
Elevation −0.00014 5.5775 0.0182
MTP(%) 0.4991 4.4273 0.0354

TAPpreceding −0.00834 25.5820 <0.0001

Summer fires

Wind Speed (scale 2) 0.1999 0.1632 0.6863
Wind Speed (scale 3) 1.7719 8.1004 0.0044

Elevation −0.00359 5.1185 0.0237
NDVI −0.00285 11.1797 0.0008

MAT (◦C) 0.4287 3.1402 0.0764
Distance to road 0.00014 3.4953 0.0615

Both final modes in Table 3 are converged and the Wald Chi-square tests for the proportional
odds assumption are significant (p < 0.1). For spring fires, the three significant environmental
parameters were elevation, monthly temperature, and total annual precipitation of the preceding
year. The interpretation of the results was as follows. Given that all other parameters in the model
were held stable, with 1 mm more precipitation in the preceding year, the odds of a larger fire were
calculated as e−0.00834 = 99.2% of a smaller fire. Similarly, a 1 m increase of elevation lowered the
odds of larger fires by

(
1 − e−0.00014) = 0.01%. It was particularly noteworthy that when monthly

temperature increases by one percent over long-term monthly mean temperature the odds for a larger
fire were e0.4991 = 164.7% of a smaller fire. The coefficient value of each parameter revealed its relative
importance. For spring fires, the most influencing parameters were monthly temperature, followed
by the precipitation of the preceding year, and lastly elevation. Other environmental parameters
examined in this study did not significantly affect the spring fires.

For summer fires, five influencing parameters were identified: wind speed, elevation, NDVI,
mean annual temperature, and distance to road. The distance to road, mean annual temperature, and
wind speed positively affected the fire size severity. Overall, wind speed was a significant variable that
affected the fire size severity. A change of wind speed from scale 1 to 2 (breeze to moderate wind) did
not significantly affect the fire size severity (p = 0.6863). However, when wind speed increased from
scale 1 to 3 (breeze to strong wind), the odds of larger fires were e1.7719 = 588.2% of smaller fires, thus
greatly increasing the chance of large fires. For the mean annual temperature, a 1 ◦C increase would
increase the odds for larger fires by 1.538 times. The impacts of distance to road, NDVI, and elevation
were limited.
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4. Discussion

4.1. Fire Regime Changes

This study carried out a comprehensive analysis of fire regimes in the study area. Increasing trends
for fire occurrences and burned areas were found in 1980–2005, which were greatly attributed to there
being more summer and fall fires after the mid-1990s, thus resulting in a prolonged fire season length.
Fire prevention in the study area has been one of the most important management activities of the
National Forest Bureau of China. In the past decades, spring and fall have received the primary attention
because it was not easy to form large fires in summer due to the high wetness from precipitation and
leaf moisture of green canopies. The significant upward trend of summer fire occurrences since the
mid-1990s indicates that more attention should be given to the summer season. While high FSS fires
(burned area > 1000 ha) were not recorded in summers of 1980–2005, an increased number of moderate
fires (100–1000 ha) have been observed in recent years. Under certain circumstances—for example,
a stronger wind speed or insufficient fire fighting forces—these moderate-sized fires could possibly
develop into larger conflagrations. Therefore, our study raised a sound alarm that summer fires cannot
be ignored for effective fire prevention.

Causes of these fire regime changes could be twofold. Firstly, great efforts of fire prevention
and management have been enforced in the Greater Hinggan Mountains since the catastrophic
“Black Dragon” Fire in 1987 [34]. Through a rich set of evenly distributed lookout towers, an expanded
fire monitoring network was established for field staff to detect and report wildfires in a timely
manner (Mr. Huadong Wu, Vice Director, Fire Prevention Office, Tuqiang Forest Bureau, personal
communication on 5 June 2015). Improved community learning programs and strict fire management
policies led to reduced human-caused fires. On the other hand, the increased lightning fires,
especially in summer, could be strongly impacted by climate change. For all fires in 1980–2005
in the study area, apparent weather anomalies were observed when fires broke out, with a trend
that the mean annual temperature increased by 0.672 ◦C and the total annual precipitation decreased
by 32.38 mm. The prolonged fire season length observed in this study was also inter-related with
climate change. Studies have projected that the fire season will be prolonged by 20 to 30 days under
the Intergovernmental Panel on Climate Change (IPCC) A2 and B2 scenarios of climate change in
Northeast China [35].

4.2. Environmental Impacts on Fire Seaonality

Spatial patterns of fire points in different seasons varied with topography and road accessibility.
Both spring and fall fires prevail in Huma County, a more populated and agriculture-heavy area at
lower elevations that connects to the Northeast Plain of China. Therefore, fire prevention management
should be always vigilant from spring to fall, especially in regard to human-induced fires. On the other
hand, the dominancy of summer lightning fires at higher elevations in Huzhong County indicated that
this area should be given higher attention during summer fire watch.

Fires in all three seasons were affected by similar meteorological changes, such as significantly
higher temperature and lesser precipitation. However, they still varied in some aspects; for instance,
summer fires usually occurred in dry years with dramatically reduced precipitation. Fall fires erupted
when there was much higher annual temperature.

4.3. Environmental Influences on Fire Size Severity

Elevation had a negative impact on both spring and summer fires in the Greater Hinggan
Mountains. At lower elevations, local temperature tended to be higher, which promoted dry fuel
accumulation and led to an enlarged combustion area. Good accessibility to road network at lower
elevations could facilitate the occurrences of human-caused fires in spring.

It is counterintuitive that wind speed was an influencing factor in summer but not in spring.
Spring is prone to large forest fires due to the rising temperature and accumulated dry leaves on the
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ground, accompanied with prevailing strong wind speeds. Wind speed is expected to be one of the
most influential factors for fire spread and consequently larger burned area [19]. This study found that
about half of spring fires were accompanied with strong to stormy winds (scale 3 to 5, respectively).
In contrast, wind condition was much milder in summer, all within the scale of 1 to 3 which represents
breezes to strong winds, respectively. The logistic regression results revealed that wind speed was
a significantly positive factor facilitating the formation of larger fires in summer. In other words,
although wind speed was still the key factor affecting large fire formation, summer fires were more
sensitive to wind speed than spring fires at the landscape scale. Wind not only directly propagated the
fire spread, but affected the moisture content of surface fuels more rapidly.

Fuel moisture significantly influenced summer fires. As shown in Table 3, NDVI has a negative
coefficient in the logistic model. Summer fires were often caused by lightning—in most cases by dry
thunderstorms, occurring in dense forests at higher elevations, where the high leaf moisture in peak
growing season restricted the occurrences of large fires. Moreover, distance to nearest roads acted as
a constraint to developing large fires in summer, since the distant location of fire incidences hindered
firefighters to extinguish the fires in time. Even worse, if accompanied with strong wind, the situation
became more difficult to control. In contrast, distance to nearest roads may act as a driving factor of
fire occurrences in other seasons. In spring and fall, for example, high accessibility to road network
could facilitate the occurrences of human-caused fires in Huma County.

Two other significant factors for spring fires were the monthly temperature (MTP against
long-term mean) and the precipitation in the preceding year. Usually, fine fuels like fallen leaves and
forest litter accumulate in spring. High temperature would expedite the evaporation and drying of fire
fuel, resulting in a high flammability and propagation speed. A dry preceding meteorological condition
created a vulnerable condition for fires in the coming spring, consequently posing an elevated risk
for larger fires. Taking the preceding meteorological factors into consideration helps us develop more
appropriate measures for fire prevention in the coming spring.

4.4. Limitations and Future Work

Some limitations remain in this study. The fire records that we could access are only available for
a relatively short period (26 years), and fall fire is not examined in this study, given its low number
of fire records. This study indicates that more fall fires would occur with a prolonged fire season.
When longer data series are available in the future, fall fires could be better studied, thus allowing for
a more comprehensive understanding of the fire regime and its evolution in the long run. This study
also implies the promising application of integrating remote-sensed data, such as NDVI, into fire
studies. In the future, more remote sensing products, for example, land surface temperature and active
fire data from coarse-resolution satellite imagery, could be applied to substitute the limited in-field
observations in fire studies.

Human impacts on fires in boreal forests were not deeply examined in this study. The distance
to the nearest road and road density surrounding a fire point were simply extracted to approximate
the anthropogenic disturbances. In the past decades, human activities in the study area have been
accelerating (e.g., logging, planting, sawmills, and wood product transportation). In the early 2000s,
the “Tian Bao” Project was enforced to permanently prohibit logging activities in the Greater Hinggan
Mountains for natural forest protection [34]. It is therefore necessary to integrate these human activities
and consequences of policies into fire studies in order to establish a better understanding of human
impacts in this unique boreal forest region.

5. Conclusions

This study explored the statistical characteristics of fire records in boreal forests of the Greater
Hinggan Mountains in the period of 1985–2006, analyzed the impacts of different environmental
parameters on fire seasonality, and performed an ordinary logistic regression in order to identify the
influencing environmental parameters on the fire regime in this region. It was found that spring fires
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accounted for the largest proportion of fire occurrences as well as the most burned areas, and fall
fires were more related to anthropogenic activities in harvesting season. Summer fires were mostly
lightning-caused and were rare before the mid-1990s. However, the increased summer fires in recent
years, together with prolonged fire season length, deserve higher attention as a result of the possibly
changing fire regime of the region. Different sets of significant environmental factors were identified:
elevation, temperature, and precipitation in the preceding year for spring fires; wind speed, elevation,
temperature, NDVI, and distance to road for summer fires. Spatial distributions and densities of fires
in different seasons varied across the study area. The spatially and seasonally specific fire patterns
extracted from this study could help to develop more localized fire prevention strategies for sustainable
forest management.
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Abstract: There is limited information on how velvet leaf blueberry (Vaccinium myrtilloides Michx.)
responds to fires and existing small forest gaps associated with narrow linear disturbances.
We measured the effects of narrow forest linear gaps from seismic lines used for oil and gas exploration
versus adjacent (control) forests across a fire severity (% tree mortality) gradient on the presence,
abundance (cover), vigor (height), and berry production of Vaccinium myrtilloides in recently (five-year)
burned jack pine (Pinus banksiana Lamb.) forests near Fort McMurray, Alberta. Presence was greatest
in forests that experienced low to moderately-high fire severities with declines at high fire severity.
Abundance did not differ among seismic lines or adjacent forest, nor did it differ along a fire severity
gradient. In contrast, vigor and berry production were greater on seismic lines compared to adjacent
forests with fire severity positively affecting berry production, but not plant vigor. After controlling
for changes in plant cover and vigor, berry production still increased with fire severity and within
seismic lines compared with adjacent forests. Our findings suggest that narrow gaps from linear
disturbances and fire severity interact to affect the fecundity (berry production) and growth (height)
of Vaccinium myrtilloides. This has important implications for assessing the ecological effects of fire on
linear disturbances associated with energy exploration in the western boreal forest.

Keywords: fire; severity; seismic line; disturbance; jack pine; production; vigor; abundance; presence;
Ericaceae; velvet leaf blueberry; Vaccinium myrtilloides

1. Introduction

Fire is a common element in the boreal forest [1] with many of its dominant plants having
adaptations that allow their long-term persistence, even under high fire frequencies [2–4]. For example,
jack pine (Pinus banksiana Lamb.) is a common overstory species that dominates drier sites of the
boreal forests of North America whose serotinous cones open and release seeds following fire [5,6].
Many shrub and herbaceous species are similarly adapted to disturbance, including fire, but instead
through vegetative regeneration from underground rhizomes [7,8]. Fires also alter site conditions
that favor understory plants by increasing light availability in the understory [9] and by reducing
total plant cover, thereby reducing competition [10]. Fire severity also plays an important role in
affecting the composition of vegetation both directly and indirectly through changes in below-ground
processes [11]. For example, high severity fires in jack pine stands have lower species richness and
cover, while lower severity fires have the highest species richness and cover, even when compared to
unburned stands [12]. A common emphasis of forest fire studies is in understanding changes in tree
composition and density [13–16]. Much less is known, however, about understory responses despite
having the potential to influence the direction of post-fire succession [17].
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Ericaceous plants are a common understory shrub of fire-prone forests that often respond
positively to fire [18]. For instance, the germination rate of Erica umbellate L. increases following
fire [19], while greater light availability post-fire increases the sexual reproduction and vigor of
Gaultheria shallon Pursh [20]. Likewise, Kalamia augustifolia L. and Vaccinium species regenerate
post-fire because their rhizomatic roots often escape the mortality of fires resulting in vegetative
resprouting [7,21], although responses in these species may be negative when fire intensities are high
due to extreme heat [19,21]. Although post-fire communities often exhibit lower levels of competition
immediately following fire, dense tree regeneration can reduce understory cover, including ericaceous
shrubs, due to direct competition for light and resources. For example, Vaccinium angustifolium Aiton
and Vaccinium myrtilloides Michx. both responded negatively post-fire to competition with other rapidly
colonizing species [22], including competition with tree species [23]. Thus, any positive responses
following fire may be short lived once tree recruitment dominates a site.

Although fire is a common natural disturbance to boreal forests [24], anthropogenic disturbances
have recently become more widespread [25]. In Alberta, Canada, common anthropogenic disturbances
that create gaps in the forest canopy include forest harvest clear-cuts and seismic lines. Seismic lines are
used to predict subsurface properties of the Earth, such as oil and gas reserves, and have been used in
the exploration of oil and gas since 1924 [26]. Unlike clear-cuts, seismic lines are long, narrow, and linear
forest gap features. As canopy gap size increases, the mean and variability of light levels within the gap
also increases [27], affecting the amount of sunlight received by understory foliage and thus stimulating
its growth [23]. For instance, Gaultheria procumbens responds positively to clear-cutting by stimulating
below-ground vegetative growth and the release of new shoots from the existing network of rhizomes [8].
Open canopy gaps have also been shown to benefit Vaccinium myrtillus [28].

Although previous research has examined responses in Vaccinium myrtilloides to large forest
openings from clear-cut forest harvesting [23], little is known about the effects of smaller forest canopy
gaps, including the narrow linear seismic line disturbances, and how these small gaps interact with
fires. Seismic line disturbances are individually narrow in their footprint (~3–12 m wide), but their
densities are high (mean density of 1.77 km/km2) [29], making them the most abundant linear features
in Alberta’s boreal forest. Many of these seismic lines are failing to recover decades after their initial
disturbance [30,31], thus altering groundlayer vegetation composition [32]. Understanding specific
responses to individual species, such as Vaccinium myrtilloides, is important for determining the overall
effects of these linear disturbances on the boreal forest community and how that may change following
natural disturbances of wildfires. The objectives of this study were to examine the responses of
Vaccinium myrtilloides to small canopy gaps created by seismic lines (including variation in their width)
and to test whether fire interacts with these disturbances along a fire severity gradient. Specifically,
we examine changes in Vaccinium myrtilloides presence, abundance (cover), vigor (height), and berry
production across a fire severity gradient five-years post-fire on narrow linear disturbances (corridors)
used for seismic exploration and paired control sites in jack pine forests in northeast Alberta.

2. Materials and Methods

2.1. Study Area

The study area is located in the northeast part of Alberta, Canada, within an area known as the
Richardson and McClelland Lake areas on the Athabasca Sand Plain approximately 115 km north
of Fort McMurray. Elevation of the area is ~300 m above sea level and characterized by dry, sandy,
gently sloping terrain dominated by jack pine (Pinus banksiana) forests that have among the highest
observed fire frequencies in Canada’s boreal forest [24].

In 2011, the Richardson fire burned 707,648 hectares of forest making it among Alberta’s largest
recorded fire [33]. Fire severity (% tree mortality) was, however, highly variable with tree mortality
ranging from 0 to 100 percent. Jack pine stands in the area varied in age, but mostly represented mature
forests of jack pine that were often characterized as having semi-open woodland conditions where tree
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density was moderate to low. Common shrub and understory species included velvet leaf blueberry
(Vaccinium myrtilloides), pin cherry (Prunus pensylvanica L.), saskatoon (Amelanchier alnifolia Nutt.),
bearberry (Arctostaphylos uva-ursi L.), reindeer lichen (Cladina spp.), and rose (Rosa spp.). Some sites
that were slightly more mesic contained a minor element of trembling aspen (Populus tremuloides
Michx.) and green alder (Alnus crispa Aiton).

2.2. Experimental Design and Field Measures

2.2.1. Site Selection

Sample sites were selected (stratified) across a range of fire severity classes (Figure 1), which were
defined by percent tree mortality (tree mortality rates of: 0–25%; 26%–50%; 51%–75%; 76%–100%)
to ensure the representation of all levels of fire severity (≥8 replicate sites per strata with 2 paired
plots per site). Fire severity was measured within stands adjacent to seismic lines based on percent
tree mortality within the surrounding area. In total, 66 sites were sampled in the summer of 2016
(from 5 July to 15 August) representing conditions five-years post-fire. At each site, a pair of plots
was established in areas with a similar fire severity and stand age with one plot positioned in the
middle of the seismic line (treatment) and the other 25 m into the adjacent forest (control). The total
number of plots equaled 132 (66 paired plots or sites). Direction from the seismic line for the control
plot was randomly assigned to being left or right of the seismic line using a coin flip. To avoid edge
effects, all plots were at least 30 m from any other forest types, forest edges, or another seismic line,
and at least 90 m from clear-cuts, roads, or major trails. Each plot was represented as a 30-m long
transect that followed the orientation of the seismic line and Vaccinium myrtilloides characteristics
were measured along the transect. Additional forest measures were made in the adjacent forest stand
(e.g., basal area, tree stem density, stand age), but were not further considered here since they had little
additional effect on variation in Vaccinium myrtilloides measures.

Figure 1. Location of study site in northeast Alberta, Canada (inset map), with the main map depicting
the location of the 2011 Richardson fire (gray), unburned areas (white), pine forests (dark brown where
burned and in a few places light brown where unburned), seismic lines, and sample sites symbolized
by four levels of fire severity. Each site represents two-paired plots (a seismic line and an adjacent
forest) with sites restricted to areas with no forest harvesting (not shown, but extensive in the area).
Note that nearly all pine forests were burned and that some sites were within ~200 m of each other
(not shown in this map) when stand and fire severity levels differed or there were gaps in the seismic
line disturbance.
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2.2.2. Measured Responses in Vaccinium myrtilloides and Treatment Variables

Vaccinium myrtilloides presence, abundance (cover), vigor (maximum height), and berry
production were measured along each 30-m transect in 1-m wide belts (i.e., a 30-m2 plot). Presence of
Vaccinium myrtilloides within each 30-m2 plot was first recorded and if present the abundance (cover)
of Vaccinium myrtilloides plants was measured within ten sequentially spaced sub-plots (quadrats),
each having a 3 × 1 m size (3 m2). Within each quadrat, cover was estimated using 10 ordinal cover
classes following the Carolina Vegetation Survey protocol that is similar to the Domin and Daubenmire
techniques [34] with final cover estimates for each plot estimated as the average of midpoint cover
values in each quadrat. Plant vigor was measured in each plot as the average maximum height of
Vaccinium myrtilloides plants among the 10 sampled quadrats. Maximum height was used as a measure
of vigor since it has been known to be an important predictor of fruit production [35], particularly
after recent disturbances. Finally, berry production in Vaccinium myrtilloides was recorded after fruit
set and before full ripening in each 3-m2 quadrat and summed to estimate total berry production on
a per 30 m2 (1 × 30 m) basis.

Treatment variables used to describe responses in Vaccinium myrtilloides presence, abundance,
vigor, and berry production included fire severity and location (seismic lines vs. adjacent forests).
Fire severity was measured as either ordinal categories (0%–25%, 26%–50%, 51%–75%, or 76%–100%)
for simple comparisons and graphs, or original continuous values for linear models. The seismic line
and adjacent forest (location) factor was measured as a binary variable with seismic lines being coded
as 1 and adjacent forest plots being coded as 0 (reference comparison).

2.3. Data Analysis

2.3.1. Responses in Vaccinium myrtilloides on Seismic Lines and Adjacent Forests

For each response measure of Vaccinium myrtilloides (presence, abundance, vigor, and berry
production), we first summarized and graphed average values by treatment and fire severity class
and then compared seismic line treatments to adjacent forests within each fire severity class using
paired t-tests for continuous data (abundance, vigor, and berries) and a McNemar’s χ2 test for
presence and absence data. Second, we used mixed effect regression models (logistic family for
presence/absence and Gaussian family for all others) to examine responses across the full fire severity
gradient (original linear values from 0 to 100% tree mortality), location (seismic line treatment;
seismic line = 1; adjacent forests = 0), and their interaction. A random effect on site ID was used
in all models to account for the paired nature of the sampling design (paired plots per site). All plots
were used for presence data, while abundance, vigor, and berries were only assessed where plants
were present at the site level. A log10 transformation with a constant of 1 was used for berry counts
in all statistical analyses to normalize their distribution, while plant cover and the height of plants
were kept in their original scale since their distribution was approximately normal. Responses to fire
severity (tree mortality) were fit by both linear and quadratic terms to consider possible non-linear
responses. Model selection followed the development of a global model that included all variables
(fire severity, location treatment of seismic line, and their interaction) with the subsequent removal
of non-significant (p < 0.1), non-treatment variables. Fire severity and location treatment were thus
retained in all models regardless of their significance given that it was the main part of the study
design. Model variance explained (R2) was used to assess the overall model fit.

2.3.2. Effects of Seismic Line Width (Forest Gap Size) on Vaccinium myrtilloides

As well as more generally comparing responses between seismic lines and adjacent forests across
a fire severity gradient, we also assessed whether forest gap size, based on seismic line width (~4–10 m),
affected responses in Vaccinium myrtilloides. We did this by comparing responses by seismic line width
using simple linear regression including reporting on model fit assessed with adjusted R2 and model
error assessed with Root Mean Square Error (RMSE). Here, only the seismic line treatments (plots) were
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included in the analyses since we were only comparing differences between seismic line disturbance
widths. Collinearity between seismic line width and fire severity was low (r = 0.24) with a good
representation of different line widths across the fire severity gradient. Scatter plots were used to help
visualize univariate relationships. Models included all seismic line plots regardless of the presence
of Vaccinium myrtilloides (n = 66), as well as only those plots where Vaccinium myrtilloides plants were
present on seismic line plots (n = 41). The restriction to plots where plants were present allowed
an evaluation of the changes in berry production due to forest gap size, while accounting for general
changes in plant abundance (cover) and vigor (height) that would be expected to change under open
forest gap conditions. Thus, we asked whether differences in gap size (seismic line width) increased the
fecundity (berry production) of plants on a per capita basis through increases in resources (e.g., light)
that would boost flowering and/or pollinator activity that could affect fruit set. All analyses were
performed in STATA/SE 13.1 (STATA Corp., College Station, TX, USA).

3. Results

3.1. Presence

Of the 66 sites and 132 plots sampled, Vaccinium myrtilloides was present in 41 (62.1%) seismic
line plots versus 43 (65.2%) adjacent forest plots (Figure 2) with no significant difference between
treatments (p = 0.148; Table 1). Fire severity had, however, a significant, non-linear effect on presence
(p < 0.001, Table 1) with increases occurring in both the seismic line and the adjacent forest stand
up to a moderately-high fire severity (51%–75%; Figure 2). Thereafter, high fire severity (76%–100%)
resulted in decreases in presence (Figure 2). The mixed effects linear model had a significant negative
interaction between fire severity and seismic line treatment (p = 0.014; Table 1), demonstrating the
reduced presence of Vaccinium myrtilloides on seismic lines compared to adjacent forests at moderate to
high fire severity (Table 1; Figure 1). Overall model fit was high (R2 = 0.41; Table 1).

 
Figure 2. Frequency (presence) of Vaccinium myrtilloides plants in 30-m2 plots on seismic lines versus
adjacent forests across four fire severity classes. Comparisons between seismic and adjacent plots within
individual fire severity classes using McNemar’s χ2 tests revealed no significant (p < 0.1) differences.

39



Forests 2017, 8, 398

Table 1. Mixed effect regression results relating the presence, abundance (cover), and vigor (maximum
height) of Vaccinium myrtilloides plants as a function of location (seismic line versus adjacent forest),
fire severity, and the interaction of fire severity (% tree mortality) and location. Model coefficients
(Coef.), Standard Error (S.E.) of coefficients, and significance (p) reported. Main treatment variables
were retained regardless of significance, while a non-linear effect for fire severity and interaction term
between fire severity and seismic lines were included only if significant.

Variable
Presence Abundance (Cover) Vigor (Max. Height)

Coef. S.E. p Coef. S.E. p Coef. S.E. p

Seismic line 4.167 2.88 0.148 0.323 0.428 0.451 4.516 1.357 0.001
Fire severity 1.010 0.175 <0.001 0.004 0.008 0.642 −0.006 0.028 0.832
Fire severity2 −0.007 0.001 <0.001
Seismic × Fire −0.105 0.043 0.014

Constant −9.446 3.935 0.016 1.509 0.524 0.004 19.255 1.754 <0.001

Model fit, R2 0.41 0.01 0.09

3.2. Abundance (Cover)

Abundance (cover) where Vaccinium myrtilloides was present within either plot at the site level did
not significantly differ (p = 0.451; Table 1) between seismic lines (Mean cover = 2.0%, S.E. = 0.33) and
adjacent forest stands (Mean cover = 1.7%, S.E. = 0.36). Likewise, there was no significant difference
in cover across the fire severity gradient (p = 0.642; Table 1, Figure 3). A non-linear fire gradient
response was not supported, nor was an interaction between location (seismic line) and fire severity.
Model fit was low overall (R2 = 0.01; Table 1). This suggested no direct increase in abundance relative
to differences in forest gap size (seismic line) or fire severity. Although variation was high and
no significant responses were detected, there were weak trends towards greater cover in sites with
moderate (26%–75%) fire severity, especially in adjacent control forests (Figure 3).

Figure 3. Mean cover of Vaccinium myrtilloides when present for seismic lines and adjacent forests
across a fire severity gradient. Comparisons between seismic and adjacent plots within fire severity
classes were tested using paired t-tests revealing no significant (p < 0.1) differences.

3.3. Vigor (Maximum Height)

Seismic line disturbances increased plant vigor, when present in plots, as measured by the
maximum height of plants when compared to adjacent forest stands (p = 0.001; Table 1). Maximum
heights in seismic line forest gaps averaged 23.5 cm (S.E. = 1.40), while being 19.0 cm (S.E. = 0.82)
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in the adjacent forest. Plant vigor did not vary across fire severity classes (p = 0.832), nor was there
a significant interaction between seismic lines and fire severity (Table 1), although vigor on seismic
lines did decrease under the highest fire severity class with a t-test revealing significant location effects
within individual fire severity classes up to 75% tree mortality (Figure 4). Model fit explaining plant
vigor was low overall (R2 = 0.09; Table 1) demonstrating a high amount of unexplained variability.

Figure 4. Average maximum height of Vaccinium myrtilloides when present, across a fire severity
gradient (four classes) for seismic lines (black) and adjacent forests (gray). Significance among location
by fire severity class was assessed by paired t-tests (* = p < 0.1).

3.4. Berry Production Across All Sites

Average berry production for sites where Vaccinium myrtilloides was present in at least one of the
paired plots was significantly higher (p < 0.001) in seismic lines (36.9 berries per 30 m2, S.E. = 8.5) compared
with adjacent forest stands (11.4 berries per 30 m2, S.E. = 2.7; Table 2). Fire severity positively affected berry
production (p = 0.009; Table 2, Figure 5), although there was a significant negative interaction between
seismic line treatment and fire severity (p = 0.032; Table 2) demonstrating that increases in berry production
across fire severity classes was primarily related to changes in adjacent forest stands with berry production
being more constant in seismic lines (Figure 4). Indeed, when testing seismic lines versus adjacent forests
for each fire severity class using paired t-tests, berry production was significantly higher on seismic lines
in the low (0%–25%) and low-moderate (26%–50%) fire severity classes, but not the moderately high
(51%–75%) to high (76%–100%) fire severity classes (Figure 4), where tree mortality was high and thus
canopy cover low and light levels high. Model fit explaining berry production was moderately-low overall
(R2 = 0.15; Table 2).

Table 2. Mixed effect linear regression model testing differences in Vaccinium myrtilloides berry
production in response to location (seismic line versus adjacent forest), fire severity, and the interaction
of fire severity and location. Note that results are based on a log10 transformed count of berries.

Variable
Number of Berries (Plot)

Coef. S.E. p

Seismic line (binary) 0.753 0.213 <0.001
Fire severity (tree mortality) 0.007 0.003 0.009

Seismic × Fire severity −0.008 0.004 0.032
Constant (intercept) 0.391 0.163 0.016

Model fit, R2 0.15
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Figure 5. Vaccinium myrtilloides berry production (log10 scale) by fire severity class and location (seismic
line versus adjacent forest). Significance among location by fire severity class was assessed by paired
t-tests (* = p < 0.1; ** = p < 0.01).

3.5. Responses in Berry Production When Plants Were Present

Further analysis of berry production was conducted using data only from those plots (transects)
with Vaccinium myrtilloides plants present in order to assess changes in berry production after
controlling for the effects of shrub cover and vigor. Not surprisingly, plots that contained taller
Vaccinium myrtilloides plants (p < 0.001) and those with increased cover (p < 0.001) produced more
berries (Table 3). More interesting was that berry production on seismic lines was still significantly
greater than in the adjacent forest stand (p = 0.002) after accounting for differences in plant cover and
vigor (Table 3). Likewise, fire severity also increased berry production (p < 0.001) after controlling
for cover and vigor with a weak significant effect of the interaction of seismic line treatment and
fire severity (p = 0.097), suggesting a diminishing effect on berry production on seismic lines that
experienced higher fire severity (Table 3). Model fit explaining berry production where plants were
present was high overall although much of this was likely due to the effects of changes in cover and
vigor (R2 = 0.59; Table 3).

Table 3. Mixed effect linear regression results relating the berry production of Vaccinium myrtilloides
to location (seismic line versus adjacent forest), fire severity, interaction of fire severity and location,
abundance (cover), and vigor.

Variable
Number of Berries (Where Present)

Coef. S.E. p

Seismic line (binary) 0.422 0.134 0.002
Fire severity (tree mortality) 0.006 0.002 0.001

Seismic × Fire severity −0.004 0.002 0.097
Constant (intercept) −0.426 0.165 0.010

Shrub abundance (cover) 0.105 0.024 <0.001
Shrub vigor (max. height) 0.037 0.008 <0.001

Model fit, R2 0.59

3.6. Effect of Forest Gap Width from Seismic Lines

Vaccinium myrtilloides cover and vigor was positively and significantly (p = 0.003) related to seismic
line forest gap width with model fit being higher for vigor (R2 = 0.19, RMSE = 2.02) than for cover
(R2 = 0.12, RMSE = 8.09) (Table 4, Figure 6). Likewise, berry production was positively related to
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seismic line width (p <0.001, R2 = 0.16, RMSE = 0.71; Table 4, Figure 6), although this appeared to
be due to seismic lines with larger widths having significantly higher cover and vigor since berry
production on sites with plants present was related to plant cover (p = 0.004) and vigor (p = 0.018),
but not line width (p = 0.298, R2 = 0.57, RMSE = 0.43; Table 5). Regardless, the presence of seismic
lines still increased berry production above and beyond that expected by increases in cover and vigor
(Table 3), but not due to changes in line width (gap size), suggesting an indirect effect of seismic line
presence on berry production.

a.

b.

c.

Figure 6. Scatterplot of seismic line width and Vaccinium myrtilloides cover (a), vigor (b), and berry
production (c) on seismic lines where plants were present. Dashed line represents the fit of a linear
regression relationship with overall model fit as follows: abundance (cover) R2 = 0.12 (a), vigor (height)
R2 = 0.19 (b), and berry production R2 = 0.16 (c).

43



Forests 2017, 8, 398

Table 4. Linear regression results relating forest gap (seismic line) width to abundance and vigor of
Vaccinium myrtilloides.

Variable
Abundance (Cover) Vigor (Max. Height)

Coef. S.E. p Coef. S.E. p

Seismic line width 0.676 0.219 0.003 3.244 1.019 0.003
Constant (intercept) −2.774 1.357 0.045 3.010 6.549 0.648

Model fit, R2 (RMSE) 0.12 (2.02) 0.19 (8.09)

Table 5. Linear regression results relating forest gap (seismic line) width to berry production (log10

transformed) in Vaccinium myrtilloides.

Variable

Number of Berries
(All Sites)

Number of Berries
(Where Present)

Coef. S.E. p Coef. S.E. p

Seismic line width 0.285 0.077 <0.001 0.064 0.061 0.298
Shrub abundance (cover) 0.115 0.038 0.004
Shrub vigor (max. height) 0.027 0.011 0.018

Constant (intercept) −0.993 0.478 0.042 −0.076 0.358 0.833

Model fit, R2 (RMSE) 0.16 (0.71) 0.57 (0.43)

4. Discussion

4.1. Responses to Fire

We found that the presence of Vaccinium myrtilloides in recently burned (five-years) jack pine
forests depended on fire severity with low to moderately-high severity (0%–75% tree mortality)
increasing the presence in both seismic line forest gaps and adjacent forest stands. These results
support prior research where low to moderate severity fires triggered positive responses to ericaceous
shrubs by increasing light availability from canopy openings [17], stimulating the germination rate [19],
and decreasing initial competition among understory plants [10]. In contrast, fires of a higher severity
(>76% tree mortality) decreased the presence of Vaccinium myrtilloides on seismic lines and adjacent
forest stands. This suggests that high severity fires can cause direct lethal effects to ericaceous shrubs
most likely by the elimination of rhizomes in the soil layer [21]. Interestingly, the cover and height
of Vaccinium myrtilloides was not affected by fire severity suggesting that its main effect is related to
initial mortality and potentially to fecundity (berry production). Indeed, we found fire severity to be
positively related to berry production in Vaccinium myrtilloides. The reproduction of ericaceous and
Vaccinium species is known to be stimulated post-fire by increases in available light resources [20].
Fire not only increases light availability, but also nutrients with nitrogen, phosphorus, potassium,
calcium, and magnesium potentially increasing following fire which can further stimulate growth and
reproduction [36,37].

Our results demonstrate important interactions between forest gaps (seismic lines) and fire severity.
Berry production in low to low-moderate fire severity (0%–50% tree mortality) was significantly higher on
seismic lines than adjacent forest stands. Under low fire severity, canopy in the adjacent forest remains
largely intact in contrast to local open canopy gaps associated with seismic lines. Increased light availability
on seismic lines should therefore increase in berry production. Likewise, light availability increases in
forests exposed to higher severity fires so light should be similar here to seismic line forest gaps, thereby
resulting in similar increases in berry production.
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4.2. Response to Seismic Lines

Small forest canopy gaps associated with seismic line disturbances did not affect the presence
or abundance (cover) of Vaccinium myrtilloides, but it did increase plant vigor (maximum height) and
berry production after fire disturbance. Past studies examining the responses of ericaceous species
to clear-cut forest harvesting have also suggested that plant vigor is coupled to increases in light
resources [38], although it may also be partly related to releases of allelochemcials [39]. Small forest
canopy gaps affected berry production in Vaccinium myrtilloides with seismic lines producing ~30%
more berries than the adjacent forest stand. Because seismic lines did not affect the abundance (cover)
of Vaccinium myrtilloides, increases in reproduction are associated with increases in resource availability
(light and nutrients) and/or increases in insect pollination.

Research in forest clear-cuts demonstrated similar changes in the reproductive strategies of
ericaceous species with reproduction being more strongly influenced by irradiance than shoot
density [20]. Past research has suggested that only large plants were capable of sexual reproduction and
therefore light indirectly influences sexual reproduction through effects on plant size [35]. However,
we found that after accounting for abundance, vigor (height), and fire severity, berry production was
still greater on seismic lines compared with adjacent forests. This may be due to the larger canopy
opening of seismic lines allowing greater light availability to the understory and thus higher rates of
photosynthesis that can support the development of more fruit structure [40].

The second possibility is that seismic lines are increasing abundance and behaviour of insect
pollinators, thus affecting fruit set. Vaccinium species are known to be pollinated by bees [41] with fruit
production, size, and seediness of Vaccinium species being significantly higher in plants exposed to
natural pollination [42]. However, Vaccinium species have also been shown to have higher flowering
densities in sites with an open canopy [42] and because we did not measure flower production we
cannot distinguish between these factors. In fact, it is most likely to be a combination of greater flower
production due to photosynthetic resources and increases in pollinator activity. If the effect is due to
pollinators, then visitation rates by pollinators on seismic lines should be higher than in the adjacent
stand. Future studies should examine these interactions by measuring flower production, pollinator
visitation rates, and fruit set.

4.3. Management Implications: Fire and Seismic Lines

Jack pine forests have evolved with fire as evidence of their aerial seedbanks of serotinous
cones that require heat for the opening and release of seeds [13]. Post-disturbance boreal forest
stands are often dominated by an understory of ericaceous species [4]. This flush in ericaceous
productivity is an important phase of forest succession, providing a valuable habitat for wildlife.
For instance, increasing the foraging opportunities of black bears [43] that are known to prefer seismic
lines over forest stands, particularly in mid-to-late-summer due to increased berry production [44].
Indigenous peoples also benefit from post-fire resources with fire historically used to maintain a mosaic
of successional stages that increase the diversity and abundance of forest resources, including berries
from Vaccinium species [45]. Indeed, the gathering of Vaccinium berries is one of the most important
aspects of indigenous traditions [46]. Therefore, management should consider the natural role that fire
plays in jack pine forests and how changes in fire regimes may affect cultural values.

A number of considerations must be taken into account when considering seismic lines.
These disturbances are known to affect wildlife by changing their behaviour and predator-prey
relationships. In particular, woodland caribou in Northeastern Alberta are listed as threatened under
the Federal Species at Risk Act [47] with seismic line restoration being a top priority [48] since these
linear disturbances affect hunting and predation efficiency on caribou [49,50]. Black bear distribution
in the forest is also affected by seismic line disturbances [44], possibly increasing opportunities for
the human harvesting of black bear, as well as the predation of caribou calves by bears in recent
disturbances [51]. Seismic lines also displace songbirds, although disturbances of smaller widths
(canopy gaps) have less effect [52]. Regardless, there is general support for directly or indirectly
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promoting tree growth on seismic lines that fail to recover trees. Although the management of seismic
lines is not directed towards Vaccinium myrtilloides, we expect such restoration actions that promote
tree growth on seismic lines to reduce vigor and berry production similar to that of adjacent forests.
Secondly, natural fires on these lines can interact to promote higher berry production. This may further
affect wildlife, such as black bears, and the value of sites for harvesting by indigenous peoples.

5. Conclusions

Our study demonstrates that vigor and berry production in Vaccinium myrtilloides increases in
narrow forest gaps associated with linear (seismic line) disturbances compared to adjacent forest
stands after forest fires. We also found that as canopy gap (seismic line) width increases from 4 to
10 m, the cover, vigor, and berry production of Vaccinium myrtilloides also increases. This suggests
that plants respond to changes in light and pollinators even within these small (4–10 m) forest gaps.
Future research should manipulate these factors experimentally to further understand the mechanisms
involved. Relative to wildfire, Vaccinium myrtilloides responded positively, except for high severity
fires where declines were apparent. The management of seismic lines should consider the risks and
benefits associated with restoration actions and wildfires on the habitat for Vaccinium myrtilloides if
attempting to manage this species or species that utilize it, including wildlife (e.g., black bears) and
indigenous peoples.
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Abstract: Wildfire refugia are forest patches that are minimally-impacted by fire and provide critical
habitats for fire-sensitive species and seed sources for post-fire forest regeneration. Wildfire refugia
are relatively understudied, particularly concerning the impacts of subsequent fires on existing
refugia. We opportunistically re-visited 122 sites classified in 1994 for a prior fire refugia study,
which were burned by two wildfires in 2012 in the Cascade mountains of central Washington,
USA. We evaluated the fire effects for historically persistent fire refugia and compared them to the
surrounding non-refugial forest matrix. Of 122 total refugial (43 plots) and non-refugial (79 plots) sites
sampled following the 2012 wildfires, one refugial and five non-refugial plots did not burn in 2012.
Refugial sites burned more severely and experienced higher tree mortality than non-refugial plots,
potentially due to the greater amount of time since the last fire, producing higher fuel accumulation.
Although most sites maintained the pre-fire development stage, 19 percent of sites transitioned to
Early development and 31 percent of sites converted from Closed to Open canopy. These structural
transitions may contribute to forest restoration in fire-adapted forests where fire has been excluded
for over a century, but this requires further analysis.

Keywords: burn severity; forest structure; succession; Cascade Range; restoration; mixed-conifer forest

1. Introduction

Wildfire is an integral natural ecosystem process worldwide [1], including the conifer forests
of the inland of northwestern United States [2]. In these fire-adapted ecosystems, not every stand
is affected equally by wildfire [3–5] and differential degrees of ecological change can result from
variation in burn severity within single fires [6]. Spatially heterogeneous burn severity drives forest
structure and composition [7,8] and produces complexity that is critical to supporting biodiversity,
ecosystem services, and forest resilience [2,9,10]. Much of the inland Northwest is characterized by a
mixed-severity fire regime that includes both frequent, low-severity fire and infrequent, high-severity
fire [2]. Less studied, but equally important ecologically, are forest patches that remain unburned or
experience a relatively low degree of change from a wildfire event; these patches are often described as
‘wildfire refugia’ [11–14]. Such patches represent key landscape elements that support the persistence
of fire-sensitive flora and fauna both during the fire (as a refuge) and after the fire (as intact habitat),
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and provide seed sources for the regeneration of adjacent severely burned areas post-fire [14]. One of
the key uncertainties about refugia is their persistence, and what characteristics determine persistent
versus temporary refugia during successive ecological disturbances [11]. Resolving this uncertainty
is necessary for several reasons, including improving our understanding and the predictability of
forest succession dynamics, developing conservation management strategies for critical refugia that
are vulnerable, and establishing a baseline from which global change impacts can be measured [14].

Refugia have been broadly defined and delineated, depending on the discipline and research
query [15]; to-date, there is no single, widely-accepted definition of fire refugia [4,12,14]. Areas within
fire perimeters that do not experience any fire effects, e.g., [16,17], or that experience fire effects at a
lower severity than surrounding areas, e.g., [11], have both been described as wildfire refugia. In the
literature, the scale and characteristics of wildfire refugia vary by organism and ecosystem [14], leading
to different definitions of what constitutes a wildfire refugium. The occurrence of wildfire refugia
depends upon several environmental factors that vary spatially and temporally, including topography,
climate, soils, geomorphology, and ecological disturbances such as meteorological events, insects,
pathogens, and fire [18,19]. These factors interact together to create spatial heterogeneity in vegetation
and forest structure, which is maintained by fire [20]. For example, vegetation characteristics such as
stand age or structure can either increase or decrease the likelihood of fire occurrence [21,22] or can
minimize or exacerbate the effects when a fire does occur [23]. Additionally, topographic complexity
influences burn severity [23,24] and refugia formation [11,12]. Generally, bottom-up factors such as
vegetation and topography exert a greater influence on burn severity than top-down controls such as
weather or climate [24–27], but in extreme fire weather events, local weather conditions may override
vegetative and landscape effects on burn severity [28,29]. Furthermore, human activities such as
stand management have the potential to influence the severity of burn patterns and the formation and
persistence of refugial patches [30].

Changes in land cover and land use have greatly altered both fire frequency and intensity in inland
northwest forests [31], further confounding our ability to understand the formation of fire refugia.
Euro-American settlements and associated timber harvesting and grazing, along with a century of
fire exclusion, have impacted the forest stand structure [32,33], as well as the spatial distribution
and intensity of wildfires, increasing the risk of stand-replacing fire [5,25]. Inland northwest forests
are already experiencing climatic conditions conducive to an increased occurrence and duration of
wildfires (e.g., extended heat waves and droughts), and these trends are projected to continue through
the 21st century [34–37]. Recent studies suggest that the severity of wildfires may be increasing for some
ecosystems [38,39], although the robustness of such trends is questioned by other studies [27,40–42]. If
the overall fire severity increases, fire refugia that were historically sheltered from fire or experienced
only low severity fires might now burn at a higher severity under the contemporary fire regime.
To-date, however, there has been little opportunity to assess the effects of the contemporary, altered
fire regime on historically persistent fire refugia.

In 2012, the Wenatchee Complex Fires burned through an area of the central Washington state,
USA, that had been previously sampled and classified into refugial and non-refugial patches two
decades prior to the two fires [11]. This provided a unique opportunity to assess contemporary fire
effects on field-delineated refugial and non-refugial stands to examine the persistence of historic
wildfire refugia under changing fire regimes and climatic conditions. To our knowledge, no field-based
studies have specifically assessed the persistence of wildfire refugia based on the pre-fire identification
of long-term wildfire refugia. Camp and colleagues [11] classified historic wildfire refugia using
forest stand structure, tree age, and species composition data within the Wenatchee National Forest,
defining historic wildfire refugia as forest patches that had been minimally affected by fire events
for at least 140 years (well before the onset of fire exclusion or active fire suppression [43]), while the
surrounding forest matrix had experienced greater fire effects in historic fire events. The primary
research objective of this study was to determine the effects of the 2012 wildfires on these historical
fire refugia, specifically their persistence and changes in forest structure. This question was addressed
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by (1) quantifying and comparing the fire effects between refugial and non-refugial plots as classified
pre-fire by Camp et al. [11] and (2) by investigating changes from inferred pre- to post-fire forest stand
structure across stands that had been previously classified as refugial or non-refugial. More broadly,
this case study evaluates how the occurrence of wildfire refugia and the mosaic of forest structure may
shift in response to changing fire regime characteristics in the contemporary era. While conclusions
from a case study are limited in application, such studies are needed to identify threats to critical
refugia that are central to conservation plans for key species.

2. Materials and Methods

2.1. Study Area

The study area is located in the 47,794 ha Swauk Late Successional Reserve of the
Okanogan-Wenatchee National Forest (Cle Elum Ranger District) of central Washington State, USA
(Figure 1). A Late Successional Reserve (LSR) is a management designation for an area created
through the Northwest Forest Plan with the objective of protecting and enhancing the condition
of late-successional and old-growth forest ecosystems; as such, only limited stand management is
permitted in LSR-designated areas [44]. Prior to attaining the LSR status in 1995, this area was subject
to more intensive management, including selective timber harvesting, clear-cutting, road building,
and mining, particularly in lower drainages [11]. The study area is located at the far eastern edge
of the Cascade mountain range, extending into the dry interior Columbia River Plateau to the east.
Sampled plots in this study ranged in elevation from 1027 to 1912 m. Vegetative communities in the
Swauk LSR form a heterogeneous landscape due to strong responses to the dissected topography,
precipitation gradient, and insolation differences [45]. At more xeric sites, lower elevations, and
south-facing aspects, open-canopy ponderosa pine (Pinus ponderosa Dougl. Ex Forbes) and Douglas-fir
(Psuedotsuga menziesii var. menziesii (Mirb.) Franco) stands are common. At more mesic sites, higher
elevations, and north-facing slopes, stands of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) and
lodgepole pine (Pinus contorta var. latifolia Dougl. ex Loud.) are more typical. However, specific
site conditions can cause the immediate juxtaposition of disjunct forest stands. Within the surveyed
plots, grand fir (Abies grandis (Dougl. Ex D. Don.)) accounted for 39% of sampled trees, Douglas-fir
accounted for 31%, and subalpine fir a further 11%.

The pre-European settlement fire regime near the Swauk LSR varied spatially by vegetative type
with a mean fire return interval of seven to 43 years, and with large fires occurring approximately every
27 years [43]. Pre-European settlement fire severity also varied in the study area, with drier forest types
experiencing low-severity fire, while more mesic forest types experienced occasional moderate and
high-severity fires. However, fire regimes have been significantly altered since European settlement.
Fire frequency declined dramatically around 1900, coinciding with the start of commercial logging [43]
and the advent of active fire suppression in the Wenatchee National Forest [46]. Consequently, there is
no evidence of fire occurrence in the Swauk LSR from 1900 to 2012 [47].
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Figure 1. Study area in the east Cascades of central Washington State, USA, with burn perimeters of the
2012 Peavine Canyon and Table Mountain fires and spatial locations of the Camp et al. [11] classified
refugial (diamonds) and non-refugial (circles) plots in the three study drainages (Tronsen, Mission,
and Boulder).

2.2. The 2012 Fires

The Table Mountain and Peavine Canyon (as part of the Wenatchee Complex) fires burned
simultaneously after the fires were ignited from lightning strikes in early September 2012. These fires
eventually merged, creating a total burn area of 25,274 ha. These fires burned 226 sample sites of the
Camp et al. [11] study in three different drainages, where 43 and 183 plots, respectively, were previously
classified as refugial and non-refugial. The fires burned under anomalously dry and warm weather
conditions compared to 1985 to 2014 climate data recorded at the Swauk Remote Automatic Weather
Station (RAWS) approximately 2 km west of the fire perimeter [48]. The average air temperature for
the July through September fire season was higher than normal (83rd percentile), and the average
air temperature for September when the fires ignited was much higher than normal (93rd percentile).
The average relative humidity for the fire season was lower than normal (35th percentile), and the
average relative humidity for September was much lower than normal (3rd percentile). Precipitation
was slightly below normal for the fire season (38th percentile), but late-season drought was particularly
pertinent as the study area went 52 consecutive days without measurable precipitation prior to fire
ignition and 34 days without afterwards [48].
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2.3. Field Measurements

Field data were collected in the summer and fall of 2014 by resampling the general locations of
the Camp et al. [11] sample sites that burned in 2012 (Figure 1). The original Camp et al. [11] plots
were established along multiple transects using a hip chain and sighting compass in the field, and the
final plot locations were annotated on topographic maps. To determine the global positioning system
(GPS) coordinates of these plots, the annotated topographic maps were first digitized into a geographic
information system database and then plot coordinates were navigated to with a handheld GPS unit in
the field. Since the prior plots were not permanently monumented, new plots were established as close
as possible to the original plots within the same forest stand. GPS locations that fell in barren areas
or in unsafe field sites were relocated to the nearest suitable forested site. A subset of plots from the
Camp et al. [11] study was sampled across the entire elevational gradient for each drainage. A total of
41 refugial sites and 81 non-refugial sites were sampled across the three study drainages for a total of
122 sampled plots.

At each sample site, a modified replication of the Camp et al. [11] sampling protocol was
conducted (Figure 2). Plot centers were monumented at the ascribed GPS coordinates and a 15.2-m
diameter circular plot covering 725.8 m2 was established. Variables collected or derived for the plot
level at each site included four topographic, nine vegetative, and four fire effect variables (Table 1). Plot
aspect was measured in degrees and then transformed into northness and eastness indices for analysis.
We also collected variables at the tree level for each plot, where a sweeping transect from an azimuth
of 0◦ (north) was used to sample the first ten trees in the plot meeting a minimum threshold diameter
at breast height (DBH) of 12.6 cm. We tagged and assessed each set of 10 trees for three demographic
and five fire effects variables (Table 2). Three additional vegetative variables at the plot level (average
DBH, maximum DBH, and pre-fire plot basal area) were derived from the DBH measurements of the
10 sampled trees on each plot. A total of 1220 trees were sampled in this study.

Figure 2. Diagram of the 2014 field sampling protocol.
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Table 1. Plot-level topographic, vegetative, and fire effects variables.

Data Type Variable Definition

Topographic

Aspect Northness cos(π/2-aspect); range from −1 (south) to 1 (north)
Aspect Eastness sin(π/2-aspect); range from −1 (west) to 1 (east)

Slope Degrees; measured by clinometer
Elevation Meters; measured by global positioning system

Topography Type Ten option categorical classification (from [11])

Vegetative

Max Canopy Height Meters; measured by Impulse Laser
Species Present Dominant tree species

Canopy Structure Presence/absence of overstory/subcanopy strata
All Trees Pre-fire Count of all trees alive in plot pre-fire

Overstory Trees Pre-fire Count of all ≥12.6 cm DBH alive in overstory strata pre-fire

Subcanopy Trees Pre-fire Count of all trees ≥12.6 cm DBH alive in subcanopy strata pre-fire

Total Canopy Cover Pre-fire Ocular estimate of pre-fire canopy cover for all tree strata

Overstory Canopy Cover Pre-fire Ocular estimate of pre-fire canopy cover for overstory strata

Subcanopy Canopy Cover Pre-fire Ocular estimate of pre-fire canopy cover for subcanopy strata

Average DBH Average DBH of 10 sampled trees on plot

Maximum DBH Maximum DBH of 10 sampled trees on plot

Pre-fire Plot Basal Area Average basal area of 10 sampled trees on plot [π(DBH/2)2] * count
of trees on plot. Unit: m2 basal area/900 m2 plot area

Fire Effects

Total Tree Mortality Count of all tree mortality in plot post-fire

Overstory Tree Mortality Count of all ≥12.6 cm DBH tree mortality in overstory strata
post-fire

Subcanopy Tree Mortality Count of all ≥12.6 cm DBH subcanopy tree mortality in subcanopy
strata post-fire

Total Plot CBI Composite Burn Index protocol (score from 0 to 3)

DBH—diameter at breast height; CBI—Composite Burn Index [49].

Table 2. Tree-level demographic and fire effect variables.

Data Type Variable Definition

Demographic

Species Field Identification

Diameter at breast height Field measure; cm

Secondary Stress Presence of: Fire, Freezing, Fungus, Insect, Mechanical,
Mistletoe, Rot

Fire Effects

Mortality Fire-induced tree death
Percent Bole Char Maximum percent of basal bole with visible char

Bole Char Max Height Maximum height of continuous char on bole (m)
Percent Foliage Scorch Ocular estimate of pre-fire living foliage scorched or girdled
Percent Foliage Torch Ocular estimate of pre-fire living foliage torched by fire

Burn severity was also assessed at each site using the Composite Burn Index (CBI) protocol [49].
Due to the aggregation of fire effects in the CBI protocol [50], we also assessed the burn severity for
each of the five different specific fire effect metrics at the tree level. Per [49], the CBI analysis area was
modified to be a 30 by 30-m square to correspond to the size of a Landsat pixel; additionally, the plot
was oriented in the cardinal directions to align with the Camp et al. [11] plot azimuths. While CBI is
normally conducted one-year post-fire [49], the methodology has been previously utilized to assess
fire effects two years post-fire [51]; doing so allows an assessment of longer-term fire effects while also
capturing delayed mortality in the tree strata.

2.4. Data Quality Assurance

To ensure that the plots sampled in 2014 were comparable to the plots that Camp et al. [11]
originally sampled and classified into potential refugia, we conducted a paired-plot assessment
using the original plot data and stand delineations produced by Camp et al. [11]. Stand delineations
developed by Camp et al. [11] and aerial imagery were used to determine if the original and resampled
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plots fell in the same stand. If the original and resampled plot pair was not visually within the same
stand, then the topographic and vegetative attributes of each plot were compared for similarities. We
were not able to confidently match 13 sampled plots through this qualitative comparison and these
were excluded from further paired-plot analysis which resulted in a total of 109 confident paired-plot
matches. To confirm that the plots were equivalent to Camp et al. [11], we then used a paired t-test with
Welch modification for non-normality to test for differences in the topographic setting of both sample
sets [52] by calculating the modified Heat Load Index from McCune and Keon [53], using Equation (1)
due to the steep slopes at our study site. As we found no significant differences, we contend that these
109 matched plots provide a conservative match to the Camp et al. [11] plot-level data.

2.5. Comparison of Fire Effects between Resampled and Original Plots

We used the 109 plots determined to be confident matches from the data quality assurance step
(Section 2.4) and tested for differences in burn occurrence and burn severity between refugial (n = 36)
and non-refugial (n = 73) plots as classified by Camp et al. [11]. Differences in burn occurrence between
refugial and non-refugial plots were assessed with a chi-square test of independence.

Fire effects were compared between those plots which Camp et al. [11] classified as refugial
versus non-refugial for eight fire effects metrics. Overall plot burn severity was assessed using the
Composite Burn Index score and seven individual burn severity metrics (maximum bole char height,
percent bole charred, percent foliage scorched, percent foliage torched and percent tree mortality
of overstory, and sub-canopy tree strata) were compared between the Camp et al. [11] refugial and
non-refugial plots using a Wilcoxon-signed-rank test due to the non-normal distribution of the data
(α = 0.1). The Wilcoxon-signed-rank test results in a W-value where lower W-values correspond with
lower p-values.

2.6. Assessment of Changes in Forest Structure

To investigate fire impacts on forest structure, we assigned successional states to each plot based
on the inferred pre-fire and observed post-fire structural characteristics. In order to assign successional
forest structure states to our sample plots, we first needed to assign the type of forested ecosystem in
which each plot occurred. A nationwide vegetative community classification called the Biophysical
Setting (BpS; NatureServe) was developed as part of the LANDFIRE resource management and planning
tool [54,55]. BpS and other LANDFIRE vegetation products are widely used in state-and-transition studies
because of the ecologically-based successional states and ecological transitions described in each BpS
model [56–59]. All 122 plots sampled in 2014 were assigned to one of the three most common Biophysical
Settings for the study area through an analysis of the 2014 quantitative plot data, recorded qualitative
field observations, and photos for each plot. Since each BpS model covers a broad geographical area
and cannot account for more localized variation within a single model, BpS models were refined with
locally available information on the habitat types of the Wenatchee National Forest [60]; forest types were
cross-walked to the Wenatchee National Forest correlate names of the Douglas-fir (n = 17), grand fir
(n = 92), and subalpine fir series (n = 13) (Table 3), to be consistent with and comparable to the three forest
series reported by Camp et al. [11] in their original analysis.

Table 3. Cross-walk between the BpS Model and Wenatchee NF Correlate from [60].

Biophysical Setting Model Name Wenatchee NF Correlate Plots

Northern Rocky Mountain Dry-Mesic Montane
Mixed Conifer Forest Douglas-fir Series 17

East Cascades Mesic Montane Mixed-Conifer Forest
and Woodland Grand Fir Series 84

Rocky Mountain Subalpine Dry-Mesic Spruce-Fir
Forest and Woodland Subalpine Fir Series 13
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Once a BpS model and forest series were assigned to each plot, pre- and post-fire forest structure
was classified using the Vegetation Dynamics Development Tool (VDDT) [61] classes for each respective
BpS model. The VDDT model for each of the three BpS models uses five distinct successional/structural
classes (hereafter, referred to as “successional states”): Early Development, Mid-Development Open
Canopy, Mid-Development Closed Canopy, Late Development Open Canopy, and Late Development
Closed Canopy (Figure 3). Within each BpS model there are different attribute criteria for what
constitutes a particular successional state based on species composition; quantitative criteria used in
classification included canopy cover, canopy height, maximum tree size class, and average tree size
class, while qualitative criteria included the species present, tree relative canopy position, and fuel
model (Table 4). Post-fire successional state was classified through post-fire vegetation observed during
the 2014 field season. For the pre-fire successional state, in-field estimates of canopy cover and counts
of trees presumed living pre-fire were used as best approximations to infer pre-fire vegetative structure
and composition. Field notes and plot photos were used to refine this successional state classification
when quantitative data alone proved inconclusive.

Once pre-fire and post-fire successional states were assigned to each plot, the transition from one
successional state to another due to fire effects was assessed. There were three distinct transitions
a plot could have taken due to fire effects (hereafter referred to as “ecological transitions”): (1) plot
was maintained in the current successional state; (2) plot canopy was thinned from a closed to open
canopy structure of the same development stage; or (3) plot transitioned to an early development
successional state. We conducted the transition analysis for all 122 plots (not just the 109 paired plots)
as we were not statistically comparing the refugial and non-refugial plots for this analysis, but rather
characterizing changes in forest structure.

 

Figure 3. State-and-transition model of the Vegetation Dynamics Development Tool successional states
and ecological transitions as affected by differential wildfire severity (modified from [4]).
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Table 4. Quantitative criteria and thresholds utilized to classify plots into the five successional states
that describe the forest structure for the three Biophysical Setting (BpS) models present in the study area.
Both the initial classification of the plots into BpS models and further classification into successional
states also utilized qualitative information and species lists in the BpS model descriptions, which can
be found on the LANDFIRE website (www.landfire.gov).

Biophysical Setting (BpS) State Cover Height Tree Size Class

Northern Rocky Mountain Dry-Mesic
Montane Mixed Conifer Forest

(Douglas Fir Series)

Early 0–20% Tree 0–5 m Sapling > 4.5’, <5” DBH
Mid-Open 0–40% Tree 5.1–25 m 9–21” DBH

Mid-Closed 41–100% Tree 5.1–25 m 9–21” DBH
Late-Open 11–40% Tree 25.1–50 m > 33” DBH

Late-Closed 41–100% Tree 25.1–50 m > 33” DBH

East Cascades Mesic Montane Mixed
Conifer Forest and Woodland (Grand

Fir series)

Early 0–100% Tree 0–10 m Sapling >4.5’, <5” DBH
Mid-Open 0–60% Tree 10.1–25 m 9–21” DBH

Mid-Closed 61–100% Tree 10.1–25 m 9–21” DBH
Late-Open 0–60% Tree 25.1–>50 m >33” DBH

Late-Closed 61–100% Tree 25.1–>50 m >33” DBH

Rocky Mountain Subalpine
Dry-Mesic Spruce-Fir Forest and
Woodland (Subalpine Fir series)

Early 0–40% Shrub 0–0.5 m None
Mid-Open 11–30% Tree 5.1–10 m 9–21” DBH

Mid-Closed 31–60% Tree 5.1–10 m 9–21” DBH
Late-Open 11–40% Tree 10.1–25 m 21–33” DBH

Late-Closed 41–70% Tree 10.1–25 m 21–33” DBH

2.7. Limitations of Methods

As we did not have pre-fire vegetative data, and the Camp et al. [11] plots were not monumented,
we inferred pre-fire vegetation attributes with only the burned post-fire vegetation available to sample,
which is standard for the CBI protocol [49]. Vegetative reconstruction estimates can be problematic due
to the uncertainties of differentiating the magnitude of observed effects solely due to the fire event from
the pre-fire conditions and other ecological changes (such as an insect attack or hydrological flow) that
occur between the fire and the post-fire measurements [62–64]. Canopy cover is particularly difficult
to measure from ocular estimates [65], especially after the canopy has been partially consumed in a
fire, and it is reasonable to assume that the two-year lag between the fire and our field data collection
introduced further error. However, we felt that the opportunity to revisit forested stands that were
classified for a refugial objective in a prior study in order to describe fire effects was an opportunity
that could not be ignored, despite these limitations.

3. Results

3.1. Assessment of Fire Effects in the Camp et al., Refugial and Non-Refugial Plots

Of the 109 paired plots that were established initially by Camp et al. [11] and that we revisited
after the 2012 wildfires, only six (5.5%) did not experience any fire effects in 2012 (i.e., they were
unburned). Only one of these six unburned plots was classified as a fire refugium by Camp et al. [11]
(Table 5), although this difference in burn occurrence between refugial and non-refugial plots was not
statistically significant (chi-square test of independence, χ2 = 0.768, p = 0.381) due to the low number
of samples. This translates to <1 percent of plots persisting as refugia and 4.5% having no fire effects
and becoming refugia under the most conservative definition.
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Table 5. Number of plots classified in the original Camp et al. [11] study that burned in the 2012
fires, re-surveyed in the present study, paired to the plots from [11], and found to have no fire effects
(i.e., the most conservative definition of refugial) by this study.

Sampling Description Refugial per [11] Non-Refugial per [11] Total

Sampled by [11] 43 183 226
Sampled in 2014, this study 41 81 122

Plots paired to [11] 36 73 109
Plots unburned 1 5 6

A comparison of the fire effects between the 109 matched Camp et al. [11] refugial and non-refugial
plots revealed a trend in differences in burn severity, where classified refugial plots generally
experienced greater fire effects (Figure 4). Refugial plots burned more severely than non-refugial plots
as assessed through the total plot CBI metric (W = 1015.5, p = 0.0582). For the tree-level severity metrics,
the percent total tree mortality (W = 921.5, p = 0.0196), percent understory tree mortality (W = 867,
p = 0.0116), average bole char height (W = 1042, p = 0.0802), and average foliage scorched (W = 899,
p = 0.00754) were all significantly higher for refugial plots (at α = 0.1, used due to non-normal data
and a greater number of non-refugial plots). Percent overstory tree mortality and percent bole char
observations were also higher for refugial plots, but these differences were not statistically significant.
Foliage torched showed no significant difference between refugial and non-refugial plots, but this
result is likely attributable to low overall levels of foliar torching, with the exception of a few highly
torched plots resulting from crown fires.

Figure 4. Comparison of fire effects between Camp et al. [11] refugial and non-refugial plots for eight
different burn severity metrics. * p ≤ 0.10, ** p ≤ 0.05, *** p ≤ 0.01.

3.2. Changes in Successional State

Based on our reconstruction of forest structure and successional state pre-fire, there were no Early
Development successional state plots pre-fire, with most of the plots classified at Mid-Development
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(32% Open Canopy and 39% Closed Canopy), and the remaining 29% classified as Late Development
(9% Open Canopy and 20% Closed Canopy) (Table 6). Post-fire, 19% of sample plots were classified
as an Early Development successional state, 26% were classified as Late Development, and most
plots were still Mid-Development (55%). Half (50%) of the sampled plots did not change in terms of
the successional state due to fire effects, while nearly one-third (31%) transitioned from a closed to
open-canopy structure (for both Mid- and Late Development categories combined). Closed Canopy
plots classified as either Mid- or Late Development successional state (59%) were more abundant than
Open Canopy plots pre-fire (41%), but Open Canopy plots (65%) were four times more abundant than
Closed Canopy plots (16%) post-fire.

Table 6. Distribution of successional states for all 122 sampled plots according to pre-fire and post-fire
successional state for all Biophysical Setting models.

Successional State
Pre-Fire State Post-Fire State

Count Percent Count Percent

Early Development 0 0% 23 19%
Mid-Development Open Canopy 39 32% 55 45%
Mid-Development Closed Canopy 47 39% 12 10%
Late Development Open Canopy 11 9% 24 20%
Late Development Closed Canopy 25 20% 8 6%

Assessing structural transitions by whether plots were classified as refugial or non-refugial by
Camp et al. [11] reveals that a higher proportion of pre-fire refugia transitioned to Early development
successional state (24%) than non-refugial plots (16%) (Table 7). More refugia were also thinned by
the fire from Closed to Open Canopy (34%; in both Mid and Late-development states combined) than
non-refugia (30%). Accordingly, more non-refugial plots maintained their pre-fire successional state.

Table 7. Primary plot structural transitions by pre-fire refugia classification.

Successional Transition
Refugia Non-Refugia

Count Percent Count Percent

Maintained state 17 42% 44 54%
Thinned from Closed to Open Canopy 14 34% 24 30%
Converted to Early Development state 10 24% 13 16%

4. Discussion

4.1. Comparison of Fire Effects between Sample Years

We found that the plots classified by Camp et al. [11] as refugial experienced more severe fire
effects from the 2012 wildfires in comparison to classified non-refugial plots. This finding supports
an inference of Camp et al. [11] in their study; they noted that pre-European settlement fire refugia
appeared to have higher fire intensities and severities associated with longer fire return intervals.
What was particularly surprising in the present study was just how few of the 122 plots sampled were
unburned (<6%). Studies quantifying the unburned proportion across entire fires at local to regional
scales have found a very broad range of the proportion unburned for individual fires [4,42], with
Meddens et al. [13] reporting a regional average of 20% unburned for the inland Northwest. As these
plots were specifically located by Camp et al. [11] to capture prospective fire refugia, the low proportion
of unburned compared to regional averages further supports their conclusion that refugial plots, when
they do eventually burn, do so with a higher severity than the non-refugial surrounding matrix.
Because of the longer fire return intervals in refugial patches, tree species with thin bark and minimal
self-pruning, such as grand fir, are able to establish and develop as ladder fuels that facilitate the surface
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fire ignition of crown fuels due to their lower canopy base height [32], a concept that Camp et al. [11]
termed ‘outgrowing’ the refugial status. The additional fuels accumulated in these ‘outgrown’ refugial
patches then lead such sites to burn at a higher severity than the surrounding matrix.

4.2. Distribution of Post-Fire Successional States and Ecological Transitions

We found that less than 30 percent of plots resampled in 2014 were Late Development stage
pre-fire, with Mid-Development stage plots being the most common. This successional composition
is relatively consistent with the pre-European settlement fire regime [39], although occasional
high severity patches of fire (as part of the mixed-fire regime) would have also produced a few
Early Development patches scattered across the landscape during that period. Here, however, we
encountered no plots that were Early Development successional state pre-fire, which was unsurprising
given that prior to 2012, the most recent wildfire in the study area occurred before 1900 due to the
effectiveness of US fire suppression policies in the 20th century [46]. Post-fire, 19 percent of sampled
plots transitioned to the Early Development state, increasing the structural heterogeneity of the study
area [66]. Open Canopy stands were four times more abundant than Closed Canopy stands post-fire,
whereas Closed Canopy stands were more abundant pre-fire. These sorts of transitions are consistent
with the restoration needs highlighted by Haugo et al. [59] for these forests, and suggest that in this case
study, at least, the fire behavior may have played a restorative role by creating both early successional
openings and a more open canopy from a previously closed canopy.

The relationship between the more severe fire effects and the forest structural changes becomes
evident when stratifying structural changes by whether plots were classified as refugia pre-fire.
This fire-induced transition to an increased open canopy structure is consistent with mixed severity
fires reducing canopy closure [32,43,67], and occurred in a higher proportion of refugial plots because
they burned at a higher severity. Similarly, more refugial plots transitioned to Early Development
successional state due to a higher burn severity in refugial plots. One point of interest in this breakdown
is the number of plots that maintained their successional state (as there were no Early state plots pre-fire,
these were all Mid- and Late-Development sites). Most of these plots (all but six) experienced some
fire effects; these effects were of a low enough severity to maintain the forest structure successional
state given the definitions in the BpS models.

4.3. Implications for Management

In the face of environmental change, managers can take many actions to increase ecosystem
resilience [36,68]. Many plant and animal species are fire-sensitive and require refugial habitats to
persist in the landscape [2], including species of high management concern such as the northern
spotted owl (Strix occidentalis caurina), which was the focal species of the Camp et al. [11] refugia
analysis. There is much concern over the persistence of refugia given climate change and changing
ecological disturbance regimes [41], but our results demonstrate that even with fire re-entry into sites
with over a century of fire exclusion, some refugial plots still maintained pre-fire forest structure
and some previously non-refugial plots served as during-fire refugia in the 2012 fires. For managers
seeking to conserve refugia for given species, there are likely pathways to doing so that do not require
the total exclusion of wildfire, but additional research is needed to improve quantitative landscape
composition models and determine when forests have become vulnerable to permanent structural
transitions that can eradicate refugia [69].

5. Conclusions

Wildfire refugia in forested landscapes are critical to species survivorship both during and between
fires, as well as facilitating forest regeneration in adjacent burned areas. However, refugia research is
still nascent, with the definitions and delineation of refugia being highly variable and dependent upon
species of interest. This case study provided a unique opportunity to assess the effects of a wildfire on
fire refugia in central Washington State, USA, that were classified and delineated by Camp et al. [11]
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over two decades ago and subsequently burned in two 2012 wildfires. Our findings that almost all
of the plots burned, but half of the plots persisted in their pre-fire forest structure successional state,
suggests that definitions of fire refugia focused on the maintenance of forest structure or canopy
thresholds may reveal a higher proportion of refugia that are persistent through multiple fires. We
also found that nearly one-fifth of the plots converted to Early Development state due to a high burn
severity, and almost one-third experienced enough crown loss to transition from Closed to Open
Canopy; these types of transitions are critical to forest restoration following over a century of fire
exclusion in forested landscapes across the western US. Ultimately, this opportunistic case study
highlights that the re-entry of fire into forests where fire has been excluded produces a range of fire
effects that include the maintenance of pre-fire forest structure. Additionally, many current fire refugia
may be vulnerable to future fire, particularly where fire exclusion has allowed for fuel accumulation
and the growth of fire-sensitive species. Refugia more broadly, however, require much additional study
to improve our understanding of their persistence, vulnerability, and role in forest structural dynamics.

Acknowledgments: Arjan Meddens, Phil Higuera, and Paul Hessburg contributed insight to the project and
helped with data analysis. Additional thanks to Ryan McCarley for help in field data collection and figure editing.
Support for this research came from NASA Award NNX10AT77A, NSF Idaho EPSCoR under award EPS-0814387,
the USDA Forest Service Western Wildlands Environmental Threat Assessment Center under agreement number
13-JV-11261900-072, and the USGS Northwest Climate Science Center award G14AP00177. Smith was partially
supported under NASA Award NNX11AO24G. This work was partially supported by the National Science
Foundation under award no. DMS-1520873.

Author Contributions: C.A.K., T.M.B. and H.M.P. conceived and designed the experiments; T.M.B. performed
the experiments; H.M.P. and A.E.C. contributed historical data and aerial photos; C.A.K. and T.M.B. analyzed the
data; all authors wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bowman, D.M.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.;
DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth system. Science 2009, 324, 481–484. [CrossRef]
[PubMed]

2. Agee, J.K. Fire Ecology of Pacific Northwest Forests; Island Press: Washington, DC, USA, 1996.
3. Lentile, L.B.; Morgan, P.; Hudak, A.T.; Bobbitt, M.J.; Lewis, S.A.; Smith, A.M.S.; Robichaud, P. Post-fire burn

severity and vegetation response following eight large wildfires across the western United States. Fire Ecol.
2007, 3, 91–108. [CrossRef]

4. Kolden, C.A.; Abatzoglou, J.T.; Lutz, J.A.; Cansler, C.A.; Kane, J.T.; Van Wagtendonk, J.W.; Key, C.H. Climate
contributors to forest mosaics: Ecological persistence following wildfire. Northwest Sci. 2015, 89, 219–238.
[CrossRef]

5. Reilly, M.J.; Dunn, C.J.; Meigs, G.W.; Spies, T.A.; Kennedy, R.E.; Bailey, J.D.; Briggs, K. Contemporary patterns
of fire extent and severity in forests of the Pacific Northwest, USA (1985–2010). Ecosphere 2017, 8. [CrossRef]

6. Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.;
Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J.
Wildland Fire 2006, 15, 319–345. [CrossRef]

7. Hessburg, P.F.; Salter, R.B.; James, K.M. Re-examining fire severity relations in pre-management era mixed
conifer forests: Inferences from landscape patterns of forest structure. Landsc. Ecol. 2007, 22, 5–24. [CrossRef]

8. Freund, J.A.; Franklin, J.F.; Lutz, J.A. Structure of early old-growth Douglas-fir forests in the Pacific Northwest.
For. Ecol. Manag. 2015, 335, 11–25. [CrossRef]

9. Hutto, R.L. The ecological importance of severe wildfires: Some like it hot. Ecol. Appl. 2008, 18, 1827–1834.
[CrossRef] [PubMed]

10. Vaillant, N.M.; Kolden, C.A.; Smith, A.M.S. Assessing landscape vulnerability to wildfire in the United
States. Curr. For. Rep. 2016, 2, 201–213. [CrossRef]

11. Camp, A.; Oliver, C.; Hessburg, P.; Everett, R. Predicting late-successional fire refugia pre-dating European
settlement in the Wenatchee Mountains. For. Ecol. Manag. 1997, 95, 63–77. [CrossRef]

61



Forests 2017, 8, 400

12. Krawchuk, M.A.; Haire, S.L.; Coop, J.; Parisien, M.A.; Whitman, E.; Chong, G.; Miller, C. Topographic and
fire weather controls of fire refugia in forested ecosystems of northwestern North America. Ecosphere 2016, 7.
[CrossRef]

13. Meddens, A.J.H.; Kolden, C.A.; Lutz, J.A. Detecting unburned areas within wildfire perimeters using Landsat
and ancillary data across the northwestern United States. Remote Sens. Environ. 2016, 186, 275–285. [CrossRef]

14. Robinson, N.M.; Leonard, S.W.; Ritchie, E.G.; Bassett, M.; Chia, E.K.; Buckingham, S.; Gibb, H.; Bennett, A.F.;
Clarke, M.F. Refuges for fauna in fire-prone landscapes: Their ecological function and importance.
J. Appl. Ecol. 2013, 50, 1321–1329. [CrossRef]

15. Keppel, G.; Van Niel, K.P.; Wardell-Johnson, G.W.; Yates, C.J.; Byrne, M.; Mucina, L.; Schut, A.G.; Hopper, S.D.;
Franklin, S.E. Refugia: Identifying and understanding safe havens for biodiversity under climate change.
Glob. Ecol. Biog. 2012, 21, 393–404. [CrossRef]

16. Delong, S.C.; Kessler, D.W. Ecological characteristics of mature forest remnants left by wildfire.
For. Ecol. Manag. 2000, 131, 93–106. [CrossRef]

17. Schwilk, D.W.; Keeley, J.E. The role of wildfire refugia in the distribution of Pinus sabiniana (Pinaceae) in the
southern Sierra Nevada. Madroño 2006, 53, 364–372. [CrossRef]

18. Román-Cuesta, R.M.; Garcia, M.; Retana, J. Factors influencing the formation of unburned forest islands
within the perimeter of a large forest fire. For. Ecol. Manag. 2009, 258, 71–80. [CrossRef]

19. Stine, P.; Hessburg, P.; Spies, T.; Kramer, M.; Fettig, C.J.; Hansen, A.; Lehmkuhl, J.; O’Hara, K.; Polivka, K.;
Singleton, P.; et al. The Ecology and Management of Moist Mixed-Conifer Forests in Eastern Oregon and Washington:
A Synthesis of the Relevant Biophysical Science and Implications for Future Land Management; General Technical
Report; PNW-GTR-897; United States Department of Agriculture Forest Service: Portland, OR, USA, 2014.

20. Kane, V.R.; Lutz, J.A.; Roberts, S.L.; Smith, D.F.; McGaughey, R.J.; Povak, N.A.; Brooks, M.L. Landscape-scale
effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park. For. Ecol. Manag.
2013, 287, 17–31. [CrossRef]

21. Kushla, J.D.; Ripple, W.J. The role of terrain in a fire mosaic of a temperate coniferous forest. For. Ecol. Manag.
1997, 95, 97–107. [CrossRef]

22. Alexander, J.D.; Seavy, N.E.; Ralph, C.J.; Hogoboom, B. Vegetation and topographical correlates of fire
severity from two fires in the Klamath-Siskiyou region of Oregon and California. Int. J. Wildland Fire 2006,
15, 237. [CrossRef]

23. Kane, V.R.; Cansler, C.A.; Povak, N.A.; Kane, J.T.; McGaughey, R.J.; Lutz, J.A.; Churchill, D.J.; North, M.P.
Mixed severity fire effects within the Rim fire: Relative importance of local climate, fire weather, topography,
and forest structure. For. Ecol. Manag. 2015, 358, 62–79. [CrossRef]

24. Dillon, G.K.; Holden, Z.A.; Morgan, P.; Crimins, M.A.; Heyerdahl, E.K.; Luce, C.H. Both topography and
climate affected forest and woodland burn severity in two regions of the western US, 1984–2006. Ecosphere
2011, 2, 130. [CrossRef]

25. Cansler, C.A.; McKenzie, D. Climate, fire size, and biophysical setting control fire severity and spatial pattern
in the northern Cascade Range, USA. Ecol. Appl. 2014, 24, 1037–1056. [CrossRef] [PubMed]

26. Birch, D.S.; Morgan, P.; Kolden, C.A.; Abatzoglou, J.T.; Dillon, G.K.; Hudak, A.T.; Holden, Z.A.; Smith, A.M.S.
Vegetation, topography, and daily weather influenced burn severity in central Idaho and western Montana
forests. Ecosphere 2015, 6, 17. [CrossRef]

27. Abatzoglou, J.T.; Kolden, C.A.; Williams, A.P.; Lutz, J.A.; Smith, A.M.S. Climatic influences on inter-annual
variability in regional burn severity across western US forests. Int. J. Wildland Fire 2017, 26, 269–275.
[CrossRef]

28. Bessie, W.C.; Johnson, E.A. Relative importance of fuels and weather on fire behavior in subalpine forests.
Ecology 1995, 76, 747–762. [CrossRef]

29. Birch, D.S.; Morgan, P.; Kolden, C.A.; Hudak, A.T.; Smith, A.M.S. Is proportion burned severely related to
daily area burned? Environ. Res. Lett. 2014, 9, 064011. [CrossRef]

30. Prichard, S.J.; Kennedy, M.C. Fuel treatments and landform modify landscape patterns of burn severity in an
extreme fire event. Ecol. Appl. 2014, 24, 571–590. [CrossRef] [PubMed]

31. Hessburg, P.F.; Agee, J.K. An environmental narrative of Inland Northwest United States forests, 1800–2000.
For. Ecol. Manag. 2003, 178, 23–59. [CrossRef]

62



Forests 2017, 8, 400

32. Hessburg, P.F.; Agee, J.K.; Franklin, J.F. Dry forests and wildland fires of the inland Northwest USA:
Contrasting the landscape ecology of the pre-settlement and modern eras. For. Ecol. Manag. 2005, 211,
117–139. [CrossRef]

33. Hessburg, P.F.; Smith, B.G.; Salter, R.B.; Ottmar, R.D.; Alvarado, E. Recent changes (1930s–1990s) in spatial
patterns of interior northwest forests, USA. For. Ecol. Manag. 2000, 136, 53–83. [CrossRef]

34. Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western U.S.
ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [CrossRef] [PubMed]

35. Abatzoglou, J.T.; Kolden, C.A. Relationships between climate and macroscale area burned in the western
United States. Int. J. Wildland Fire 2013, 22, 1003–1020. [CrossRef]

36. Barbero, R.; Abatzoglou, J.T.; Larkin, N.K.; Kolden, C.A.; Stocks, B. Climate change presents increased
potential for very large fires in the contiguous United States. Int. J. Wildland Fire 2015, 24, 892–899. [CrossRef]

37. Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US
forests. Proc. Nat. Acad. Sci. USA 2016, 113, 11770–11775. [CrossRef] [PubMed]

38. Miller, J.D.; Safford, H.D.; Crimmins, M.; Thode, A.E. Quantitative evidence for increasing forest fire severity
in the Sierra Nevada and southern Cascade mountains, California and Nevada, USA. Ecosystems 2008, 12,
16–32. [CrossRef]

39. Miller, J.D.; Safford, H. Trends in wildfire severity: 1984 to 2010 in the Sierra Nevada, Modoc Plateau,
and southern Cascades, California, USA. Fire Ecol. 2012, 8, 41–57. [CrossRef]

40. Picotte, J.J.; Peterson, B.; Meier, G.; Howard, S.M. 1984–2010 trends in fire burn severity and area for the
conterminous US. Int. J. Wildland Fire 2016, 25, 413–420. [CrossRef]

41. Meddens, A.J.H.; Kolden, C.A.; Lutz, J.A.; Abatzoglou, J.T.; Hudak, A.T. Spatiotemporal patterns of unburned
areas within fire perimeters in the northwestern United States from 1984 to 2014. Ecosphere 2017, in press.

42. Kolden, C.A.; Lutz, J.A.; Key, C.H.; Kane, J.T.; van Wagtendonk, J.W. Mapped versus actual burned area
within wildfire perimeters: Characterizing the unburned. For. Ecol. Manag. 2012, 286, 38–47. [CrossRef]

43. Wright, C.S.; Agee, J.K. Fire and vegetation history in the eastern Cascade Mountains, Washington. Ecol. Appl.
2004, 14, 443–459. [CrossRef]

44. United States Department of Agriculture (USDA); United States Department of the Interior (USDOI). Record
of Decision for Amendments to Forest Service and Bureau of Land Management Planning Documents within the
Range of the Northern Spotted Owl, Attachment A: Standards and Guidelines for Management of Habitat for
Late-Successional and Old-Growth Forest Related Species within the Range of the Northern Spotted Owl; U.S.
Government: Washington, DC, USA, 1994.

45. Williams, C.K.; Smith, B. Forested Plant Associations of the Wenatchee National Forest; US Forest Service Pacific
Northwest Region, Wenatchee National Forest: Portland, OR, USA, 1991.

46. Holstine, C.E. An Historical Overview of the Wenatchee National Forest, Washington; Rep. 100–80; Archaeological
and Historical Services, Eastern Washington University: Cheney, WA, USA, 1992.

47. Everett, R.L.; Martin, S.; Bickford, M.; Schellhaas, R.; Forsman, E. Variability and Dynamics of Spotted Owl
Nesting Habitat in Eastern Washington; General Technical Report; INT-GTR-291; United States Department of
Agriculture Forest Service: Ogden, UT, USA, 1991; pp. 35–39.

48. Western Regional Climate Center. Available online: www.wrcc.dri.edu (accessed on 21 March 2015).
49. Key, C.H.; Benson, N.C. Landscape Assessment (LA) Sampling and Analysis Methods; US Forest Service: Ogden,

UT, USA.
50. Morgan, P.; Keane, R.E.; Dillon, G.K.; Jain, T.B.; Hudak, A.T.; Karau, E.C.; Sikkink, P.G.; Holden, Z.A.;

Strand, E.K. Challenges of assessing fire and burn severity using field measures, remote sensing and
modelling. Int. J. Wildland Fire 2014, 23, 1045–1060. [CrossRef]

51. Zhu, Z.; Key, C.H.; Ohlen, D.; Benson, N.C. Evaluating Sensitivities of Burn Severity-Mapping Algorithms for
Different Ecosystems and Fire Histories; Joint Fire Science Program: Boise, ID, USA, 2006.

52. Welch, B.L. The generalization of “Student’s” problem when several different population variances are
involved. Biometrika 1947, 34, 28–35. [CrossRef] [PubMed]

53. McCune, B.; Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 2002,
13, 603–606. [CrossRef]

54. LANDFIRE. Available online: www.landfire.gov (accessed on 24 September 2015).
55. Rollins, M.G. LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment. Int. J.

Wildland Fire 2009, 18, 235–249. [CrossRef]

63



Forests 2017, 8, 400

56. Keane, R.E.; Burgan, R.; van Wagtendonk, J.W. Mapping wildland fuels for fire management across multiple
scales: Integrating remote sensing, GIS, and biophysical modeling. Int. J. Wildland Fire 2001, 10, 301–319.
[CrossRef]

57. Keane, R.E.; Karau, E.C. Evaluating the ecological benefits of wildfire by integrating fire and ecosystem
simulation models. Ecol. Model. 2010, 221, 1162–1172. [CrossRef]

58. Strand, E.K.; Vierling, L.A.; Bunting, S.C.; Gessler, P.E. Quantifying successional rates in western aspen
woodlands: Current conditions, future predictions. For. Ecol. Manag. 2009, 257, 1705–1715. [CrossRef]

59. Haugo, R.; Zanger, C.; DeMeo, T.; Ringo, C.; Shlisky, A.; Blankenship, K.; Simpson, M.; Mellen-McLean, K.;
Kertis, J.; Stern, M. A new approach to evaluate forest structure restoration needs across Oregon and
Washington. For. Ecol. Manag. 2015, 335, 37–50. [CrossRef]

60. Lillybridge, T.R.; Kovalchik, B.L.; Williams, C.K.; Smith, B.G. Field Guide for Forested Plant Associations of
the Wenatchee National Forest; Gen. Tech. Rep. 359; US Forest Service Pacific Northwest Research Station:
Portland, OR, USA, 1995.

61. ESSA Technologies, Ltd. Vegetation Dynamics Development Tool User Guide, Version 6.0; ESSA Technologies
Ltd.: Vancouver, BC, Canada, 2007.

62. Smith, A.M.S.; Eitel, J.U.H.; Hudak, A.T. Spectral Analysis of Charcoal on Soils: Implications for Wildland
Fire Severity Mapping Methods. Int. J. Wildland Fire 2010, 19, 976–983. [CrossRef]

63. Roy, D.P.; Boschetti, L.; Smith, A.M.S. Satellite remote sensing of fires. In Fire Phenomena and the Earth System:
An Interdisciplinary Guide to Fire Science; Belcher, C.M., Rein, G., Eds.; John Wiley & Sons Ltd.: Chichester,
UK, 2013; ISBN 978-0-470-65748-5.

64. Smith, A.M.S.; Sparks, A.M.; Kolden, C.A.; Abatzoglou, J.T.; Talhelm, A.F.; Johnson, D.M.; Boschetti, L.;
Lutz, J.A.; Apostol, K.G.; Yedinak, K.M.; et al. Towards a new paradigm in fire severity research using
dose-response experiments. Int. J. Wildland Fire 2016, 25, 158–166. [CrossRef]

65. Korhonen, L.; Korhonen, K.T.; Rautiainen, M.; Stenberg, P. Estimation of forest canopy cover: A comparison
of field measurement techniques. Silva Fennica 2006, 40, 577–588. [CrossRef]

66. Swanson, M.E.; Franklin, J.F.; Beschta, R.L.; Crisafulli, C.M.; DellaSala, D.A.; Hutto, R.L.; Lindenmayer, D.B.;
Swanson, F.J. The forgotten stage of forest succession: Early-successional ecosystems on forest sites.
Front. Ecol. Environ. 2011, 9, 117–125. [CrossRef]

67. Barrett, S. Fire suppression’s effects on forest succession within a central Idaho wilderness. West. J. Appl. For.
1988, 3, 76–80.

68. Hessburg, P.F.; Churchill, D.J.; Larson, A.J.; Haugo, R.D.; Miller, C.; Spies, T.A.; North, M.P.; Povak, N.A.;
Belote, R.T.; Singleton, P.H.; et al. Restoring fire-prone Inland Pacific landscapes: Seven core principles.
Landsc. Ecol. 2015, 30, 1805–1835. [CrossRef]

69. Smith, A.M.S.; Kolden, C.A.; Tinkham, W.T.; Talhelm, A.F.; Marshall, J.D.; Hudak, A.T.; Boschetti, L.;
Falkowski, M.J.; Greenberg, J.A.; Anderson, J.W.; et al. Remote sensing the vulnerability of vegetation in
natural terrestrial ecosystems. Remote Sens. Environ. 2014, 154, 322–337. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

64



Article

Mixed-Severity Fire Fosters Heterogeneous Spatial
Patterns of Conifer Regeneration in a Dry
Conifer Forest

Sparkle L. Malone 1,2,*, Paula J. Fornwalt 1, Mike A. Battaglia 1, Marin E. Chambers 3,

Jose M. Iniguez 4 and Carolyn H. Sieg 4

1 US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 240 W. Prospect Road,
Fort Collins, CO 80526, USA; pfornwalt@fs.fed.us (P.J.F.); mbattaglia@fs.fed.us (M.A.B.)

2 Department of Biological Sciences, Florida International University, 11200 S.W. 8th Street, Miami,
FL 33199, USA

3 Colorado Forest Restoration Institute, Colorado State University, Department of Forest & Rangeland
Stewardship, Mail Delivery 1472, Fort Collins, CO 80523, USA; marin.chambers@colostate.edu

4 US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2500 S. Pine Knoll Drive,
Flagstaff, AZ 86001, USA; jiniguez@fs.fed.us (J.M.I.); csieg@fs.fed.us (C.H.S.)

* Correspondence: smalone@fiu.edu; Tel.: +1-305-348-1988

Received: 25 November 2017; Accepted: 17 January 2018; Published: 20 January 2018

Abstract: We examined spatial patterns of post-fire regenerating conifers in a Colorado, USA, dry
conifer forest 11–12 years following the reintroduction of mixed-severity fire. We mapped and
measured all post-fire regenerating conifers, as well as all other post-fire regenerating trees and
all residual (i.e., surviving) trees, in three 4-ha plots following the 2002 Hayman Fire. Residual
tree density ranged from 167 to 197 trees ha−1 (TPH), and these trees were clustered at distances
up to 30 m. Post-fire regenerating conifers, which ranged in density from 241 to 1036 TPH, were
also clustered at distances up to at least 30 m. Moreover, residual tree locations drove post-fire
regenerating conifer locations, with the two showing a pattern of repulsion. Topography and post-fire
sprouting tree species locations further drove post-fire conifer regeneration locations. These results
provide a foundation for anticipating how the reintroduction of mixed-severity fire may affect
long-term forest structure, and also yield insights into how historical mixed-severity fire may have
regulated the spatially heterogeneous conditions commonly described for pre-settlement dry conifer
forests of Colorado and elsewhere.

Keywords: forest recovery; wildfire effects; stem maps; resilient ecosystems; Pike National Forest;
Hayman Fire

1. Introduction

Historically, many dry conifer forests of western North America were regulated by a relatively
frequent mixed-severity fire regime [1–3]. Individual fires were typically dominated by low- and
moderate-severity effects where many overstory trees survived, but also contained small patches
of high-severity effects where most or all overstory trees were killed. These fires also acted as a
control on tree recruitment [4,5], thereby resulting in a variety of tree densities and tree size and age
distributions [5,6]. The clustered spatial pattern commonly associated with historical dry conifer
stands—where well-defined groups of trees and individual trees were interspersed in a matrix of
treeless openings is further attributed to the relatively frequent historical fire regime [7–9]. This
heterogeneity in historical forest structure is thought to be more resilient to drought and subsequent
wildfires [1], yet little is known regarding the process responsible for this spatial structure. Although we

Forests 2018, 9, 45 65 www.mdpi.com/journal/forests



Forests 2018, 9, 45

know that historically dry conifer forests had a clustered spatial structure, we do not fully understand
whether this pattern was a function of fire-caused mortality, post-fire regeneration, or both.

After nearly a century of fire exclusion, wildfire activity in western North American dry
conifer forests has increased [9–12]. Many of these recent wildfires contain uncharacteristically large
high-severity burn patches, attributed to higher forest density and homogeneity as a result of fire
exclusion, as well as livestock grazing [13], logging [14–16], and a warmer and drier climate [9,11].
However, recent wildfires also commonly include areas that burned with mixed-severity fire—that is,
areas that are a more heterogeneous combination of low-, moderate-, and high-severity patches [17–19].
In mixed-severity portions of recent wildfires where high-severity patches are small, fires more closely
align with the historical fire regime [6,20], and therefore may represent a reintroduction of the dominant
historical processes. As a result, recent fires may provide an opportunity to better understand how
mixed-severity fires shape tree spatial patterns and subsequent regeneration.

Post-fire forest recovery research in ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C.
Lawson) dominated dry conifer forests has been primarily aimed at examining regeneration following
recent high-severity fire. In the interiors of large high-severity patches, regeneration tends to be
sparse, suggesting that forest recovery may be delayed or may not occur at all [21–26]. Along the
edges of high-severity patches, regeneration tends to be concentrated in areas near surviving trees,
as most species in dry conifer forests rely on seed production from live trees to regenerate [25–29].
Regeneration is also commonly concentrated in more mesic sites, such as areas at higher elevations or
with more northerly aspects, and in the vicinity of nurse structures such as downed logs and other
regenerating trees [24–31].

In contrast, little is known about regeneration following recent mixed-severity fire. Some research
suggests that recent mixed-severity fire effects are effectively enhancing forest structure, improving
drought resilience, and reducing the probability of high severity fire in subsequent fires [32,33]. It is
therefore reasonable to expect that the re-introduction of mixed-severity fire is likely to have benefits
to post-fire forest structure and function. Moreover, tree spatial patterns are important because
they influence forest dynamics including tree establishment, competition, mortality and even fire
behavior [7]. Although essential for understanding how fire shapes ponderosa pine forests, the
forest structure created by mixed-severity fire and its effect on subsequent regeneration has rarely
been explored in a spatial context. It is therefore unclear how the re-introduction of mixed-severity
fire will influence the residual forest structure and subsequent forest development in ponderosa
pine-dominated forests.

The objective of this research is to evaluate spatial patterns of post-fire conifer regeneration
following mixed-severity burning in the 2002 Hayman Fire, Colorado, USA. Specifically, we aim
to (1) describe the post-fire forest structure created by the re-introduction of mixed-severity fire;
(2) examine the relationship between the residual forest and post-fire conifer regeneration; and (3)
determine how abiotic and biotic factors influence post-fire conifer regeneration density (trees m−2). We
hypothesized that (1) trees in the residual forest will be clustered, creating openings and opportunities
for conifer regeneration; (2) post-fire residual conifers and regeneration will show repulsion, reflecting
the preference for high light environments in regenerating conifers; and (3) post-fire regenerating
conifer density will not be limited by distance from residual conifers, but by interactions with
sprouting trees and by topography. That is, we expect regenerating conifers to be concentrated
in more mesic areas, similar to patterns found in high-severity areas [26]. Understanding the
characteristics of ponderosa pine-dominated forest and requirements for seed production, germination,
and establishment, we expect topography and burn severity to be important drivers of regeneration
density [25]. Characterizing these patterns of tree regeneration following wildfire is critical for
understanding the drivers of the clustered spatial patterns observed in historical dry conifer forests,
and anticipating longer-term stand structure and intertwined ecological properties and processes such
as potential fire behavior and understory plant community composition and productivity.
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2. Materials and Methods

2.1. Study Area

The Hayman Fire provides an ideal landscape for examining the post-fire forest structure created
by mixed-severity fire and subsequent conifer regeneration. This 52,000 ha fire is the largest known
wildfire in Colorado (USA) within the last century, making it of considerable interest to land managers,
policy makers, researchers, and the public [34]. Located ~60 km southwest of Denver, the Hayman
Fire was ignited on 8 June 2002 (Figure 1) in an area that receives 511 mm of precipitation year−1 and
has a mean annual temperature of 6 ◦C [35]. The fire predominantly burned through stands of overly
dense and homogeneous ponderosa pine-dominated forest from which the historical mixed-severity
fire regime had been excluded for about a century [34,36,37]. A large portion of the Hayman Fire
burned with high-severity (43%; Monitoring Trends in Burn Severity; [38], much of it in a single day
with extreme weather conditions [39]. Low- and moderate-severity burning occurred on 34% and 22%
of area, respectively, typically under less extreme weather conditions [39]. Additional information on
fire behavior, fire weather, and fire effects can be found in The Hayman Fire Case Study [34].

Figure 1. The Hayman Fire and plot (H1, H2, and H3) locations in the Colorado Front Range, USA.
Within each plot, residual trees (black points) are shown relative to post-fire regeneration (red points)
(bottom row). Esri basemap layers: the World Terrain Reference shows the Hayman Fire in relation to
Denver and World Imagery denotes topography and forest cover in relation to plot locations within the
fire. Monitoring trends in Burn Severity (MTBS) shows the mixed-severity fire effect in the Hayman
Fire. Thematic burn severity classes include unchanged (green), low- (cyan), moderate- (yellow), and
high- (red) severity (left side; scale is 4 ha).

The ponderosa pine-dominated forests burned by the Hayman Fire were variable in overstory
tree density and composition [37]. Tree density was greater at higher elevations, on northerly slopes,
and in draws, where moisture was more available. Douglas-fir (Pseudotsuga menziesii Franco) tended
to be more abundant in these more moist locales, often becoming codominant with ponderosa pine.
Quaking aspen (Populus tremuloides Michx.), blue spruce (Picea pungens Engelm.) and lodgepole pine
(Pinus contorta Douglas ex Loudon), also became more common as elevation increased and as aspect
became more northerly. Understory plant communities prior to the fire were dominated by graminoids
and forbs (e.g., common yarrow (Achillea millefolium L.), white sagebrush (Artemisia ludoviciana Nutt.),
Ross’ sedge (Carex rossii Boott), and mountain muhly (Muhlenbergia montana (Nutt.) Hitchc.) [40].
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Relatively short-statured shrubs were also present (e.g., kinnikinnick (Arctostaphylos uva-ursi (L.)
Spreng.) and alderleaf mountain mahogany (Cercocarpus montanus Raf.).

2.2. Study Design

We established 4-ha plots (n = 3) within the Hayman Fire perimeter in 2013 and 2014 (Figure 1).
Plot locations were determined by first using ArcGIS 10.1 (Esri, Redlands, CA, USA) to identify suitable
large-scale (~15 to 35 ha) study sites. Suitable sites were areas that burned with a heterogeneous mosaic
of severities (as indicated by the MTBS burn severity product and ArcGIS’ aerial imagery basemap),
that were on US Forest Service land that were accessible (i.e., within 2–3 km of a road), and not
impacted by post-fire logging or planting activities. Once suitable sites were identified, points were
randomly generated in ArcGIS, and one point was randomly selected. We then established a plot
corner at that point, with the plot oriented to keep the plot within the study site or to avoid undesirable
features within the plot (i.e., roads, streams, large rock outcroppings, and areas heavily utilized by the
public). All plots contained mixed-severity fire effects, verified by MTBS burn severity, which included
elements of low and moderate severity fire, and small portions of high severity that occupied no
more than 1 ha within the plot (Figure 1). Post-fire regeneration was measured 12–14 years following
wildfire to allow enough time for regeneration to occur.

Within each plot, we mapped all live trees >15 cm tall (Figure 1). A rangefinder (Laser Technologies
Inc. TruPulse 360-B) was used in combination with a Trimble global positioning system (GeoXH with
Terrasync, accurate to ±20 cm; Trimble Navigation Limited, Sunnyvale, CA, USA) to record the
location of every living tree with high accuracy (±38 cm) [30]. In addition to location, we recorded
diameter at breast height (DBH), tree height, and species for each overstory tree (i.e., >1.4 m tall),
and we recorded tree height, species, and whether germination occurred pre- or post-fire for each
regenerating tree (i.e., >15 cm tall and <1.4 m tall). We refer to regeneration that established pre-fire as
advanced regeneration and all regeneration that established after the fire as post-fire regeneration. It is
important to note that in some portions of the plots we encountered dense clumps of regenerating
trees, making it time-consuming to map each one individually. For clumps where regenerating trees
were similar in species, height, and age, we mapped the center point of the clump and we recorded
the clump radius and the number of regenerating trees in the clump, in addition to recording species,
average height, and pre- or post-fire germination status. The radius of the clumps ranged from 0.5 to
4 m, with most being 1 m or less.

2.3. Residual Forest Structure

Forest structure has two principal dimensions: the types, number and sizes of individual structural
elements (e.g., individual trees); and their arrangement in space [7,41]. Here, residual forest structure
refers to remnant surviving trees and does not include dead standing or downed trees. We described
non-spatial aspects of forest structure using tree density (trees per hectare; TPH), diameter at breast
height (DBH), tree height, basal area (BA), and quadratic mean diameter (QMD) [42,43]. To estimate
canopy cover of the residual forest, we used a crown radius of 3 m for all overstory trees [8].
We measured the nearest neighbor distance for each tree and the distance to the nearest tree for
each 1 m pixel within the plot using the R package spatstat [44,45]. We also used spatial quantitative
descriptions of forest stand structure that describe three structural characteristics: positioning, mixture,
and differentiation [46] (Table 1).
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Table 1. Non-spatial and spatial measures of forest structure used to evaluate study objectives
and hypotheses.

Objectives Approach Inference Scale Hypotheses

Describe
residual forest

structure

Non-spatial
Metric

Density, DBH,
Height, QMD,
Canopy Cover

Non-spatial
attributes of the
residual forest

Plot

Spatial Metric

Nearest
Neighbor
Distance,

Distance to the
Nearest Tree

Spatial attributes of
trees in the residual

forest
Within-plot

Spatial Metric
(Positioning)

Clark and
Evans Index

(CEI)

Spatial pattern of
the residual forest Plot 1

Spatial
Analysis

(Positioning)

Ripley’s K
Function

Spatial pattern of
trees in the residual

forest across
distance scales

Within-plot 1

Spatial Metric
(Species
Mixture)

Durchmischung
Index (DMI)

Residual forest
species

associations
Plot

Spatial Metric
(Differentiation)

Differenzierung
Index (DZI)

Residual forest
horizontal and

vertical structural
complexity

Plot

Describe the
relationship
between the

residual forest
and post-fire

conifer
regeneration

Spatial
Analysis

(Positioning)

Ripley’s K
Function

Patterning of
regenerating trees

across distance
scales

Within-plot

Spatial
Analysis

(Positioning)

Bivariate K
Function

Attraction or
repulsion between
residual trees and
regenerating trees

Within-plot 2

Drivers of
post-fire conifer

regeneration
density

Spatial
Analysis

(Positioning)

Neyman–Scott
Point-Process

Model

Drivers of
regeneration

density
Within-plot 3

Positioning is the spatial distribution of points (i.e., trees) in an area. The Clark and Evans
index (CEI) was used to characterize point patterns at the plot level as either random, regular, or
clustered [46]. In a completely random pattern (CEI = 1), the position of any one point is independent
of the position of all the other points. In a regular pattern (CEI > 1), points are farther away from their
nearest neighbors than would be expected for a random pattern. Points are more likely to be found near
other points in a clustered pattern (CEI < 1), and the average distance from any arbitrary point to its
nearest-neighbor is less than expected in a completely random pattern. We also evaluated positioning
with Ripley’s K [7,8,47,48] using the R package spatstat [44,45]. The K function estimates spatial
dependence between points of the same type (e.g., residual trees) across spatial scales by determining
the expected number of points within a distance (r) from any randomly sampled point. For each plot,
we evaluate deviations from complete spatial randomness (CSR) by comparing observed data with an
inhomogeneous Poisson null model [49–51]. We used an inhomogeneous rather than a homogeneous
Poisson process to account for non-constant density gradients in the data [52]. Points were randomly
distributed under the inhomogeneous Poisson null model 999 times to test for departure from CSR. It
is common to apply a correction for edge effects when calculating the K function. Using the correction
= “best” setting in the package spatstat, the best available edge correction, “the isotropic correction”
was applied. Observed patterns differ from CSR where the plot of K(r) falls outside the simulated
envelope for a random pattern. A clustered point pattern is indicated by a K(r) above the envelope
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(i.e., more points present than would be expected under CSR) and regular spacing occurs where K(r)
falls below the envelope (i.e., fewer points present than would be expected under CSR). Unlike the
CEI, the K function describes characteristics of the point processes at many distance scales and uses
spatial randomness as a benchmark to define spatial regularity and clustering [7]. Since clustering
and regularity are characteristics of a pattern at a specific distance scale, point patterns can exhibit
both clustering and regularity at the same time. For example, regeneration can be clustered at longer
distances depending on how their parent trees are spaced, but regularly spaced at a small scale because
they compete for resources. There is also evidence in some studies of clustering [53,54] and perhaps
facilitation at small scales [29].

Mixture refers to spatial interspersion among species within an area and was quantified with
the Durchmischung index (DMI) [46]. Ranging between 0 and 1, the DMI describes the degree to
which species exist in homogeneous clusters, exhibit repulsion, or show attraction to other species.
Strongly represented species or those that exist in homogeneous groups will result in low DMI values,
whereas less frequent or regularly positioned species will have high DMI values (indicating that a
species nearest neighbor is likely to be a different species) [46]. We calculated DMI on a plot level
to understand the average degree of mixing between species in dry conifer forests and use the three
nearest neighbors to calculate DMI for each plot [46]. Although we explored the effects of increasing
the nearest neighbors up to six trees, results did not change so we report the DMI using the three
nearest neighbors to aid comparisons with other studies [46].

Differentiation is a measure of the variation in tree height or DBH among neighboring trees (three
nearest neighbors). We calculated the Differenzierung index (DZI) using total tree height (DZITH)
and DBH (DZIDBH) to measure vertical and horizontal structure, respectively. Ranging between 0
and 1, values from 0 to 0.2 represent low differentiation (similar height or DBH between neighboring
trees), 0.2 to 0.4 moderate differentiation, 0.4 to 0.6 clear differentiation, 0.6 to 0.8 strong differentiation,
and 0.8 to 1 very strong differentiation or heterogeneity between the three nearest neighbors [46].
Measuring horizontal and vertical variation is important for understanding the amount of within-plot
variation among neighboring trees.

2.4. Post-Fire Regeneration

Similar to the residual trees, the spatial pattern of post-fire conifer regeneration was analyzed using
Ripley’s K functions [48], in the R package spatstat [44,45]. This approach was used to test for departure
from a spatially random pattern across distance scales to understand at what distance post-fire
regeneration exhibits a random, clustered, or regular pattern. The spatial relationship between residual
trees and post-fire regeneration was evaluated using a bivariate K-function [50,55]. The bivariate
K-function calculates the expected mean number of post-fire regenerating trees within a given radius
(r; i.e., distance) of an arbitrary residual tree. This approach evaluates attraction between trees and
regeneration within r. The null hypothesis of spatial independence between the two groups is refuted
where values of K(r) fall above or below the bivariate inhomogeneous Poisson null model simulation
envelope. The inhomogeneous Poisson null model envelope is calculated using random toroidal
shifts of one pattern relative to the other during each of the 999 Monte Carlo iterations. A K(r) above
the simulation interval is indicative of a positive spatial association (attraction; i.e., there is more
regeneration than would be expected within r). Where K(r) falls below the confidence interval, there is
a negative spatial association (repulsion; i.e., less regeneration than would be expected within r). This
approach explores at what distances trees and regeneration show attraction and repulsion.

Potential drivers of post-fire conifer regeneration density were modeled using a Neyman–Scott
point-process model, which is routinely used to describe clumped spatial patterns [50,56]. Least
squares techniques were used to optimize the model parameters. Simulation envelopes were generated
using the Neyman–Scott distribution, after the parameters had been fit to the data, to test for a
departure from the Neyman–Scott process. Simulations of CSR were generated through 999 iterations
of a Monte Carlo simulation. If the K(t) plot for the observed data falls within the simulated envelope
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for the Neyman–Scott process, it suggests that the pattern has the properties of the specified model.
Nearest residual tree distance (m) and height (m), burn severity [57,58], topographic wetness index
(TWI) [59], topographic position index (TPI) [60,61], elevation (m), and nearest aspen cluster density
and distance (m) were explored as drivers of post-fire conifer density. All variables were initially
placed in the model. Variables of least significance were removed from the model one at a time until all
remaining variables were significant at an α of 0.05. We calculated topographic measurements (TWI,
and TPI) using 30 m resolution digital elevation models (Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM); [62]). We used base tools in
ArcGIS 10.3 (ESRI, Redlands, CA, USA) with the Geomorphology and Gradient Metrics toolbox for
these calculations.

3. Results

3.1. Residual Forest Structure

The residual forest was dominated by conifers that survived the wildfire. Overstory trees (i.e.,
>1.4 m tall) accounted for 99% of the residual forest on average (Table 2), and advanced regeneration
accounted for the remainder. Ponderosa pine was the dominant species (71% of trees on average) in the
residual forest and Douglas-fir was the second most common species (27%). A mean DMI of 0.6 ± 0.02
indicated that ponderosa pine was very dominant and therefore more likely to be surrounded by
the same species (Table 2). Residual tree density ranged from 167 to 197 TPH across all plots, while
average percent canopy cover was 31.5 ± 1.8% (Table 2) due to overstory trees occurring in groups with
overlapping crowns. The average nearest neighbor distance between overstory trees in the residual
forest was 2.9 ± 0.1 m and the average distance to the nearest tree for any point within the plots was
6.1 ± 0.3 m. CEI suggested that trees were clustered, and Ripley’s K suggested that this clustering
occurred at radii less than 30 m (Table 2; Figure 2). Average indices of horizontal (DZIDBH) and
vertical (DZITH) structure showed moderate vertical differentiation and clear horizontal differentiation
(Table 2).

Table 2. Residual forest structure within the Hayman Fire plots (H1, H2, and H3) 11–12 years following
burning. This summarization includes all conifers and aspen (POTR) which represents 0.61% of the
residual trees. Measures of trees per hectare (TPH), % ponderosa pine (PIPO), % Douglas-fir (PSME),
% aspen (POTR), basal area (BA), quadratic mean diameter (QMD), Clark and Evans index (CEI),
Durchmischung index (DMI), horizontal differentiation (DZIDBH), and vertical differentiation (DZITH)
are included in this summary.

Plot H1 H2 H3 Average Standard Error

Residual Trees (%) 99 99 100 99 0.4
Residual Regeneration (%) 1 1 0 1 0.4

TPH 167 197 173 179 9
Canopy Cover (%) 29 35 30 32 2

% PIPO 74 73 65 71 3
% PMSE 22 25 34 27 4
% POTR 3 1 0.4 1 1

BA (m2 ha−1) 8 11 8 9 1
QMD (cm) 25 27 23 25 1

Nearest Neighbor (m) 3 3 3 3 0.1
Distance from Nearest Tree (m) 6.2 5.6 6.6 6.1 0.3

CEI −0.3 −0.2 −0.3 −0.3 0.01
DMI 0.6 0.6 0.6 0.6 0.01

DZIDBH 0.5 0.53 0.5 0.5 0.01
DZITH 0.3 0.3 0.3 0.3 0.01
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Figure 2. (a) Ripley’s K for residual trees in the Hayman Fire plots (H1, H2, and H3). A clustered point
pattern is indicated by an observed K(r) (black lines) that is above the complete spatial randomness
(CSR) simulated envelope (gray shaded region), whereas a regular point pattern is indicated by an
observed K(r) that falls below the envelope. Trees exhibited clustering at distances up to ~30 m (yellow
shaded region); (b) Perspective plots of residual tree density (trees m−2) in the Hayman Fire, with
density represented by the height and color of the plot.

3.2. Post-Fire Regeneration

Unlike the sparse advanced regeneration observed in the residual forest, post-fire regeneration
was dense, averaging 685 TPH. Ponderosa pine accounted for 73% of post-fire regeneration on average,
while Douglas-fir and aspen accounted for 18% and 8%, respectively (Table 3). Focusing on post-fire
regenerating conifers, TPH averaged 630, and height averaged 0.33 m. Just 32% of post-fire regenerating
conifers were found under residual forest canopy cover, on average. Ripley’s K indicated that post-fire
conifer regeneration exhibited a clustered pattern across all distances in H1 and H2, and at distances
up to 30 m in H3, beyond which patterns were regular (Figure 3). Evaluating bivariate changes in
conifer regeneration densities relative to those of residual trees indicated that regeneration and trees
were attracted at very short distances (<0.5 m) and repulsed at distances >1 m (Figure 4).

Table 3. Post-fire regeneration in the Hayman Fire plots (H1, H2, and H3) 11–12 years following burning.
Measures of stems per hectare (SPH), stem height, and percent of SPH comprised of ponderosa pine
(PIPO), Douglas-fir (PSME), and aspen (POTR) are summarized.

Plot H1 H2 H3 Average Standard Error

SPH (Conifers) 728 (613) 1071 (1036) 256 (241) 685 (630) 236 (230)
Stem Height (Conifers) 0.31 (0.28) 0.30 (0.29) 0.41 (0.41) 0.34 (0.33) 0.04 (0.04)

% PIPO 67 80 70 73 4
% PMSE 16 16 23 18 2
% POTR 16 3 6 8 4
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Figure 3. (a) Ripley’s K for post-fire conifer regeneration in the Hayman Fire plots (H1, H2, and H3).
A clustered point pattern is indicated by an observed K(r) (black lines) that is above the CSR simulated
envelope (gray shaded region) and regular spacing is indicated by an observed K(r) that is below the
envelope. The clustered region is shown in yellow. Clustering in post-fire conifer regeneration occurred
across all distances in H1 and H2 and at distances <30 m in H3. Beyond 30 m regeneration occurred
in a regular pattern; (b) Perspective plots of post-fire conifer regeneration density (stems m−2) in the
Hayman Fire, with density represented by the height and color of the plot.

Figure 4. (a) Bivariate K-functions of associations between residual trees and post-fire conifer
regeneration in the Hayman Fire plots (H1, H2, and H3). Attraction (yellow shaded region) is indicated
by an observed K(r) that is above the CSR simulated confidence envelope (grey shaded region), while
repulsion is indicated by an observed K(r) that falls below the envelope. Trees and post-fire conifer
regeneration showed repulsion at distances greater than 1 m; (b) Perspective plots of residual tree and
post-fire conifer regeneration density (trees m−2). The height of the plot represents residual tree density
and the color indicates regeneration density. Regeneration densities were higher in areas with lower
tree densities.

The Neyman–Scott point-process model adequately described clumped patterns of post-fire
conifer regeneration density (stems m−2; Figure 5), while nearest residual tree distance, burn severity,
TWI, elevation, and nearest aspen cluster distance were significant drivers of this density (Table 4;
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Figure 6). Nearest residual tree distance was negatively correlated with post-fire conifer regeneration,
suggesting that post-fire conifer regeneration was more abundant closer to pre-fire residual trees.
Unlike the bivariate K-function, the distance to the nearest tree layer considers the location of all trees
within a plot to determine a distance value for each location at a 1 m resolution. Burn severity was
positively correlated with post-fire regeneration density, indicating that moderate- and high-severity
areas were more likely to have higher regeneration densities than low-severity and unburned areas.
In plot H1, TWI was negatively correlated with regeneration density and positively correlated with
regeneration density in H3. These results suggest that higher moisture levels were associated with
greater conifer regeneration except where topographic variation was low. In H1, elevation was
negatively correlated with regeneration density and in H3, elevation was positively correlated with
regeneration density. The distance to the nearest post-fire aspen cluster was negatively correlated
with conifer regeneration in H1 and positively correlated in H3. In the highest elevation plot with
more topographic variation (H1), aspen clusters and conifer regeneration showed repulsion, while in
the lowest elevation plot with minimal topographic variation (H3), conifer regeneration density was
greater closer to aspen clusters.

Figure 5. (a) Post-fire regeneration density in relation to the Neyman–Scott point process model for
plots (H1, H2, and H3) in the Hayman Fire. Observed data (black lines) were within the bounds of
the simulated envelope for the Neyman–Scott model (shaded region), confirming that the data were
spatially clumped at all distances. Comparing (b) observed and (c) predicted densities shows that the
model is capturing general trends in regeneration density.

Table 4. Estimates of regeneration density (stems m−2) regression coefficients, standard errors (S.E.)
and p-values for the Hayman Fire plot level point pattern models. The distance to the nearest residual
tree, burn severity, topographic wetness index (TWI), elevation, and the distance to the nearest aspen
(POTR) cluster were important drivers of post-fire regeneration density.

Plot Intercept
Nearest

Residual Tree
Distance (m)

Burn Severity
TWI Elevation Nearest POTR

Cluster (m)Low Moderate High

H1
Estimate 262.627 −0.036 0.357 1.029 0.842 −0.007 −0.112 −0.007

S.E. 7.530 0.002 0.057 0.063 0.078 −0.014 0.003 −0.014
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

H2
Estimate −1.113 −0.042 0.657 1.091 0.939

S.E. 0.028 0.002 0.028 0.026 0.042
p-value <0.001 <0.001 <0.001 <0.001 <0.001

H3
Estimate −49.284 0.266 0.616 0.301 0.002 0.018 0.002

S.E. 9.175 0.092 0.087 0.098 0.001 0.004 0.001
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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Figure 6. Significant drivers of post-fire regeneration density for the Hayman Fire plots (H1, H2,
and H3) include nearest residual tree distance (m), burn severity, topographic wetness index (TWI),
elevation, and the nearest aspen (POTR) cluster. Thematic burn severity classes include unburned
(green), low- (cyan), moderate- (yellow), and high- (red) severity.

4. Discussion

We examined spatial patterns of post-fire conifer regeneration following the reintroduction of
mixed-severity fire in a Colorado ponderosa pine-dominated forest. We hypothesized that (1) trees
in the residual forest would be clustered, creating openings and opportunities for regeneration;
(2) residual trees and post-fire conifer regeneration would exhibit repulsion; and (3) post-fire
regenerating conifer density would not be limited by distance from residual trees. Our results support
our hypotheses; moreover, they highlight how other biotic and abiotic factors, such as topography and
the location of sprouting species, further complicate spatial patterns in post-fire conifer regeneration.

4.1. Residual Forest Structure

The re-introduction of mixed-severity fire after a century of fire exclusion resulted in a clustered
spatial pattern of residual trees, with densities that were still higher than those reported for historical
forests elsewhere in the region [8]. However, residual tree densities were lower than those reported for
undisturbed forests in the region [31,37,63], as well as for recently restored forests [31,63]. Basal area
and canopy cover values following mixed-severity fire were also within the range of those reported
for restored forests [31,63]. The lack of advanced regeneration suggests that these trees, if they were
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present before the fire, were killed. Furthermore, the clustered nature of the residual forest suggests that
trees survived in groups. These results indicate that fire-caused mortality is at least partly responsible
for creating the historical spatial pattern reported in a number of studies [7,8,64]. Many of these studies
have speculated that the spatial clustering was a result of fire, but this is one of the only studies that
have documented this pattern immediately post-fire.

4.2. Post-Fire Regeneration

Following recent large fires, one of the limiting factors of natural conifer regeneration is a seed
source [65], particularly for ponderosa pine which has a relatively large seed. For species without
serotinous cones, tree establishment is largely a function of seed dispersal [66] and competition from
other species [23,67]. While the conditions created by high-severity fire can lead to dispersal and
recruitment limitations [23,25,29], the residual forest structure following mixed-severity fire contained
fire-resistant, seed-bearing conifer trees [68], whose location within the landscape, thick bark, and high
crown base heights facilitated their survival and post-fire forest recovery. The residual forest following
mixed-severity fire was sufficient to support natural regeneration within 12 years following the fire,
in a region where seed masting events are episodic [26,69,70] and occur on average every 3–12 years
for dominant conifers (ponderosa pine and Douglas-fir), with limited seed availability in intervening
years [71].

The clustered spatial pattern of the residual forest allowed for ample openings, which together
had a pronounced effect on conifer regeneration density. Our results suggest that, like the residual
forest, post-fire regeneration also had a tendency to aggregate at distances up to 30 m. Similar to
patterns observed following high-severity fire, distance from the nearest residual tree was a significant
driver of post-fire conifer regeneration density [25,27,29]. However in this case, distance does not
represent a limitation of seed dispersal, but the influence of both light and available space. That is, the
clustered spatial pattern of post-fire regeneration appears to be a direct inverse of the post-fire residual
spatial structure. This interpretation is supported by the significant repulsion between residual trees
and post-fire regeneration at distances greater than 1 m. It is also important to note that patterns in
regeneration density were very similar to patterns observed in the distribution of nearest residual tree
distance across plots. This pattern suggests that seed source was not limiting regeneration patterns, and
that high regeneration rates largely followed patterns in available space (Figure 7) with slightly higher
regeneration occurring in areas due to variations in elevation that influenced moisture conditions
and aspen clusters [27]. This result is important because it suggests that the clustered spatial pattern
observed in historical ponderosa pine studies is attained, in part, in the regeneration process [7,8,64].

Moderate increases in the availability of resources such as light and water can be enough
to influence regeneration establishment and survival [72,73], and drive spatial patterns in forest
structure [74]. Similar attraction patterns have been found in Dahurian larch (Larix gmelinii Rupr),
where its conical canopy is thought to create a light-facilitating environment for regeneration [74].
Results here indicate that at distances farthest from trees, there was less regeneration than would be
expected if there were no benefit to being in close proximity of trees. If light were the dominant driver
of regeneration success, then regeneration would occur at higher frequencies, at greater distances from
overstory trees [74]. Lower light levels created by overlapping canopies and the distribution of small
gaps within a plot would also have influenced the relationship between distance from the nearest tree
and regeneration density.

The residual forest structure following the re-introduction of mixed-severity fire, combined with
the mix of burn severities and environmental conditions, is perpetuating ponderosa pine-dominated
forests. Fire can act as a mechanism of change in plant community composition by altering the
composition of species in the residual forest [75], or by producing post-fire conditions that favor the
establishment of species that did not dominate the pre-fire forest [75,76]. Moisture requirements, one
of the most important characteristics that affects post-fire tree establishment, are likely to change
following fire. The moisture preference of trees can have a strong influence on the distribution of
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species, even at relatively small scales, including after fire, when ambient conditions can be warmer and
drier than pre-fire conditions [77]. Unlike high-severity fire, mixed-severity burns had more positive
effects on the residual forest structure for conifer species and subsequent conifer regeneration [68].
Similar to patterns observed by Kemp et al. [27], conifer species composition did not vary substantially
between the residual trees and post-fire regeneration. Ponderosa pine was the dominant residual tree
species and the species composition of regeneration suggests that this pattern will continue.

Figure 7. (a) The distributions of all post-fire regeneration (red) and nearest residual tree distance (gray)
within plots by nearest residual tree distance (m) in the Hayman Fire. The vertical black line marks
distances under canopy cover; (b) Post-fire perspective plots where the height of the plot represents
the density of post-fire regeneration and the color indicates the distance to the nearest residual tree (m)
for each 4-ha plot (H1, H2, and H3).

4.3. Study Limitations

Major limitations of this study include the low sample size and the lack of information on
the pre-fire forest structure. Although we measured the forest structure following mixed-severity
fire, assessing how the forest structure changed as a result of fire was not possible. Additionally, it is
important to note that like in many other analysis methods, the driving factors and processes that cause
different or even similar spatial patterns (i.e., clustered, random, and regular), including facilitation
(positive effect) or competition (negative effect), are open to interpretation [74]. A clustered spatial
pattern can be an indication of species having similar ecological requirements [78], facilitation among
individuals [79,80], or dispersal limitations at larger scales [81].

5. Conclusions

Forest spatial structure yields important clues to understanding tree interactions with the
environment as well as the dynamics of forest communities. The development of spatial patterns
resulting from positive and negative associations and environmental factors is an important topic
in ecosystem research [74], and has been used here to understand patterns in post-fire regeneration
following mixed-severity fire. Predicting plant community responses to changing environmental
conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can
play an important role in these dynamics, by initiating cycles of secondary succession and generating
opportunities for communities of trees to reorganize.
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Abstract: The 2010 Church’s Park Fire burned beetle-killed lodgepole pine stands in Colorado,
including recently salvage-logged areas, creating a fortuitous opportunity to compare the effects of
salvage logging, wildfire and the combination of logging followed by wildfire. Here, we examine
tree regeneration, surface fuels, understory plants, inorganic soil nitrogen and water infiltration
in uncut and logged stands, outside and inside the fire perimeter. Subalpine fir recruitment was
abundant in uncut, unburned, beetle-killed stands, whereas lodgepole pine recruitment was abundant
in cut stands. Logging roughly doubled woody fuel cover and halved forb and shrub cover.
Wildfire consumed all conifer seedlings in uncut and cut stands and did not stimulate new conifer
regeneration within four years of the fire. Aspen regeneration, in contrast, was relatively unaffected
by logging or burning, alone or combined. Wildfire also drastically reduced cover of soil organic
horizons, fine woody fuels, graminoids and shrubs relative to unburned, uncut areas; moreover,
the compound effect of logging and wildfire was generally similar to wildfire alone. This case study
documents scarce conifer regeneration but ample aspen regeneration after a wildfire that occurred in
the later stage of a severe beetle outbreak. Salvage logging had mixed effects on tree regeneration,
understory plant and surface cover and soil nitrogen, but neither exacerbated nor ameliorated wildfire
effects on those resources.

Keywords: disturbance; forest management; mountain pine beetle; subalpine ecosystem; Colorado;
Rocky Mountains

1. Introduction

Lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia)-dominated ecosystems are adapted
to periods of rapid post-disturbance change, as evidenced by the dense, even-aged forests that
regenerate after wildfire and timber harvest [1,2]. New cohorts of lodgepole also establish readily
after bark beetles (Dendroctonus ponderosae Hopkins) kill overstory pine [3,4]. The response of tree
regeneration and understory plants following such disturbances determines forest vegetation dynamics
and biodiversity [5–9] and has implications for ecosystem productivity and the biogeochemical
processes that regulate soil nutrient retention and export [10–12]. For the 13,800 km2 of forests
infested by bark beetles since the early 2000s in Colorado, USA [13], the likelihood of overlapping
disturbances increases with time as these forests are salvage logged or affected by wildfire [14].
However, the outcomes of compounding salvage logging and wildfire in beetle-killed lodgepole pine
forests remain relatively poorly understood [15,16].

Site conditions and pre-disturbance forest composition and structure influence how individual and
compound disturbance events affect forest ecosystem dynamics [17,18]. For example, while lodgepole
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pine typically regenerates densely after wildfire, seedling densities often vary by orders of magnitude
even across a single wildfire [2,19], reflecting spatial patterns of fire behavior, fuel load, slope and
other site attributes [15,20,21]. The implications of bark beetle outbreaks on wildfire probability and
severity are mixed [22,23]. For example, flammability of canopy fuels increases following beetle
infestation at stand scales [24], whereas bark beetle activity is not well related to wildfire severity [23]
or extent at regional scales [25]. The severity, specific order and timing of consecutive disturbances
determine their ecological outcomes, with greater impacts expected when initial disturbance severity
is relatively high and time between disturbances is relatively short [14,16,26]. Wildfires occurring
during the initial green-attack stage of beetle outbreaks—when needle flammability is highest—and
the red-needle stage—when foliage begins to fall but serotinous cones remain unopened—are likely to
have different effects than those occurring in gray-stage forests after needles have fallen and cones
have opened [21,24,27–30].

Forest management activities prompted by recent severe beetle outbreaks in lodgepole pine forests
of Colorado and elsewhere in the southern Rocky Mountains aim primarily to regenerate forests and to
reduce short-term crown fire risk and longer-term risk of severe wildfire effects associated with heavy
fuel accumulation after tree fall [31,32]. However, like other types of disturbance, the consequences
of post-beetle management vary with forest composition, stand structure and time elapsed since
the outbreak [18,33], and such factors have likely consequences for potential fire risk and behavior
and other ecosystem attributes. The process of removing the forest canopy during salvage logging,
for example, increases the mass of surface fuels and alters their moisture dynamics [3,34], but it also
affects light, moisture and soil nutrients that influence plant responses [35]. The initial understory
plant response to post-beetle salvage logging can differ between woody and non-woody plants and be
affected by logging slash retention [8]. The cohort of trees that regenerate beneath the beetle-killed
overstory and following salvage logging can form a new stratum of fuels and a future management
concern [3,28,36]. In spite of the continental scale of recent bark beetle outbreaks [37] and the ensuing
management response, it is uncertain whether post-beetle logging will aggravate wildfire effects.

In October 2010, the Church’s Park Fire burned lodgepole pine forests where bark beetle
infestation killed >85% of overstory basal area in the early 2000s. Portions of the burned area were
salvage logged one year prior to the fire. The Church’s Park Fire provides a fortuitous opportunity
to evaluate overlapping effects of salvage logging and wildfire within severely-infested, gray-phase,
beetle-killed forests. Our assessment included tree regeneration, surface fuels, understory plants,
soil nitrogen and water infiltration under these conditions. All individual and overlapping disturbance
events are unique, but in the absence of well-replicated experimental trials, this case study increases
understanding of post-fire ecosystem dynamics in gray-stage beetle-impacted forests.

2. Materials and Methods

2.1. Study Area

This research was conducted on the Arapaho-Roosevelt National Forest near Fraser, Colorado, USA,
in forests burned by the Church’s Park Fire (39◦56′25′′ N; 105◦57′00′′ W) and surrounding unburned
areas. The study area lies on the western edge of Colorado’s Front Range between 2438–3200 m elevation.
The area receives ~700 mm of precipitation annually, 75% as snow. Soils are gravelly, sandy-loam
Alfisols derived from colluvium and alluvium of granitic gneiss and schist parent material [38].

Forests of the study area are a mix of lodgepole pine, subalpine fir (Abies lasiocarpa (Hook.) Nutt.)
and Engelmann spruce (Picea engelmannii Parry ex. Engelm.) with scattered patches of quaking
aspen (Populus tremuloides Michx.), and are part of the temperate steppe mountain ecoregion that
extends from New Mexico, USA to southwestern Canada [39]. Bark beetles reached epidemic levels
around 2000 and their activity peaked around 2006 in this part of Colorado [40,41]. Overstory pine
mortality commonly exceeded 70% in mature, pine-dominated stands in this region of Colorado [3,42].
At Church’s Park, lodgepole pine comprised 69% of total stand basal area before the outbreak, 89% of
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which was killed by beetles [43]. Lodgepole pine stands in the area typically contain a mixture of
serotinous and non-serotinous cones [29].

Salvage logging occurred in 2009, several years after peak beetle activity. Harvested stands
were clear cut and whole-tree yarded to central processing and loading areas (Figure 1) using
tracked feller-bunchers and rubber-tired skidders. All harvest areas were on moderate (<35%),
south-facing slopes.

 

Figure 1. Paired photos taken (a) one year pre-fire (October 2009) and (b) one year post-fire (September 2011)
within the Church’s Park Fire perimeter, near Fraser, Colorado. The photos are oriented northeast
(20–30◦ azimuth) across an operational-scale Cut + Burn study site centered near 39◦56′16.96′′ N;
105◦56′33.43′′ W (See arrow in Figure 2). The log deck visible in photo (a) had been removed before
the fire.

The Church’s Park Fire began on 3 October 2010 and grew rapidly due to a combination of
moderate wind speed, unseasonably high temperature, low relative humidity (16–32%), and very low
fuel moisture (5%; [44,45]). The following three days were cooler with increasing humidity and the fire
was 100% contained on 7 October. A cold front on 8 October effectively terminated the fire.

The fire burned a total of 200 ha of predominantly south-facing, beetle-killed, pine-dominated
slopes, interspersed with meadows and aspen (Figure 2). Fire spread was pushed both across and
upslope by down-valley winds. Observers noted very active to extreme fire behavior when the fire
was burning in beetle-killed lodgepole pine stands, including active crown fire behavior, high rates
of spread and flame lengths, and spotting of up to 0.4 km [46]. The crown fires burning through
beetle-killed lodgepole pine stands and surface fires burning in salvaged logged units were classified
as high- and moderate-severity based on complete or near complete combustion of organic soil
layers and tree crowns and attached cones, and 100% mortality of residual live trees (Figure 2) [47].
According to burn-severity maps developed from remotely-sensed imagery and adjusted by on-site
visual assessments, these areas comprised roughly half of the Church’s Park Fire area (17% high- and
30% moderate-severity) [48]. Low-severity burning occurred primarily within meadow and aspen
vegetation. Owing to the small size of and low risk for high intensity rainstorms after this October fire,
post-fire mulch treatments were not applied [48].
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Figure 2. Perimeter of the Church’s Park Fire and surroundings, near Fraser, Colorado, denoting areas
mapped with moderate- (orange) and high- (red) burn severity and centers of operational-scale study
sites. Unshaded areas within the fire perimeter were burned at low-severity. The dashed arrow is
oriented with the general views in Figure 1. Aerial photo image date is 9 October 2015, five years
after the fire. Image Citation: Google Earth Pro V7.3.1.4505 (Google LLC, Mountain View, CA, USA);
accessed 2 February 2018.

2.2. Sampling and Analysis

We compared tree regeneration, surface fuel and understory plant cover and soil properties
among the following ecosystem conditions: (1) Uncut + Unburned (UU); (2) Cut (C); (3) Burned (B)
and (4) Cut + Burned (CB) (Figure 2). We established four operational-scale study sites (3–10 ha)
for each ecosystem condition with three stand-scale sampling areas in each (~1 ha), then established
one randomly-oriented 50-m long transect per sampling area. All study areas were dominated by
gray-phase lodgepole pine prior to salvage logging and the fire. Burned study areas were located in
high- and moderate-severity patches. All study areas were located on south-facing hillslopes with
moderate slope (mean: 34%). Unburned study areas, both cut and uncut, were within 3 km of the
fire perimeter.

We examined understory plant and surface cover, tree regeneration, and plant-available soil
nitrogen (N) over the course of three years. We measured understory plant and surface cover in
August 2012, 2013, 2014 with a gridded point-intercept method in five 1-m2 quadrats per transect.
Common understory plants were identified to genus or species while others were identified to growth
form (graminoid, forb, shrub). Surface cover elements included organic horizon (O) soil (litter and
duff), mineral soil, 1- to 10-h woody fuels (<2.5 cm diameter), 100-h woody fuels (2.5–7.6 cm diameter),
and 1000-h woody fuels (>7.6 cm diameter). Regenerating trees were tallied within the quadrats by
species and height classes (1–15 cm, 15–75 cm, ≥75 cm but <2.5 cm diameter). We used ion exchange
resin (IER) bags to measure plant-available soil N and potential nitrate (NO3-N) leached in spring
snowmelt [49]. We inserted 10 resin bags per transect, 5–10 cm into mineral soil each fall and exchanged
them the following spring during 2011/2012, 2012/2013, and 2013/2014. Resin bags consisted of a 1:1
mixture of cation (Sybron Ionic C-249, Type 1 Strong Acid, Na+ form, Gel Type) and anion (Sybron Ionic
ASB-1P Type 1, Strong Base OH− form, Gel Type) exchange resin beads. After removal from the field,
resins were extracted with a 2 M KCl solution, shaken for 60 min, filtered and frozen until analysis.
Nitrate (NO3-N) and ammonium (NH4-N) concentrations were measured by spectrophotometry using
a flow injection analyzer (Lachat Company, Loveland, CO, USA).

As an indicator of post-fire soil hydrologic conditions, in 2012 we also measured soil water
infiltration rate with a field infiltrometer designed to assess wildfire effects (Decagon Devices,
Pullman, WA, USA). We recorded the volume of water infiltrating into the mineral soil (2 cm depth)
during triplicate 60-s subsample periods at five locations per sample transect. We evaluated soil
hydrophobicity [50] at a similar sampling intensity by measuring the time that a water drop remained
on the soil surface (e.g., water drop penetration resistance) using the following time periods: none
(<10 s); weak (10–40 s); moderate (40–180 s); strong (>180 s).
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Data were composited within the three stand-scale sampling areas in each of the four study
sites (n = 12). Given the close proximity and consistent topographic position, forest composition and
degree of beetle-related mortality of the study sites, we assume they are comparable for statistical
analysis. The four ecosystem conditions were compared using analysis of variance with Cut, Burn,
and a Cut × Burn interaction as fixed effects and stand-scale sampling areas nested within study sites
as random effects (SPSS version 22, IBM Co., Chicago, IL, USA). We added a repeated measures term
for analysis of tree regeneration, surface and understory plant cover and plant-available soil N. Each
water drop penetration measure was placed into a resistance class, plot and transect-scale replicates
were averaged then analyzed as a continuous variable. Where fixed effects were significant, we used
pairwise, Tukey-adjusted comparisons to identify differences among the four ecosystem conditions.
Levene’s statistic was used to test assumptions of homogeneity of variance; ion exchange resin data
violated this assumption and were log-transformed prior to analyses. Statistical significance is reported
where α ≤ 0.05, unless otherwise stated.

3. Results

Tree seedling density varied among the four ecosystem conditions (Figure 3). Total seedling
density in 2014 was highest (~13,000 trees ha−1) in the UU areas, consisting almost entirely of subalpine
fir (90% of all seedlings) in the smaller two size classes. Aspen and the other conifer species occurred
at much lower densities in UU areas.

Figure 3. Tree seedling density in August 2014, four growing seasons after the Church’s Park Fire
and five years after harvesting of the bark beetle-infested lodgepole pine overstory. Data are means
with standard error bars for twelve stand-scale sampling areas per ecosystem condition, by seedling
height class. Spruce seedlings were absent from both burned conditions (Burn and Cut + Burn) and
represented <56 tree ha−1 in both unburned conditions (Unburn + Uncut and Cut). Note: The y axis of
the bottom panel is half that of the upper two panels.
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Fir seedling density was 90% lower in harvested (C) compared to UU areas. Conversely, total lodgepole
pine density was 6100 trees ha−1 in C areas and 340 trees ha−1 in UU areas. Cutting stimulated a 10-fold
increase in the density of the tallest class of aspen via sprouting compared to the UU treatment.
Burning had a dramatic and lasting effect on conifer seedling density (Figure 3). Pine seedlings were
extremely rare (<100 trees ha−1 in B; 0 trees ha−1 in CB) and there were no fir or spruce [43] tallied in
either burned condition (B or CB) during the study. Aspen was the only tree species found both in
the B and CB areas. From 2012 to 2014, aspen sprout density increased 6-fold in B and 3-fold in CB
areas, but changed little in the other conditions [43]. Conifer density did not increase in UU and C
areas during the study.

Soil organic (O) horizon cover was 29% lower in the cut (C) areas compared to UU areas,
averaged over all sample years (Table 1). Conversely, fine (1 and 10 h), 100 h, and total woody
fuel cover was 1.7-, 4.0 and 1.9 times higher in C compared to UU areas. Burning (B) had greater effects
than harvesting on surface cover (Table 1). Soil O horizon extent was 55% lower in B compared to UU
areas on average, whereas mineral soil cover was about 30 times higher. Fine woody fuel cover was
73% lower in B areas overall; larger fuel classes and total woody fuel cover did not differ from UU
areas. Organic horizon and mineral soil cover for CB treatments were intermediate relative to the UU
and B treatments. However, woody fuel cover in the CB combination did not differ from burning (B)
alone. Soil and wood cover changed little in UU areas over the course of the study (Table 1). There was
no return of O horizon cover in the C, B or CB conditions over the course of the study or decline in
mineral soil cover.

Table 1. Surface cover (%) after salvage logging and wildfire in bark beetle-infested lodgepole pine
forests. Data are means with standard error for twelve stand-scale sampling areas per ecosystem
condition per date. Different letters within columns denote differences within years based on Tukey’s
pairwise adjusted comparisons.

Soil Surface Cover ——————– Woody Fuel Cover ——————–

Year Condition/Label Organic Mineral 1 and 10-h 100-h 1000-h Total Fuel

2012 Uncut + Unburn (UU) 86.9 2.3 a 2.4 0.8 c 15.0 1.9 a 1.5 0.4 b 5.8 1.5 ab 22.5 2.5 b
Cut (C) 71.4 3.5 ab 12.5 2.4 c 24.8 4.8 a 6.5 0.9 a 11.2 2.8 a 43.9 6.6 a

Burn (B) 36.6 5.7 c 52.6 5.3 a 3.1 1.6 b 0.9 0.2 b 2.9 1.5 b 8.8 1.7 b
Cut + Burn (CB) 55.5 5.7 b 31.9 5.4 b 4.1 1.6 b 1.2 0.3 b 5.4 1.4 ab 10.9 2.4 b

2013 Uncut + Unburn (UU) 87.2 2.3 a 1.5 0.3 c 9.5 1.8 ab 0.9 0.3 b 7.3 1.5 a 18.4 1.8 ab
Cut (C) 59.0 4.2 bc 14.8 3.7 bc 15.1 2.6 a 4.5 0.7 a 10.7 3.2 a 31.2 5.3 a

Burn (B) 47.8 4.9 c 44.6 5.5 a 3.0 1.2 b 1.2 0.3 b 3.1 1.4 a 9.6 1.5 b
Cut + Burn (CB) 64.9 4.9 bc 27.1 5.5 ab 4.0 1.0 b 1.8 0.4 b 4.0 1.0 a 10.9 2.1 b

2014 Uncut + Unburn (UU) 85.3 0.9 a 2.0 0.6 c 11.5 1.8 b 2.2 0.5 b 4.2 1.4 ab 20.1 1.9 b
Cut (C) 53.2 4.8 b 15.3 2.6 c 21.8 3.5 a 5.7 1.2 a 10.8 2.5 a 42.3 5.8 a

Burn (B) 31.8 3.3 c 60.8 3.8 a 3.4 0.4 c 1.1 0.3 b 2.6 0.7 b 11.4 1.4 b
Cut + Burn (CB) 44.3 4.9 bc 46.6 5.1 b 3.6 0.6 c 1.4 0.6 b 4.8 1.7 ab 10.7 2.2 b

Effects F p F p F p F p F p F p

Cut 4.9 0.029 1.0 0.317 13.8 <0.001 53.7 <0.001 14.5 <0.001 27.4 <0.001
Burn 123.0 <0.001 270.3 <0.001 101.9 <0.001 47.5 <0.001 19.5 <0.001 102.8 <0.001

Cut * Burn 72.7 <0.001 42.7 <0.001 9.9 0.002 35.1 <0.001 3.3 0.071 23.6 <0.001
Date 8.5 <0.001 6.0 0.004 3.1 0.051 1.01 0.368 0.2 0.800 1.9 0.151

Graminoid cover was similar between C and UU conditions, and forb cover was only marginally
lower, but shrub cover was considerably lower in the C conditions (Table 2). Averaged over the
three-year study, shrub cover was 66% lower in C than UU areas. Total understory plant cover was
46% lower overall in C compared to UU areas. Graminoid and shrub covers were both 89% lower in B
relative to UU areas, though forb cover was similar. Graminoid cover was intermediate for cutting
followed by burning (CB) and was from 3 to 11 times higher than B. Understory plant cover was
relatively stable over the course of the study in the UU and C areas. In contrast, total plant cover
doubled between 2012 and 2014 in B areas. In the B treatment, graminoid, forb and shrub cover
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increased 5-, 2- and 3-fold during the study. Shrub cover was also 5 times higher in the CB treatment
in 2014 compared to 2012.

Table 2. Understory plant cover (%) after salvage logging and wildfire in bark beetle-infested lodgepole
pine forests. Data are means with standard error for twelve stand-scale sampling areas per ecosystem
condition per year. The sum of plant growth forms may exceed 100% within treatment due to
overlapping plant canopy layers. Different letters within columns denote differences within single
years based on Tukey’s pairwise adjusted comparisons.

Year Condition Graminoid Forb Shrub Total

2012 Uncut + Unburn 43.7 4.7 a 34.8 4.3 a 39.7 3.7 a 118.2 5.9 a
Cut 33.6 4.2 a 16.8 5.6 a 12.9 2.4 b 63.2 7.4 b

Burn 1.2 0.3 b 20.0 3.1 a 2.3 0.4 c 23.6 3.1 c
Cut + Burn 13.9 3.4 b 35.3 7.4 a 0.7 0.3 c 49.8 9.2 bc

2013 Uncut + Unburn 32.8 5.8 a 20.8 3.9 ab 38.2 3.0 a 91.8 8.5 a
Cut 26.2 3.5 ab 13.1 3.5 b 11.7 2.1 b 51.0 5.5 b

Burn 3.9 1.2 c 28.9 4.4 a 4.6 0.9 c 37.5 3.9 b
Cut + Burn 13.9 2.5 bc 30.0 4.3 a 1.8 0.6 c 45.6 4.5 b

2014 Uncut + Unburn 33.3 3.9 a 37.5 5.1 a 39.8 3.2 a 110.5 7.4 a
Cut 27.1 4.3 ab 16.0 5.0 b 15.7 2.6 b 58.7 6.2 b

Burn 6.1 1.3 c 39.0 4.7 a 6.3 1.1 c 51.3 5.4 b
Cut + Burn 18.5 3.4 bc 32.7 3.6 ab 3.3 0.9 c 54.5 5.4 b

Effects F p F p F p F p
Cut 1.0 0.331 6.2 0.014 179.0 <0.001 30.2 <0.001

Burn 150.4 <0.001 11.2 0.001 466.2 <0.001 111.5 <0.001
Cut * Burn 27.2 <0.001 11.1 0.001 120.4 <0.001 70.3 <0.001

Date 1.2 0.308 3.4 0.038 2.0 0.145 4.7 0.011

As of 2014, cover of the most common species in each plant growth form remained low in
both C and B treatments (Figure 4). The forb, heartleaf arnica (Arnica cordifolia Hook.) was 12% in
UU areas and 3% and 1.5% in C and B areas. Fireweed (Chamerion angustifolium (L.) Holub.) cover
was nearly 2.5 times higher in B relative to UU areas. The dominant shrub, grouse whortleberry
(Vaccinium scoparium Leiberg ex. Coville), averaged 33% in UU areas compared to 12 and 2% after
cutting and burning, respectively. Both arnica and whortleberry were nearly absent where cutting was
followed by burning (CB), but the combined treatment more than doubled sedge cover (Carex spp.,
predominately C. rossii Boott. and C. geyeri Boott.) in areas that were only burned.

Plant available soil N (IER-N) was lowest in UU areas and generally increased with additional
disturbance (Figure 5). Cut areas had significantly higher nitrate and total IER-N overall, though C
and UU treatments did not differ statistically within individual years. Burned areas had elevated
nitrate, ammonium and total IER-N relative to UU stands throughout the study. Averaged across three
years, there were 5.4 and 3.5 times more nitrate and total IER-N in B compared to UU areas. The burn
effect on IER-ammonium was statistically significant in 2012, when it was 2.2 times higher than in
UU areas. Significant cut-by-burn interactions for nitrate and total IER-N indicate an additive effect
of burning in salvage-logged areas (CB). Overall, CB areas had 10 and 6 times more nitrate IER-N
and total IER-N, respectively, than UU areas. In 2012, CB areas had 14 times more IER-nitrate than
UU areas and roughly double that measured in B areas. In the subsequent two years, IER-nitrate was
similar in CB and B areas. On average, nitrate represented 76% of total IER-N in BC compared to 48%
in UU areas.

88



Forests 2018, 9, 101

Figure 4. Understory plant cover in bark beetle-infested, cut and burned forest combinations at the
Church’s Park Fire, Colorado during August 2014. Data are means of total plant cover (gray bar)
by plant growth form with standard error bars for twelve stand-scale sampling areas per ecosystem
condition. The sum of plant growth forms may exceed 100% within treatment due to overlapping
plant canopy layers. Different letters indicate that treatment values differ based on Tukey’s pairwise
adjusted comparisons. Cover of the most abundant (hatched) or second-most abundant (blackened)
species in each growth form are displayed and identified by arrows.

Figure 5. Plant-available soil N in bark beetle-infested, cut and burned forest conditions at the Church’s
Park Fire, Colorado. Bars are the average total IER-N and nitrate IER-N (hatched) with standard error
bars. The three years denote the 2011/2012, 2012/2013 and 2013/2014 overwinter sampling periods.
Different letters denote differences within years based on Tukey’s pairwise adjusted comparisons of
log-transformed total IER-N data.
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In 2012, water infiltration in the B and CB areas (1.5 and 1.9 mL min−1) was half the rate measured in
UU areas (3.4 mL min−1) (Figure 6a). Wildfire also inhibited water drop penetration, indicating moderate
levels of hydrophobicity (Figure 6b) with highest resistance in B areas. Cutting decreased infiltration,
though to a marginally lesser extent than burning, and it had no effect on hydrophobicity.

Effects             p    Effects              p   

Figure 6. Water infiltration rate (a) and water drop penetration resistance (b) measured in 2012 after
logging and the Church’s Park Fire in mountain pine beetle-infested stands. Plots show 25th, 50th and
75th percentiles (box), 10th and 90th percentiles (whiskers) and outliers (filled circles). Different letters
indicate that treatment values differ based on Tukey’s pairwise adjusted comparisons. Water drop
resistance ratings as follows: none <10 s; weak 10–40 s; moderate 40–180 s; strong >180 s.

4. Discussion

4.1. Overlapping Disturbances

The Church’s Park Fire concluded a series of disturbances that started with bark beetle infestation
and was followed by salvage logging in some stands. The lack of lodgepole pine recruitment for four
years after the fire contrasted with dense post-fire seedling establishment that is typical within two
to three years of harvesting and burning [2,20,31,51,52]. It also differed from fires in beetle-affected
lodgepole stands that occurred during green-attack or red-needle stage [21,53] or gray-stage stands with
lower outbreak severity (0–56% beetle-killed basal area) [15]. Cone serotiny is a critical determinant
of post-fire and post-bark beetle lodgepole recruitment [15,54–56], and is prevalent in Church’s Park
area stands. Lodgepole pine seeds remain viable in serotinous cones for over 25 years after trees are
infested by bark beetles [29], so there would have been a canopy seed source at the time of the fire.
However, the fire scorched and consumed nearly all cones remaining on standing dead pine trees and
in logging slash as well as any advance regeneration or seedlings established since the outbreak.

The absence of conifer regeneration within the Church’s Park Fire contrasts with surrounding
unburned areas as well, where bark beetle mortality alone or salvage logging of beetle-infested stands
stimulated conifer recruitment. Observations of stand development 20–30 years after a 1980s-era beetle
outbreak [17] confirm projections of stand dynamics based on inventory of seedling establishment after
the recent outbreak [3]. Both of these Colorado studies along with those conducted elsewhere [57,58]
suggest that (1) uncut beetle-infested stands will develop into well-stocked, conifer-dominated forests
with more subalpine fir than prior to the beetle outbreak and that (2) salvage-logged, beetle-infested
stands will regenerate into pine-dominated stands, similar to those that existed at the time of the
outbreak. In our study, aspen was the only tree species observed regenerating via sprouting in
significant numbers after the Church’s Park Fire. Aspen density was relatively insensitive to cutting
and burning compared to the conifers (Figure 3). Long-term forest development within the Church’s
Park Fire perimeter is uncertain, but based on our findings it appears likely that aspen will increase and
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conifers will decline relative to pre-fire conditions and surrounding unburned areas; similar patterns
have been reported elsewhere [18].

The outcome of individual disturbances is determined by unique combinations of site conditions,
disturbance characteristics and post-disturbance ecological interactions [7]. At Church’s Park, overlap of
the beetle outbreak and salvage logging or wildfire disturbances are likely to produce even more
complexity. The high levels of beetle-induced mortality (>85% of overstory basal area), time elapsed
since the outbreak (~8 year post-infestation) and steep slopes were features of the site and wildfire that
resulted in crown fire behavior with near-complete crown and cone consumption [16]. Though post-fire
regeneration was generally adequate in beetle-infested northwestern Wyoming lodgepole stands,
regeneration was nonetheless lowest under conditions such as those we studied, where crown fire
in gray-stage beetle kill scorched crowns and consumed cones [15]. Our findings are specific to the
site, pre-fire stand structure and fire behavior at Church’s Park, but the compositional changes we
documented after the fire are likely to be repeated where wildfires burn similar gray-stage, beetle-killed
stands with extensive overstory mortality [18,37,59].

4.2. Implications of Post-Bark Beetle Salvage Logging on Wildfire Effects

Widespread overstory mortality associated with severe bark beetle outbreaks increased concerns
about fire risk and prompted post-outbreak timber harvesting in Colorado after decades of public
opposition [31]. Salvage logging is prescribed to address numerous objectives [60,61] and in response
to recent insect outbreaks it has been used to reduce canopy fuels and crown fire potential, capture the
value of dead timber, regenerate forests, protect infrastructure and humans from falling trees,
and facilitate fire suppression [62]. However, as observed here and elsewhere, logging increases
surface fuel loads [34,63], and in the event of a post-harvest wildfire, has the potential to exacerbate
fire behavior and effects [64]. Salvage harvesting is controversial where it fails to meet intended
objectives [60,65] and at Church’s Park there was potential that logging in conjunction with the
overlapping beetle and wildfire disturbances would have unintended negative consequences for
biodiversity, ecosystem function and delivery of ecosystem services [61]. Regional concerns for
management of federal forest lands include regenerating well-stocked forests, retaining native plant
diversity and cover, maintaining soil and ecosystem productivity and protecting clean water supply.

At the time of the fire (<two years after harvesting), residual fine fuels likely altered fire spread
and large fuels may have increased the duration of combustion in BC areas. Both graminoids and
shrubs were negatively impacted by burning. Grouse whortleberry, the shrub that formed >30% cover
in UU areas, was reduced to ~2% in B areas and was almost eliminated from BC areas (Figure 4).
However, with that exception, other responses we measured suggest that fire effects were no more
severe in areas that were logged prior to the fire. Conversely, while salvage logging removed the forest
canopy and thus eliminated the risk of crown fire, the surface fire that burned through the harvested
areas had similar effects to crown fire in uncut areas.

After the fire, BC areas had less exposed mineral soil and greater O horizon cover than solely
burned (B) areas. The higher residual O horizon cover is likely to have contributed to the marginally
higher water infiltration (Figure 6) and plant-available N in those areas (Figure 5) relative to B areas.
The initial pulse of soil N in BC areas may have resulted from the combustion of accumulated
post-harvest fuels; similar to N dynamics after pile burning, it began to recede after one year [66].
After the first year of sampling, soil nitrate was similar between B and BC areas relative to UU
and C areas (Figure 5). Both bark beetles and salvage logging are known to increase soil N in
unburned lodgepole pine forests [35,67]. In spite of post-bark beetle increases in soil N, and unlike
beetle outbreaks in parts of Europe that receive high atmospheric N deposition [68], Colorado beetle
outbreaks have not threatened surface water with high N loading [69]. Research in Europe and
the US highlights the role of nutrient demand and compensatory growth by recruiting and residual
vegetation for intercepting surplus soil nutrients after tree mortality [11,12,68,69]. At Church’s Park,
post-fire IER-N levels and the risk of nitrate leaching will recede as understory plant cover increases.
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The marginally higher understory cover of BC compared to B areas suggests that salvage logging did
not exacerbate these concerns at Church’s Park.

The US Forest Service is required by the National Forest Management Act of 1976 (United States
Public Law 94-588) to monitor and rectify tree regeneration failure associated with management activities.
In all stand-level study areas affected by the Church’s Park Fire (both B and BC), conifer regeneration fell
below US Forest Service density thresholds aimed at ensuring the development of acceptably stocked
forests (370 tree ha−1) [70]. Though fire eliminated virtually all conifer regeneration in the B and BC
areas (Figure 3), it did not reduce regenerating aspen density relative to unburned areas. Owing to the
small spatial extent of the Church’s Park Fire and establishment of conifer cohorts in beetle-infested
and salvage-logged forests surrounding the burn, scarce regeneration within the fire is not likely to
have negative effects on local biodiversity. Limited conifer recruitment into the Church’s Park Fire,
in fact, should interrupt landscape continuity and thus reduce the spread of future wildfires [19].

Nonetheless, the Church’s Park Fire appears to have had a potentially lasting effect on forest
species composition relative to pre-outbreak, pre-fire conditions. Aspen was present throughout the
Church’s Park area prior to the series of disturbances, and sprouts were stimulated or retained within
salvage logged (C), burned (B) and combined cut, then burned areas (CB). Post-fire expansion of aspen
is common in the Colorado subalpine forest zone and is associated with benefits for floral and faunal
biodiversity, fire resistance, and landscape aesthetics [71,72]. Aspen regeneration was abundant across
all our study conditions and our findings suggest that the species could play an increasingly important
role in similar post-beetle outbreak forests across the Rocky Mountain West.

5. Conclusions

After four years of post-fire recovery, it appears that the overlapping disturbances culminating
with the Church’s Park Fire will have a long-term effect on forest development. The severe level of bark
beetle-related overstory mortality, followed by crown fire in gray-stage stands, virtually eliminated
conifer regeneration. In contrast to the conifers, the density of aspen in 2014 was similar inside
and outside of the fire (Figure 3) and it has increased more than three-fold in burned areas since
the fire. Shrubs were greatly reduced by burning alone and burning in previously-logged areas,
though their cover has also begun to increase since the fire. The impacts of the Church’s Park Fire
on forest regeneration were consistent with patterns documented in northwestern Wyoming where
crown fire consumed serotinous cones in gray-stage beetle-killed lodgepole pine [15]. Recent studies
suggest that projected increases in drought and associated fire frequency and behavior may detract
from the resilience of lodgepole and other forest types of the Rocky Mountain West [73,74].
However, low precipitation did not contribute to the scarce conifer regeneration following the Church’s
Park Fire [75]. Summer season precipitation in the year of the fire (2010) and the following year
were above average. In fact, 2011 received the highest total precipitation during the past 30 years.
Complete canopy, cone and seedbank consumption was the probable cause of the scant conifer
regeneration following the wildfire. As beetle-killed lodgepole pine forests transition to the gray-stage,
the conditions we documented after the Church’s Park Fire are likely to become more common,
especially throughout portions of Colorado, Wyoming and Montana with concentrated beetle activity
and high levels of overstory mortality [41,59]. Future research should take advantage of these
expanded possibilities and conduct well-replicated studies to advance understanding and provide
critical knowledge for managing and conserving forest processes and biodiversity under changing
climatic conditions.
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Abstract: Planted and invading non-native plant species can alter fire regimes through changes
in fuel loads and in the structure and continuity of fuels, potentially modifying the flammability
of native plant communities. Such changes are not easily predicted and deserve system-specific
studies. In several regions of the southern hemisphere, exotic pines have been extensively planted in
native treeless areas for forestry purposes and have subsequently invaded the native environments.
However, studies evaluating alterations in flammability caused by pines in Patagonia are scarce. In the
forest-steppe ecotone of northwestern Patagonia, we evaluated fine fuels structure and simulated fire
behavior in the native shrubby steppe, pine plantations, pine invasions, and mechanically removed
invasions to establish the relative ecological vulnerability of these forestry and invasion scenarios to
fire. We found that pine plantations and their subsequent invasion in the Patagonian shrubby steppe
produced sharp changes in fine fuel amount and its vertical and horizontal continuity. These changes
in fuel properties have the potential to affect fire behavior, increasing fire intensity by almost 30 times.
Pruning of basal branches in plantations may substantially reduce fire hazard by lowering the
probability of fire crowning, and mechanical removal of invasion seems effective in restoring original
fuel structure in the native community. The current expansion of pine plantations and subsequent
invasions acting synergistically with climate warming and increased human ignitions warrant a
highly vulnerable landscape in the near future for northwestern Patagonia if no management actions
are undertaken.

Keywords: fire severity; forestry; fuel build-up; restoration; wildfire

1. Introduction

Fire regimes are being altered by climate warming as well as by synergisms between changes in
climate and land use [1,2]. Changes in fuel load and vegetation structure, due to a variety of factors
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including fire exclusion [3], livestock grazing [4] and invasion of non-native plant species [5], have
crucial implications on fire activity, possibly altering fire propagation, and the severity and extension
of fire events. For instance, anthropogenic fuel build-up can sharply alter fire behavior in fuel-limited
systems, increasing the difficulty of fire control, and thus raising the amount of resources needed for
suppression. Disruption of fire regimes due to changes in fuel loads and structure can ultimately result
in altered or delayed successional trajectories.

Both planted and invading non-native plant species can alter fire regimes through changes
in fuel loads and in the structure and continuity of fuels, potentially increasing or decreasing the
flammability of native plant communities [6,7]. Well studied cases, such as the invasion of cheatgrass
(Bromus tectorum Huds.) into the US Great Basin, show that invaded areas burn nearly four times
more frequently than native vegetation types due to the higher flammability and faster recovery of
cheatgrass compared to native species [8]. Although there is a significant body of knowledge on the
relationship between invasive grasses and fire activity, much less is known about the consequences of
non-native woody species on fire regimes [7]. Non-native and fire-prone tree species, such as certain
eucalypts and pines, are expected to alter fire behavior in sites where they are planted or invading,
potentially increasing fire severity [9,10]. On the contrary, other non-native woody species, such as
Hakea sericea Schrad. and J. C. Wendl and Acacia saligna (Labill.) H. L. Wendl. in South Africa can
suppress fire occurrence due to understory fuel reduction, higher fuel moisture in their tissues or
more densely packed fuel compared to native vegetation [11]. Therefore, the potential response of
fire behavior associated to non-native woody plants is complex and unpredictable, and deserves
system-specific studies. Careful evaluation of native and non-native fuel attributes is needed in order
to understand and predict potential changes in fire regimes in those ecosystems where non-native
species are planted or invading.

In several regions of the southern hemisphere, such as New Zealand, South Africa and South
America, pines have been planted in native treeless areas for forestry purposes and have subsequently
invaded the native environments [12]. In these open environments with naturally low fuel loads
(grasses and short shrubs), exotic trees represent a significant alteration in the load and structure
of fuels. For example, in northwestern Patagonia, Argentina, pines have been planted along the
forest-steppe ecotone since the late 1970s [13] and escaped pines from plantations have rapidly become
biological invaders in several formerly treeless areas [14]. In this region, the most commonly planted
species is Pinus ponderosa Douglas ex C. Lawson and the most widespread invasive pine species
is Pinus contorta Douglas, both of which experience frequent fire in their native environments and
thus have life-history traits that generally make them well adapted to fire [15]. Furthermore, both
species have fast growth rates and thus rapid fuel load accumulation, particularly in the introduced
range [16,17]. Lastly, frequent observations of fires originating or spreading rapidly in non-native
plantations and neighboring invaded areas are generating concerns as to whether pine plantations
and invasions increase native vegetation’s flammability and may qualitatively alter the historical fire
regime [9,18].

Arguments supporting the high flammability of pine stands seem reasonable. Nonetheless,
the heterogeneity of fuel loads and structures in pine plantations and invaded areas, as well as
the various native plant communities that are replaced, create complex scenarios that prevent
generalizations on the relative flammability and the ecological consequences of fire. For instance, well
managed plantations where tree thinning treatments were rigorously conducted seem less prone to
high severity fires compared to those that were not thinned [19]. Similarly, pine invasions only seem
to generate positive fire-invasion feedbacks after certain pine density thresholds are surpassed [16].
Thus, it is necessary to evaluate the relative fire hazard of pine plantations under different scenarios of
management and different stages of invasion in comparison to the native vegetation being replaced.

Despite the pervasive presence of pine plantations and invasions in many regions of the southern
hemisphere, where currently millions of hectares are occupied by plantations and invasions [10,12],
there are remarkably few studies that have evaluated changes in the flammability of the native
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vegetation caused by pines. Only recently, two studies have explored the changes in fuel loads and
structure generated by pine invasions in southern South America [16,20]. However, neither addressed
changes in flammability caused by plantations, which are also a main component of these landscapes,
nor did they assess the impacts of different management practices on the relative flammability of these
scenarios. The objective of this study is to evaluate changes in fuel structure and potential fire behavior
due to pine plantations and invasions of two Pinus species (Pinus ponderosa and Pinus contorta) in the
northwestern Patagonian forest-steppe ecotone. Although changes in fuel loads may seem obvious
(especially above the height of steppe’s vegetation), alterations in potential fire behavior originated
from fuel build-up are not easily forecasted. We quantified the amount and spatial arrangement of fine
fuels in four contrasting scenarios: native steppe, pine plantations, pine invasions and mechanically
removed pine invasions. We also compared fuel structure among three levels of invasion with
progressively higher basal areas and older ages of establishment and between plantations with pruned
basal branches vs. unpruned plantations. We used fuel characterizations and additional quantifications
of fuel loads to evaluate the effects of pine-induced fuel changes on fire behavior under two fire danger
scenarios of contrasting fuel moisture and wind speed utilizing the modeling software BehavePlus 5.0.5
(US Forest Service and Systems for Environmental Management, Missoula, MT, USA) [21,22]. This will
allow the assessment of the relative ecological vulnerability to fire of the most common forestry and
invasion scenarios in the region.

2. Materials and Methods

2.1. Study Area

This study was conducted in northwestern Patagonia, Argentina, on the eastern side of the
Andes from 39◦55′ S to 41◦58′ S. Low foothills and plains dominate the landscape and the climate in
the region is temperate with a Mediterranean precipitation regime where most precipitation occurs
during May–September as rain or snow. The elevations of the selected sites ranged from 765 to
950 m above sea level and mean annual precipitation ranges from 700 to 800 mm [23]. Vegetation
in the study areas is typically ecotonal with a mosaic of low shrublands and steppes of tussock
grasses (e.g., Festuca pallescens (St. Yves) Parodi, Pappostipa speciosa (Trin. and Rupr.) Romasch.)
and scattered low shrubs (e.g., Mulinum spinosum Pers., Acaena splendens Gillies ex Hook. and Arn.,
Berberis buxifolia Gillies ex Hook. and Arn.). Wildfires and grazing are the two most important
broad-scale disturbances in the northwestern Patagonian forest-steppe ecotone, with most fires being
anthropogenic in origin [24]. The selected study sites are representative of the typical environments
in which pine plantations and invasions are located in the region. Pine plantations in the Andean
Patagonia are distributed from ~36◦ S to ~44◦ S; typically on steppe areas and less frequently on mixed
shrublands or secondary successions of Chilean cypress (Austrocedrus chilensis (D. Don) Pic-Serm.
and Bizzari) [13]. Most planted species in the ecotone area are P. ponderosa followed by P. contorta
(80% and 7.5% of the planted area respectively) [25,26]. The latter species is an aggressive invader in
multiple locations across the southern hemisphere including the steppe in northwestern Patagonia,
while P. ponderosa is considered less invasive [27].

2.2. Study Design

We conducted the study at five different locations (Table S1) that exhibited various levels of
pine invasion from adjacent plantations (from ca. 25 to 40 years old). In each location, we selected
a minimum of four 20 × 20 m plots with the following vegetation conditions (hereafter referred to
as treatments): (i) native vegetation consisting mostly of steppe with scattered low (<1 m) shrubs,
(ii) mature (reproductive) pine plantations dominated by P. ponderosa and with variable proportions of
P. contorta, (iii) invaded native vegetation mainly by P. contorta (>95% composition), and (iv) removed
(clearcutted) P. contorta invasions (Table 1, Figure S1). The group of four plots was replicated two
to four times at each site for a total of 14 groups, thus totaling 56 plots. Additionally, we classified
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the invaded and their paired removed invasion plots into three different categories based on their
basal area: (a) low invasion (<5 m2/ha) (and low removed invasion) (5 plots each), (b) intermediate
invasion (from 5 to 20 m2/ha) (and intermediate removed invasion) (4 plots each), and (c) high invasion
(>20 m2/ha) (and high removed invasion) (5 plots each) (Table 1, Figure S1). The plantations were
divided into those that exhibited pruning of basal branches (9 plots, pruned) and those that were not
pruned (5 plots, unpruned) (Table 1, Figure S1). Basal branches were pruned up to a height of 2 to
3 m and the removal of forestry residues was variable among plantations. Pine invasion removal was
conducted one year before fuel sampling in plots with similar densities and basal areas as their paired
invasion plots. Pines were cut at basal height and removed from the plot. Year of invasion initiation on
each plot was estimated by counting tree rings on basal discs that were obtained from three to five
harvested individuals per plot which presented the largest diameter.

Table 1. Number of sampled plots with each vegetation condition classified according to the level of
invasion (invaded plots) or the pruning status (plantations) totaling nine treatments.

Vegetation Condition Control
Low

Invasion
Intermediate

Invasion
High

Invasion
Pruned Unpruned Total

Native steppe 14 - - - - - 14
Pine plantation - - - - 9 5 14
Pine invasion - 5 4 5 - - 14

Removed pine invasion - 5 4 5 - - 14

We measured fuel characteristics in mixed plantations dominated by P. ponderosa, and in invasion
stands dominated by P. contorta. It is important to note that this work is not aimed at describing the
specific characteristics of fire behavior in different Pinus species stands, which have been quantified in
previous studies (e.g., [28,29]), but to describe the most common scenarios in the studied region and
evaluate their relative vulnerability to fire. Pinus ponderosa plantations are ubiquitous in northwestern
Patagonia and also in other countries such as New Zealand [12,30]. On the other hand P. contorta
invasions are by far the most common pine invasions in the region and in the southern hemisphere [12].
We acknowledge that plantations dominated by P. ponderosa may have a different structure to
plantations dominated by P. contorta, and the same can be said for their invasions. However, neither
pure plantations of P. contorta nor P. ponderosa invasions are common in the area. Therefore, our
analysis provides useful information on fuel changes originated by pines for Patagonia and other
regions (e.g., New Zealand, Chile) where these scenarios of plantations and invasions are a ubiquitous
part of their landscape.

2.3. Fuel Characterization

We used two sampling strategies: one designed to characterize vertical and horizontal fine fuel
(i.e., 1 h fuels; <0.6 cm diameter twigs and leaves) structure and the other aimed at creating fuel models
to simulate potential fire behavior using BehavePlus 5.0.5 [21]. To quantify fine fuel structure at each
treatment, we followed the point-intercept method [4,31]. We limited fine fuel characterization up to a
height of 4 m, which includes surface fuels and the lower portion of the canopy of the evaluated stands.
We set a grid of 30 points (5 × 6) equally spaced by 2 m intervals (i.e., 10 × 12 m) in the center of each
of the 56 plots. At each point, a 4 m long pole with subdivisions every 25 cm (16 height segments)
was vertically placed and we recorded the number of segments that were in contact with dead or live
fine fuels. Species identity of the intercepted fuel was also recorded. To characterize canopy height
and canopy base height, we visually estimated these variables for the closest tree to the pole as the
maximum tree height and the height to the lowest portion of the crown, respectively.

To model potential fire behavior, we quantified fuel load variables and constructed custom fuel
models in BehavePlus 5.0.5. Because BehavePlus 5.0.5 assumes homogeneous horizontal distribution
of fuel loads, fuel models were only created for those treatments with reasonably homogeneous
horizontally distributed fuels (including litter) in most height classes: native vegetation, pruned and
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unpruned pine plantations, high invasion and its paired removed high invasion. Low and intermediate
invaded areas exhibited discontinuous horizontal fuel arrangements above 0.5 m, preventing their
use in BehavePlus 5.0.5. We selected one representative plot per treatment to collect fuel data for the
parameterization of each model. To estimate surface fuel loads on each treatment, we delimited 10
1 × 1 m micro plots within an area of ~0.25 ha and we harvested and weighted all fuels classified into
dead (sub classified into 1 h fuels, 10 h fuels or 0.6 to 2.5 cm diameter twigs, and 100 h fuels or 2.5 to
7.5 cm branches) and live (sub classified into herbaceous and woody). Fuels were weighted in the field
with a portable digital field scale and subsamples of dead fuel were oven dried at 60 ◦C for four days to
calculate dry weight. Canopy bulk density (kg/m3) in P. contorta invasions and P. ponderosa plantations
was estimated using values in Scott and Reinhardt [32]. Live fuel moisture corresponds to values from
February (i.e., mid fire season) recorded over three growing seasons for P. ponderosa foliage and two of
the most representative steppe species (M. spinosum and P. speciosa) that were subsequently averaged.
Live fuel moisture was calculated as follows [(fresh mass–dry mass)/dry mass] × 100. Pinus contorta
live fuel moisture was assumed to be similar to that of P. ponderosa based on Qi, et al. [33].

2.4. Fire Behavior Modeling

We used the fire behavior modeling software BehavePlus 5.0.5 [21] to estimate differences in
potential fire behavior among the five selected treatments. This simulation software is based on
Rothermel’s mathematical model of wildfire spread [34] and has been widely used to characterize
potential fire behavior (e.g., [35,36]). BehavePlus 5.0.5 was used in this study to assess an envelope
of possible fire behaviors rather than as a precise predictor of fire characteristics. We focused the
comparison of fire behavior on the following variables: (i) surface and crown rate of spread (ROS,
m/min), (ii) surface flame length (m), (iii) transition ratio to crown fire (dimensionless), and (iv) heat
per unit area (kJ/m2). Rate of fire spread and flame length are useful indicators of the difficulty of fire
control, potential for fire escapes, and equipment required for suppression [37]. The transition ratio to
crown fire indicates the probability of a surface fire to transition into a crown fire; and values equal to
or above one suggest enough intensity to reach the canopy. Crown fires are inherently more difficult to
control and imply a radical change in fire behavior in the native steppe. Heat per unit area is the heat
energy released within the flaming front and is closely related to severity, providing an indication of
the ecological effects of fire on vegetation and other organisms [38].

Fuel models for the five selected treatments were created by substituting fuel parameters into
standard fuel behavior models [39]. Specifically, we used the low load, dry climate grass-shrub model
(GS1) for the steppe, the long-needle litter model (TL8) for the pruned and unpruned plantations and
the short needle litter model (8) for the high invasion and the removed high invasion sites. These
models were selected due to the similarity to fuel conditions within each treatment. Except for the
GS1 model used for the steppe, these standard fuel behavior models were originally created for North
American conifers and thus are adequate for the fuel types and species found in pine plantations and
invasions in Patagonia. We defined two contrasting fire danger scenarios: a high danger scenario
with fine fuel moisture content of 5% and a 7-m wind speed of 20 km/h, and an extreme danger
scenario with fine fuel moisture of 1% and a 7-m wind speed of 40 km/h. These scenarios were based
on observed meteorological conditions during documented fires in the region [40]. The slope was
set to 5% for all simulations because most plantations are typically located in flat or low angle slope
terrain. Fuel load data for models were collected in October (i.e., austral spring) and not during
peak fire season. Nevertheless, because of the virtual absence of live annual fuels within the closed
canopy of plantations and high invasion levels, and the perennial condition of dominant species at
the steppe, there is limited seasonal variation in fuel loads in these environments. Comparisons of
potential fire behavior among the five selected treatments were conducted qualitatively because we
only characterized one representative site per treatment.
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2.5. Data Analysis

To relate fuel amount and structure to pine plantations and invasion, we computed mean fuel
intercepts and mean horizontal fuel continuity using the fuel data collected with the point-intercept
method. Mean fuel intercepts (%) for a given height class were calculated as the number of segments
of that height class that were intercepted by fine fuels over the amount of points in the grid (30 points).
We calculated this value for all the fuel types together, for live and dead fuels separately and for
pine and non-pine species fuels separately. Mean horizontal fuel continuity corresponds to the mean
distance between adjacent fine fuel intercepts in a given height class transformed to a percentage,
where 2 m (minimum possible distance between two adjacent intercepts) is 100% connectivity and
10 m (maximum possible distance between two adjacent intercepts) is 0% connectivity. We calculated
this value by pooling all fine fuel intercepts and species together (total fine fuels). Mean fuel intercepts
and mean horizontal fuel continuity values were then averaged per height class among plots of the
same treatment to plot their vertical distribution.

We used generalized linear mixed-effects models to compare the vertical classes of fuel and
horizontal fuel continuity as response variables, and treatments (i.e., steppe, plantation, invasion and
removed invasion) as a fixed factor. We also compared height classes between pruned and unpruned
plantations, among the three levels of invasion and among the three levels of removed invasion.
To simplify statistical analyses, original 0.25 m height classes were grouped into three broader height
classes (i.e., 0–0.50 m; 0.51–2.00 m; 2.01–4 m). All models included “sites” as a random effect. Based on
graphical analysis (i.e., residual vs. predicted values), all models satisfied the underlying statistical
assumptions, including linearity and the expected relation of the variance to the mean given the nature
of the dependent variable error distribution. The multiple mean comparison between treatments and
conditions was conducted with Tukey tests (a = 0.05). All models were implemented with the statistical
software R version 3.4.1 (R Core Team, R Foundation for Statistical Computing, Vienna, Austria) [41]
using the function nlm from the package nlme [42] and the function glmer from the package lme4 [43].

3. Results

3.1. Fuel Characterization

Fine fuels in the native steppe were limited to the first 1.5 m and were more abundant and
horizontally continuous within the first 0.5 m (Figures 1a and 2a). At the lowest height class (i.e., 0 to
0.5 m), fuel amount and horizontal continuity in the steppe were significantly higher than in the
plantations and the removed invasion but similar to the invasion treatment (Figure 3a,b). Conversely,
at higher height classes (>0.5 m) fuel amount and horizontal continuity were significantly lower
in the steppe compared to the plantations and the invasion treatment, but similar to the removed
invasion treatment (Figure 3a,b). For instance, for the 0.51–2.00 height class, mean fuel intercepts were
1% in the steppe and 4% and 17% in plantations and invasions respectively, while mean horizontal
fuel continuity for the same height class was 5% in the steppe and 12% and 37% in plantations and
invasions respectively (Figure 3a,b). Plantations had the lowest amount of fine fuels and horizontal
continuity within the lower 0.5 m (except for litter) compared to all other treatments (Figure 3a,b).
Pruned plantations exhibited a significantly lower amount of fuel across height classes compared to
the unpruned plantations (Figure 3c). However, while there was no difference in mean horizontal fine
fuel continuity between pruned and unpruned plantations in the 0–0.5 m height class, fine fuels were
significantly more continuous horizontally for the higher height classes in the unpruned plantations
(Figure 3d).

There were no significant differences in the amount of fine fuels across the vertical distribution and
the horizontal continuity between low and intermediate invasions (Figure 3e,f). Low and intermediate
invasion levels, each with mean (±SE) basal areas of 3.6 ± 0.2 and 12.1 ± 1.7 m2/ha, and mean (±SE)
ages of establishment of 12.4 ± 0.9 and 15.5 ± 1.4 respectively, did not form a closed canopy, generating
a similar amount and horizontal continuity of fine fuels in the lower segments as in the uninvaded
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steppe (Figure 1d,e and Figure 2d,e). On the contrary, high levels of invasion, with a mean (±SE) basal
area and age of establishment of 27.8 ± 2.6 m2/ha and 20.0 ± 2.7 years respectively, generated a closed
canopy with vertically and horizontally continuous fine fuels largely composed of pine needles and
twigs but less fine fuels within the first 0.5 m (except for needle litter) than the low and intermediate
invasion levels (Figures 1f, 2f and 3e,f). Fuel amount and horizontal continuity of fine fuels at high
invasion levels were significantly higher than those of low and intermediate invasions in the height
classes above 0.5 m (Figure 3e,f). In the removed invasion treatments, regardless of the original
invasion level, vertical and horizontal distribution of fine fuel resembled that of the native steppe
but with significantly less fuels and less horizontal continuity (Figure 3a,b). Fuel amount was not
significantly different among the three levels of removed invasion (Figure 3g) but horizontal continuity
was significantly higher in the removed low invasion (Figure 3h).

Figure 1. Vertical distribution of the mean fuel intercepts (±SE) at each of the nine treatments divided
into 0.25 m height classes: native steppe (a), pruned plantation (b), unpruned plantation (c), low
invasion level (d), intermediate invasion level (e), high invasion level (f), removed low level invasion (g),
removed intermediate level invasion (h), and removed high level invasion (i). Bars represent mean
dead and live fine fuel (ff) intercepts classified into pine and all fuels together.

103



Forests 2018, 9, 117

Figure 2. Mean horizontal total (live and dead) fuel continuity (expressed as a percentage) (±SE)
for each 0.25 m height class at each of the nine treatments: native steppe (a), pruned plantation (b),
unpruned plantation (c), low invasion level (d), intermediate invasion level (e), high invasion level (f),
removed low level invasion (g), removed intermediate level invasion (h), and removed high level
invasion (i).

Figure 3. Cont.
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Figure 3. Vertical distribution of the mean fuel intercepts and mean horizontal continuity (±SE) of
each treatment grouped into three height classes. Bars represent mean total (live plus dead) fine fuel
intercepts. We evaluated the differences in fuel structure among steppe, invasion, removed invasion,
and plantation treatments (a,b); between pruned and unpruned plantations (c,d); among the three
levels of invasion (e,f); and among the three levels of removed invasion (g,h). Different letters indicate
significant statistical differences (p < 0.05) among treatments within each height class based on the
generalized linear mixed-effects models.

3.2. Fire Behavior Modeling

The most noticeable differences between the fuel model for the native steppe site and the fuel
models for the pine stands (both invasion and plantations) stem from the absence of trees and the
presence of grasses and short shrubs in the former (Table 2). The pruned plantation had a higher
canopy base height compared to the unpruned plantation site (Table 2). The high invasion level
site had higher tree density but lower basal area and shorter canopy base height compared to the
plantation sites. The steppe site exhibited the lowest simulated surface ROS, flame length and heat
per unit area compared to the plantations, the high invasion level and the removed high invasion
(Table 3). Slightly higher fine fuel loads and fuel bed depth were recorded in the pruned plantation
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compared to the unpruned plantation site, which originated higher flame length in the former. Despite
the slightly higher flame length in the pruned plantation, the transition ratio to crown fire was larger
in the unpruned plantation due to its lower canopy base height (Table 3). The high invasion site
showed lower surface ROS, flame length and heat per unit area compared to the plantation sites.
However, the low canopy base height of the high invasion stand resulted in a transition ratio to crown
fire well above 1 in both fire danger scenarios, which is notoriously higher than in the plantations,
implying high chances for fire crowning even if conditions are not extreme. Simulated crown fires
in the three pine-dominated sites (i.e., high invasion, pruned and unpruned plantations) involved a
~30-fold increase in total heat per unit area (i.e., surface plus canopy) compared to the native steppe
and exhibited three times faster crown ROS than the surface ROS in the steppe. The removed high
invasion treatment had similar but slightly higher values of ROS, flame length and heat per unit area
compared to the steppe (Table 3).

In order to verify if the simulated fire behavior was reasonably realistic for the treatments,
we contrasted our results with available information collected during actual fires. Specifically, we
compared ROS with reports conducted by firefighters which were gathered and analyzed by Sagarzazu
and Defossé [40]. The simulated ROSs for the steppe and pine plantations are reasonable based on the
estimated range of ROS of actual fires occurring in the region on similar vegetation types. For instance,
estimated surface ROSs for actual fires on shrubby steppe (Río Percey, 1979 and Rinconada, 1998) were
2–3 m/min on a <5% slope with 20 km/h winds and 10–12 m/min on a <5% slope with 50 km/h
winds [40]; while simulated surface ROSs in this study for similar conditions were 5.9 and 11.2 m/min
respectively. For an actual fire in a pine plantation (Lago Puelo, 1987), estimated crown ROS was
30–46 m/min on 15% to 40% slopes with 40–50 km/h winds [40], while our simulated crown ROS for
a 5% slope and similar wind conditions was 32.1 m/min.

Table 2. Description of the five selected treatments sampled for constructing the fuel models to simulate
fire behavior. Fuel load values correspond to surface fuels only (<2 m height). nd: no data

Site/fuel variables Steppe
Pruned

Plantation
Unprunned
Plantation

High
Invasion

Removed
High Invasion

Dominant Species
M. spinosum/

P. speciosa/
A. splendens

P. ponderosa P. ponderosa P. contorta P. speciosa

Tree age (years) - ~30 ~26 ~3 to 29 -
Tree density (ind/ha) - 1220 1330 8400 -
Basal Area (m2/ha) - 85.4 59.7 25.1 -

1 h fuel load (ton/ha) 0.45 1.61 1.41 1.22 0.96
10 h fuel load (ton/ha) 0 0.31 0.45 0.05 0.09

100 h fuel load (ton/ha) 0 0 0 0 0
Live herbaceous fuel load (ton/ha) 0.32 0 0 0.03 0.08

Live woody fuel load (ton/ha) 0.61 0 0 0.02 0
Fuel bed depth (m) 0.35 0.11 0.09 0.05 0.08
Canopy height (m) - 13.8 12.3 11.2 -

Canopy base height (m) - 3.25 1.62 0.27 -
Canopy bulk density (kg/m3) - 0.16 0.16 0.18 -

Mid-season live woody moisture (%) 80 100 100 100 -
Mid-season foliar/herbaceous moisture (%) 140/62/nd 135 135 135 62
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Table 3. Potential fire behavior in two contrasting fire danger scenarios (high and extreme danger) for
the five selected treatments. High danger consists of a scenario with fine fuel moisture content of 5%
and a 7-m wind speed of 20 km/h, while extreme danger implies fine fuel moisture of 1% and a 7-m
wind speed of 40 km/h.

Fire Behavior Variables
Steppe

Pruned
Plantation

Unpruned
Plantation

High Invasion
Removed

High Invasion

High Extreme High Extreme High Extreme High Extreme High Extreme

Surface rate of spread (m/min) 5.9 11.2 16.6 38.8 11.4 24 7.4 17.1 7.7 16.5
Surface flame length (m) 0.6 1.0 1.6 2.6 1.3 2.0 0.9 1.6 0.6 1.4

Transition ratio to crown fire - - 0.49 1.45 0.89 2.35 6.66 20.19 - -
Crown rate of spread (m/min) - - 9.9 32.1 9.9 32.1 9.9 32.1 - -

Surface heat per unit area (kJ/m2) 1033 1331 2549 3264 2306 2946 1870 2461 1478 1906
Canopy heat per unit area (kJ/m2) 0 0 31435 31435 31822 31822 36638 36638 0 0

4. Discussion

Pine plantations and their subsequent invasion in the Patagonian native steppe produce sharp
changes in vegetation structure and fuel loads. As expected, we found that pine plantations and
invasion increase the amount and continuity of fine fuels above ~0.5 m height. Most interestingly,
these changes in fuel attributes have the potential to affect fire behavior, increasing fire intensity
(measured as heat per area) ~30 times compared to the intensity of fires in the native steppe. However,
significant changes in fuel structure do not occur until advanced stages of invasion in which fire hazard,
measured as transition to crown fire and total heat per unit area, surpasses that found in plantations.
Our results also show that pruning of basal branches in plantations can substantially reduce fire hazard
by lowering the probability of fire crowning, and that mechanical removal of invasion seems effective
in restoring original fuel structure in the steppe, at least in the short term. Overall, pine plantations
and invasions significantly alter the amount and structure of fuels in the native steppe, potentially
allowing more severe fires. Nevertheless, adequate silvicultural practices and invasion management
techniques can contribute to reduce fire hazard in these areas.

Pruning of basal branches was effective in reducing potential fire severity in P. ponderosa
plantations by reducing the probability of fire transition to the crown. However, the slightly higher
surface fuel loads found in the pruned plantation compared to the unpruned plantation originated
from longer flames and higher ROS in the pruned vs. the unpruned plantation, most likely because
pruned branches were left on the site for some time after their removal, thus increasing the amount
of needles on the ground. This implies that pruning treatments without immediate removal of the
residuals created by such activity may exacerbate fire hazard rather than ameliorate it [44]. Accordingly,
adequate silvicultural management is needed not only to improve the quality of wood and the logistics
of timber production but also for fire hazard mitigation [19,45]. Basic methods for fire mitigation in
tree stands involve reduction of surface fuels, increasing the height to live crown and decreasing crown
density [44]. Equally important for fire hazard mitigation in a plantation is the removal or thinning of
adjacent invasions since these provide effective ladder fuels, substantially increasing the chances of a
crown fire in the plantation. Thus, to mitigate fire hazard associated with plantations, an integrated
approach is needed that not only includes management of the plantation itself but also control of the
escaped individuals in the surroundings.

Pine invasion did not significantly alter fuel structure until advanced stages of invasion. A closed
pine canopy was only observed at the high invasion level, with an average age of establishment of
20.0 ± 2.7 years. This is only 4.5 years more than the average age of establishment at intermediate
invasion levels, which showed extremely low horizontal continuity at height classes above 0.5 m.
This is consistent with a recent study conducted in native grasslands in the Chilean Patagonia,
where fuel build-up generated by P. contorta invasions started growing exponentially between 15
and 20 years after invasion initiation [16]. Although we did not simulate fire behavior in low and
intermediate levels of invasion, their fuel characteristics implies a much lower fire hazard compared
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to high invasion levels [46]. The relatively rapid change in fuel conditions suggests the existence of
a threshold in fuel build-up below which there is apparently no significant increase in fire hazard.
However, once this proposed threshold is surpassed, fires may radically increase their intensity
and severity in pine-invaded areas. The existence of this threshold for P. contorta invasions in the
Patagonian steppe was previously shown by Taylor et al. [16], where simulated soil heating due to
fire drastically increased after the invasion reaches 10 years [16]. In addition to increased fire hazard,
high invasion levels significantly raise pine removal costs [47] and magnify the chances of positive
fire-vegetation feedbacks [16], thus decreasing the probabilities of successful restoration of the native
community. Therefore, it is critical to plan for an early control of pine-invaded areas before fuels reach
the critical threshold.

Although the current area planted with pines in northwestern Patagonia is still relatively small
(ca. 100 thousand ha), there are strong socioeconomic incentives to continue planting over an extensive
area of ca. 800 thousand ha in the Patagonian steppe, near the ecotone at the Andean foothills [25].
Concurrently, pine invasions in northwestern Patagonia are at an incipient state but show strong trends
of rapid expansion and densification [10,18]. Most densely invaded areas are still nearby plantations
(i.e., a few hundred meters), but long-distance seed dispersed individuals (i.e., a few kilometers) that
have already reached reproductive maturity are increasingly common across the landscape (pers. obs.).
Furthermore, a large proportion of established plantations have not reached a reproductive stage yet,
so more sources of invasion will be available in the near future [18]. These rapid changes in landscape
cover will likely surpass landscape flammability thresholds in the future if no actions are taken. At this
initial stage of plantations expansion and invasion spread, management practices have a realistic
chance of lessening the potential consequences of increased fire hazard at a relative low cost compared
to control measures applied at advanced stages.

Despite several native plant species in the forest-steppe ecotone showing post-fire regeneration
strategies, elevated temperatures due to pine-promoted high intensity fire may still kill individuals
of native species or slow down their rate of recovery [48]. This may promote further invasion
and/or conversion from steppe to pine forest stands, as extirpation of native species due to death
of belowground resprouting structures eliminates competition and favors pine establishment [49].
Moreover, many of the pine species planted and invading in Patagonia have fire-adapted life-history
traits (e.g., serotiny) that enhance their colonization of post-fire native areas [50]. In pine-invaded
sites or plantations, there are already documented reductions in the abundance and richness of
native plant species. For example, in southern Chile, plantations and invasions filtered out most
specialist and endemic plants [51,52], while in the forest-steppe ecotone of NW Patagonia in Argentina
richness of herbaceous species has decreased almost 50% and abundance has decreased 70 times
within plantations compared to the native steppe [53]. Therefore, the native steppe ecosystem becomes
even more vulnerable to biodiversity loss considering the potential higher fire severity of pine stands,
which may further eliminate the few surviving individuals of native species inside the planted or
invaded stands.

Pine plantations and invasions are not only threatening the forest-steppe ecotone but also adjacent
fire-sensitive native ecosystems. Increased connectivity and flammable landscape elements may
threaten native forests in several ways. Pines are being planted near fire-sensitive tree species such
as Austrocedrus chilensis and Nothofagus pumilio (Poepp. and Endl.) Krasser which may favor fire
spread into these forests. Also in the region, native fire-resistant tree species such as the endangered
monkey puzzle tree Araucaria araucana (Molina) K. Koch [54], are threatened by changes in fuel
structure due to P. contorta invasions [20]. Therefore, spatially explicit models of fire spread are
necessary to identify critical levels of invasion that may increase landscape level vulnerability of native
ecosystems. Furthermore, spatially explicit models of fire spread can be used to test for the accuracy
of fire behavior simulations by contrasting actual fire extension (size and shape) against modeled
fires. Future research in Patagonia should combine quantification approaches of the effects of stand
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structure and composition on fire behavior with the spatial characterization of fire spread and severity,
especially in the context of climate warming.

Current climatic trends and forecasted warming scenarios for the southern hemisphere are
associated with large and more severe fires [55,56]. The upward trend observed in the Southern
Annular Mode (SAM), linked to current warming conditions, is tightlty coupled with fire activity in
southern South American forests and woodlands, resulting in increased fire synchrony and activity [56].
Clearly, increased warming in Patagonia promotes low fuel moisture levels, favoring extreme fire
danger conditions, such as the scenario described in this work, which in turn may allow more intense
and severe fires. These changes occur in synergy with land use trends, such as the expansion of the
wildland–urban interface and the increase in non-native plantations, implying increased anthropogenic
ignitions and greater exposure of societies to wildfire hazards [9,57,58]. Adaptation measures such
as fuel reduction in both planted and incipiently invaded sites following adequate silvicultural
practices may sensitively diminish ecological and socioeconomic vulnerability to these altered fire
regimes. Furthermore, these practices may reduce the probability of transition from native to novel
pine-dominated states that could further result in more frequent and severe fire events.

5. Conclusions

Pine plantations and invasions in the Patagonian forest-steppe ecotone originate significant
increases in fuel loads and produce changes in fuel structure affecting the potential behavior of fire.
Wildfires in pine plantations or areas with high levels of pine invasion can increase the potential fire
intensity ~30 times compared to the native steppe. This drastic rise in intensity may have profound
impacts on post-fire regeneration due to the likely extirpation of the few native resprouting species in
the understory. Pruning of basal branches can contribute to reducing fire hazard within plantations by
lowering the probability of fire crowning. Likewise, the mechanical removal of invasion can result
in a similar fuel structure to that of the native steppe. As pines are becoming ubiquitous in southern
hemisphere landscapes and fire activity is increasing, active management to prevent unnaturally severe
fires is urgently needed.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4907/9/3/117/s1, Table
S1: Location and elevation of the five study sites. Figure S1: Photographs depicting representative sites of each
treatment: (a) native steppe, (b) P. ponderosa pruned plantation, (c) P. ponderosa unpruned plantation, (d) low level
P. contorta invasion, (e) intermediate level P. contorta invasion, (f) high level P. contorta invasion, (g) removed
low level P. contorta invasion, (h) removed intermediate level P. contorta invasion, and (i) removed high level P.
contorta invasion.
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Abstract: Severity of wildfires is a critical component of the fire regime and plays an important
role in determining forest ecosystem response to fire disturbance. Predicting spatial distribution of
potential fire severity can be valuable in guiding fire and fuel management planning. Spatial controls
on fire severity patterns have attracted growing interest, but few studies have attempted to predict
potential fire severity in fire-prone Eurasian boreal forests. Furthermore, the influences of fire
weather variation on spatial heterogeneity of fire severity remain poorly understood at fine scales.
We assessed the relative importance and influence of pre-fire vegetation, topography, and surface
moisture availability (SMA) on fire severity in 21 lightning-ignited fires occurring in two different fire
years (3 fires in 2000, 18 fires in 2010) of the Great Xing’an Mountains with an ensemble modeling
approach of boosted regression tree (BRT). SMA was derived from 8-day moderate resolution imaging
spectroradiometer (MODIS) evapotranspiration products. We predicted the potential distribution of
fire severity in two fire years and evaluated the prediction accuracies. BRT modeling revealed that
vegetation, topography, and SMA explained more than 70% of variations in fire severity (mean 83.0%
for 2000, mean 73.8% for 2010). Our analysis showed that evergreen coniferous forests were more
likely to experience higher severity fires than the dominant deciduous larch forests of this region,
and deciduous broadleaf forests and shrublands usually burned at a significantly lower fire severity.
High-severity fires tended to occur in gentle and well-drained slopes at high altitudes, especially
those with north-facing aspects. SMA exhibited notable and consistent negative association with
severity. Predicted fire severity from our model exhibited strong agreement with the observed fire
severity (mean r2 = 0.795 for 2000, 0.618 for 2010). Our results verified that spatial variation of fire
severity within a burned patch is predictable at the landscape scale, and the prediction of potential
fire severity could be improved by incorporating remotely sensed biophysical variables related to
weather conditions.

Keywords: fire severity; surface moisture; remote sensing; spatial controls; boreal forest;
Great Xing’an Mountains

1. Introduction

Wildfires, ignited by human or natural agents, are crucial disturbances in the boreal forests of
Eurasia and North America [1–3]. Wildfires can strongly influence regional land surface processes
such as carbon cycling [4,5] and energy and water budgets [6,7]. Severe burns can result in tree
mortality and soil erosion, thereby degrading ecosystem functions [8]. Nevertheless, there is a
growing consensus that forest wildfires can also provide a unique opportunity for ecosystem
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restoration [9,10]. In particular, fire severity can exert profound impacts on the successional trajectories
of the early post-fire vegetation [11,12], which may ultimately determine the future forest structure and
function [13–15]. Many recent studies have indicated that warming and drying climates tend to shift
the current fire regimes toward more frequent, large burns with high severities [16–18]. Understanding
the causal mechanisms of fire severity patterns is essential for mitigating the adverse effects of fires,
and for maintaining beneficial ecosystem functions and services.

Fire severity is generally defined as the magnitude of ecosystem changes caused by fire [19,20].
It is often based on metrics obtained from the field that represent short-term fire effects in the immediate
post-fire environment (e.g., tree mortality and soil organic matter loss) [19,21], or based on the validated
relationships between remotely sensed spectral indices (e.g., normalized burn ratio (NBR) and
differenced normalized burned ratio (dNBR)) and field-measured metrics [19–22]. It has been shown
that variations in fire severity patterns are at the heart of how an ecosystem will change in response
to fire events [23–25]. Spatially explicit fire severity maps can assist resource managers in evaluating
post-fire biomass loss and developing sound strategies for ecological restoration [26,27]. Numerous
studies that incorporate field investigation and remotely sensed images have been conducted to map
fire severity variability within burned patches [19,20,27,28]. However, a potential fire severity map
may be even more useful in allowing managers to anticipate the hotspot areas that are likely to burn
severely, and thus to prioritize resources for fuel treatments for those areas [29,30].

Fire behavior is regulated by three major controlling factors (i.e., weather, topography, and
fuels) that form a fire triangle at spatial scales ranging from a few hectares to thousands of square
kilometers [31]. Fuel composition and fuel loading interact with terrain features and fire weather
to influence burning duration and heat flux, which ultimately determine the spatial pattern of fire
severity [20,32]. Various methods have been developed to represent the cause-and-effect relationships
between environmental factors (drivers), fire behavior (process), and fire effects on an ecosystem
(patterns). Those methods generally fall into two categories: physical models (e.g., FIREHARM and
FOFEM) that simulate fire spread and effects based on fire spread physics developed from laboratory
experiments [29,33–35], and the empirical approaches that draw relationships from the analysis of
existing fire severity patterns [36–38]. In the past two decades, empirical relationships between fire
severity pattern and its spatial controls have gained considerable attention [37–40], with scientific
aims to identify the primary drivers and quantify their explanatory power on spatial heterogeneity of
fire severity.

Since fire severity can be evaluated across a range of spatial scales, environmental variables
in empirical models need to be consistently described at comparable spatial scales for maximum
predictive power. Variables representing fuels and topography are considered to be bottom-up
controls because their influences on fire patterns are pronounced largely at fine spatial scales [41].
Those variables can be easily observed and/or resampled at various scales without losing their
precision. For example, when fire severity is assessed in the field (site scale), the fuel properties and
topography measured in situ are often used to build relationships with fire severity [39,40]. When fire
severity is quantified at coarser scales (e.g., fire patch level), vegetation variables derived from remotely
sensed forest maps or forest inventory analysis databases, and topographic features developed from
digital elevation models (DEMs) are often re-sampled to a coarser spatial resolution (upscaling) [42–44].
Vegetation and topography have been widely recognized as the dominant controls on fire severity in
many types of forest ecosystems [37,38,42,43,45].

Fire weather is considered a top-down control of wildfires as its influences on fire behavior are
pronounced at broad scales. Although fire weather has been proven an influential driver of fire severity
at the fire patch level [37,42,43,46,47], its influences and predictive power on spatial heterogeneity
of fire severity remain poorly understood at fine scales. Current meteorological data are usually
collected at a coarse spatial resolution, which is inconsistent with the fine scale at which site-level fire
severity is assessed and predicted. The viewpoints that emphasize that fire weather is less important
than vegetation or topography on regulating fire severity may be problematic as the low-resolution
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fire weather may not represent the spatial variations of in situ meteorological conditions. Spatially
interpolated data from weather stations can mitigate this issue, but in regions where the weather
stations are scarce, this technique is inadequate. The lack of availability of credible and timely weather
data limits the understanding of spatial controls on fire severity.

Recent advances in remote sensing techniques have provided a new opportunity to examine
fine-scale fire weather effects on fire severity. Fire weather conditions are often characterized using
the metric of fuel moisture content, which reflects dryness of dead fuels and water deficit of live
biomass. Remotely sensed surface evapotranspiration (ET) products, which capture broad relationships
between surface moisture availability and fuel dryness and vegetation drought-stress [44,48,49],
have seldom been applied in modeling fire severity, even though they possess relatively high temporal
and spatial resolutions.

Furthermore, prediction of fire severity patterns based on the empirical understanding of spatial
controls has been well studied in North American boreal and western US forest landscapes [50–52],
but there is still a lack of comprehensive analysis in Eurasian boreal forests, which are expected
to become more fire prone with climate warming and drying [1,53,54]. This study conducts a
comprehensive analysis of within-patch fire severity variations in response to pre-fire vegetation,
topography, and surface moisture availability at fine spatial scales in a Eurasian boreal forest landscape.
The Great Xing’an boreal forest in northeastern China is an important forest ecosystem that stores
1.0–1.5 Pg C and provides 30% of the total timber yield in China [55]. It is located near the southern
frontier of Eurasian boreal forests where the fire regime is very sensitive to climate changes [43,54,56].
Since April 2014, commercial logging has been completely forbidden in this region in an effort to restore
and protect its valuable ecosystem services. Fire is the primary disturbance in this area, and there
is an increasing urgency to understand the driving mechanisms of fire severity patterns to mitigate
fire-induced ecological damage. In this paper, our objectives are three-fold. First, we investigate
how fire severity varies across the landscape in response to environmental factors characterized at
a consistent spatial resolution. Second, we verify the predictive power of remotely sensed pre-fire
surface moisture conditions on determining fire severity patterns. Third, we develop an empirically
based model to identify the distribution of potential high-severity burns.

2. Materials and Methods

2.1. Study Area

The boreal forest in the Great Xing’an Mountains of China is a fire-prone ecosystem that generally
experiences frequent, moderate- to low-severity surface burns, mixed with infrequent high-severity
crown fires. The climate is classified as mid-latitude continental cold-temperate type with short,
warm, humid summers and long, cold, dry winters [28]. The study area is mainly located in the
Huzhong Forestry Bureau (Figure 1), which is situated in the central part of Great Xing’an region and
represents a typical boreal forest landscape of northeastern China. It has a mean annual precipitation
of approximately 460 mm that mostly occurs between July and September, and a mean annual
temperature of approximately −4.7 ◦C. The topography is mountainous, with elevations ranging
between 360 m and 1511 m above sea level. In contrast to the boreal forests dominated by evergreen
coniferous tree species in North America and Europe, the forests in this area are dominated primarily
by a deciduous coniferous tree species, Dahurian larch (Larix gmelinii (Rupr.) Rupr.), and mixed
with some evergreen coniferous tree/shrub species including Korean spruce (Picea koraiensis Nakai),
Scotch pine (Pinus sylvestris var. mongolica), and Siberian dwarf pine (Pinus pumila (Pall.) Regel),
and a few deciduous broadleaf species of birch (Betula platyphylla) and aspen (Populus davidiana and
Populus suaveolens Fisch.). The understory species are composed of evergreen shrubs (e.g., Ledum L.
and Vaccinium vitis-idaea L.), deciduous shrubs (e.g., Betula fruticose Pall. and Rhododendron dauricum
L.), and some herbaceous plants (e.g., Chamaenerion angustifolium (L.) and Carex appendiculata (Trautv.)
Kukenth.) [28], whose distributions are influenced by the topographic and soil conditions [57].
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Based on fire occurrence records published by the Chinese Forestry Science Data Center, there were
146 fires in the Huzhong Forestry Bureau’s jurisdiction between 1991 and 2010, of which 111 were
lightning-ignited [58]. Most fires occurred in June, July, and August, which suggests that summer is the
primary fire season in our study area. Similar fire occurrence tendencies for the entire Great Xing’an
Mountains were reported from 1980 to 2005 in Fan et al. (2017) [54]. Here we focused on 21 fires
(Table 1) occurring in two fire years: 2000 (3 fires) and 2010 (18 fires). These two fire years exhibited
the greatest burned areas of any other years in the past two decades, together accounting for about
82.5% of the total burned area over a 20-year period [28,43]. Another important reason for selecting
these fires is that they were all lighting-ignited in mid-to-late June and located within similar biotic
and abiotic environments. In addition, field measurements of fire severity and forest regeneration in
the area of these fires have been conducted by our research team since 2010 [28,59,60].

Figure 1. Location of study area (a) showing severity of wildfires occurring in 2000 (blue perimeters)
and 2010 (pink perimeters). Most of the study area is located in the Huzhong Forestry Bureau (b) in
the middle of Great Xing’an boreal forests (green patch in b and c) which administratively belongs
to Heilongjiang province in northeastern China (c). One fire was located in E’lunchun County (a),
which belongs to the Inner Mongolian part of Great Xing’an boreal forests. Forests within the Huzhong
Natural Reserve are primarily natural forests because of a strictly enforced ban on commercial and
salvage logging within the reserve since 1958, while forests outside the natural reserve experienced
severe cutting since the 1950s.
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Table 1. Detailed information of 21 fires included in this study.

Occurrence Date DOY † Duration (Day) Longitude Latitude Burned Area (ha)

17 June 2000 168 7 122.830 51.891 8518.5
17 June 2000 168 5 123.175 51.314 2918.3
18 June 2000 169 3 123.294 51.724 1443.6
12 June 2010 163 1 123.092 52.003 207.4
12 June 2010 163 1 122.947 51.420 320.1
13 June 2010 164 1 122.844 52.036 394.8
15 June 2010 166 1 122.821 51.813 26.3
15 June 2010 166 1 123.579 51.583 29.0
15 June 2010 166 1 123.587 51.559 104.5
20 June 2010 171 1 122.908 52.027 47.0
25 June 2010 176 1 123.513 51.577 17.4
26 June 2010 177 5 123.486 51.305 2891.5
26 June 2010 177 5 123.252 51.472 1926.1
27 June 2010 178 1 123.116 51.300 102.4
27 June 2010 178 3 123.182 51.431 255.1
27 June 2010 178 3 123.224 51.390 734.6
27 June 2010 178 3 123.108 51.435 258.8
28 June 2010 179 1 123.302 51.450 260.4
28 June 2010 179 1 122.784 51.459 536.0
28 June 2010 179 3 123.065 51.391 984.3
29 June 2010 180 1 122.922 51.879 670.8

† DOY: day of year corresponding to fire occurrence date.

2.2. Remote Sensing Imagery Processing

We obtained four L-1 terrain-corrected Landsat TM and ETM+ images (path-row 121/24) with
very good quality from 1999, 2000, 2007 and 2010 from the USGS website. To minimize spectral bias
caused by phenology differences, the four Landsat images selected for study were all acquired in
September. The raw digital number (DN) images of each spectral band were first calibrated into
at-satellite radiance using the sensor-specific parameters cited in Chander et al. [61]. A consistent
radiometric response between multitemporal Landsat images is critically important for regional fire
severity assessment over long time scales. Atmospherically-corrected Landsat surface reflectance
products recently have been provided by the USGS, but to our knowledge, a further radiometric
normalization can still be useful for consistent monitoring of forest changes. Thus, before using these
Landsat images, we applied the 6S atmospheric correction method [62] and an absolute radiometric
normalization approach, the iteratively reweighted multivariate alteration detection (IR-MAD) [63],
to eliminate atmospheric effects and improve radiometric consistency between the Landsat time-series
datasets. We selected a 2802 × 3483-pixel subset from each image (Figure 2), which covers all 21 fires,
to carry out the normalization procedure in ENVI/IDL 4.7 (ITT Industries Inc., White Plains, NY,
USA, 2009). We selected the 2007 image as the common reference image due to the least cloud
coverage and used the bandwise regression parameters generated by IR-MAD to normalize the other
three reflectance images. All the images were normalized to a consistent radiometric standard of the
2007 reference image. The dNBR is a well-known spectral index and has been proven to correlate well
with fire severity in many types of forest ecosystems, including the study area of this research [28].
We calculated the NBR and dNBR indices using Landsat bands 4 and 7 as proposed in Key and
Benson [19]:

NBR =
TM4 − TM7

TM4 + TM7
(1)

dNBR = NBRpre − NBRpost (2)
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The two images acquired in 1999 and 2007 were used to calculate pre-fie NBR for the years
of 2000 and 2010, respectively, while the images acquired in 2000 and 2010 were used to calculate
post-fire NBR.

The 8-day moderate resolution imaging spectroradiometer (MODIS) ET product (MOD16A2)
includes actual ET (AET), latent heat flux, potential ET (PET), and potential latent heat flux data. It is
composed of daily canopy evaporation, plant transpiration, and soil evaporation and is calculated
as the average value of cloud-free ET during an 8-day period [64]. MOD16A2 products have
been evaluated based on flux tower measurements in many ecosystems and exhibit agreement
with the ground-measured ET in eastern Asian forests [64,65]. In this study, we assumed that the
MODIS-derived SMA index captures the broad relationship between remote sensing spectral signals
and fuel moisture content. Although we did not develop an empirical relationship model to retrieve
the actual pre-fire fuel moisture content, many recent publications have tested this hypothesis and
indicated that MODIS data could be operationally integrated into fire danger systems [48,49,66].
Currently, there are two versions of MOD16A2 products available. The latest (version 6) can provide
500 m ET observations, but it is not available for year 2000 as its collection began in 2001. Version 5 is
available for both fire years, but its spatial resolution is coarser (1 km) (Figure A1). In addition, because
these two versions used different model input datasets (e.g., land cover product, leaf area index) and
algorithms [67], the final ET outputs differ between version 5 and version 6 (Figure A2). We obtained
both version 5 and version 6 of MOD16A2 product for our study area and assessed the performance of
both versions in our modeling. In our study, we mainly used the version 5 product for a consistent
comparison of the models for 2000 and 2010. We also compared model performance and the ability of
versions 5 and 6 in explaining spatial variation of fire severity for the year 2010.

Figure 2. Pre-fire (a) and post-fire (b) false color Landsat TM images (R-TM5, G-TM4, and B-TM3) of
the study area. The light pink patches in (b) indicate fires occurred in 2000, while dark red patches
indicate fires occurred in 2010.

Based on occurrence dates of 21 fires (Table 1), we obtained five pre-fire MOD16A2 ET data
(tile: H25V03, day of year from 129 to 168) for 2000 and six 1 km pre-fire MOD16A2 ET data
(tile: H25V03, day of year from 129 to 176) for 2010 from the University of Montana’s Numerical
Terra-dynamic Simulation group. The six 500 m MOD16A2 ET data (tile: H25V03, day of year from
129 to 176) were obtained from the USGS Land Processes Distributed Active Archive Center. With the
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assistance of MOD16A2 Quality Control (QC) data, we only selected high-quality pixels (QC equal
0) from each 8-day ET dataset and used them to generate two integrated pre-fire ET datasets for
2000 and 2010. For a given burned pixel, the maximum of six observations with high quality were
ranked by the time since fire occurrence date. We gave preference to the observation whose acquisition
time was closest to the fire occurrence date to ensure the selection reflects the latest pre-fire surface
ET conditions.

2.3. Fire Severity Mapping

Burned pixels (30 m) were extracted based on a thresholding process for the forest disturbance
index following the protocol of the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) [68]. The detailed description of this approach can be found in Fang et al. (2015) [43].
Twenty-one fires burned about 22,650 ha in total; the three fire events in 2000 burned over 12,880 ha
(about 251, 670 Landsat pixels), and the 18 fires in 2010 burned over 9760 ha (about 108, 450 Landsat
pixels). These burned pixels exhibited significantly different spectral features compared to the
unburned pixels in the Landsat images, as shown in Figure 2. Our previous study established a
quadratic polynomial relationship between the dNBR and field measured composite burn index (CBI):

CBI = −0.0425 + 2.753 × dNBR − 0.8142 × dNBR2 (3)

which was confirmed to explain 84.6% variance in 74 CBI plots of 2010 fires and to produce accurate
severity maps of the largest fire in 2000 (Kappa = 0.72) [28]. The CBI values of 1.1 and 2.0 were
applied as boundaries of three severity levels (i.e., low severity (0.1 ≤ CBI ≤ 1.1), moderate severity
(1.1 < CBI ≤ 2), and high severity (2 < CBI ≤ 3)) as they were corresponding to about 10% and 80% of
canopy mortality, respectively, in our ecosystem, where the live mature trees were very important for
vegetation restoration [28]. The two dNBR thresholds associated with CBI values of 1.1 and 2.0 were
0.484 and 1.099, respectively; these thresholds were applied to classify burned pixels of 2000 and 2010
into three severity levels.

2.4. Environmental Metrics

We used a suite of explanatory variables to describe various aspects of fuel, topography,
and surface moisture conditions, and modeled their relationships with fire severity (Table 2).
Using Landsat imagery, we developed two vegetation cover maps for two different years (1999 and
2007) and reconstructed the pre-fire vegetation conditions. Using a stratified decision tree classification
method, we combined the conspicuous differences of phenology and spectral characteristics among
vegetation types, and used Landsat surface reflectance, spectral indices, and components of Tasseled
Cap transformation to produce vegetation cover maps at 30 m resolution [69]. The whole area was
classified into six vegetated categories consisting of deciduous coniferous forest (DCF, i.e., larch forest),
deciduous broadleaf forest (DBF), evergreen coniferous forest (ECF), mixed forest (MF), grassland
(GRS), and shrublands (SRB), as well as five non-vegetation categories (water bodies, bare rock,
bare soil, urban land, and shade from mountains and clouds). Accuracy assessments were carried out
in Fang et al. (2015) [43], which reported that the overall accuracy and the Kappa coefficient of the
vegetated areas were 64% and 57% respectively. In detail, the mapping accuracy of DCF is 72%, DBF is
40%, ECF is 81%, MF is 49%, GRS is 82%, and SRB is 70%, indicating suitability for subsequent analysis.

We used a 30 m ASTER global digital elevation model (GDEM) product published by the
National Aeronautics and Space Administration (NASA) to derive a number of commonly used
topographic indices, including elevation (ELV), slope (SLP), aspect, and topographic wetness index
(TWI). Aspect was further converted to better represent the potential influence of solar radiation (PSR)
on site moisture conditions, following the equation:

PSR = cos((θ − 225)× π/180) (4)
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where θ is the aspect in degrees [70]. The higher PSR values represent higher potential solar insolation.
The TWI was designed based on the assumption that water movement is controlled by the topography
of the slopes [71]. TWI is defined as:

TWI = ln(α/ tan β) (5)

where α is the local upslope area draining through a certain point per contour length and tanβ is the
slope angle at the point [72]. TWI is often used to describe the spatial distribution of soil moisture and
surface saturation, and has shown good correlation with soil moisture and depth to ground water in
Eurasian boreal forests [72,73]. TWI values typically range from 3 to 30, where a higher value indicates
higher soil moisture potential.

Fuel moisture content is a good surrogate for representing the indirect impacts of weather
on fire behavior [74] because it influences many fire processes, such as ignition, combustion,
and smoldering [75]. Fuel moisture is also controlled by weather conditions such as precipitation
and ET and is closely associated with soil moisture [48,75]. Here, we calculated surface moisture
availability (SMA) as the indicator of live fuel moisture content using the equation:

SMA = AET/PET (6)

where AET is actual ET and PET is the potential ET [76]. The SMA is a critical parameter in governing
the partition between sensible and latent heat flux at the surface, which is the key determinant of soil
moisture, and also determines the water stress and water content of live plants [49,76]. In general,
when AET is equal to PET, the surface will reach moisture-saturated conditions and the SMA will be
equal to 1. However, when the SMA is below certain threshold values, the vegetation may begin to
suffer from drought stress and the soil may approach a limiting dryness [76].

Table 2. Abbreviations and descriptions of explanatory variables in this study.

Category Variable Description Mean ± SD (2000 & 2010)

Vegetation †

ECF
Percentage of Landsat pixels classified into evergreen coniferous
trees within 240 m burned pixels, were primarily Pinus pumila

shrublands and Larix gmelinii-Pinus pumila forest.

0.158 ± 0.261
0.169 ± 0.278

DCF
Percentage of larch forest. The three dominant larch forests are
Larix gmelinii-Ledum palustre L., Larix gmelinii-grass, and Larix

gmelinii-Rhododendron dahurica L.

0.615 ± 0.324
0.350 ± 0.302

DBF Percentage of broad leaf forest. The white birch and aspen are
dominant broad leaf species.

0.017 ± 0.057
0.177 ± 0.218

MF Percentage of mixed forest. Composited by broad leaf trees and
coniferous trees.

0.086 ± 0.145
0.150 ± 0.218

GRS Percentage of grassland. 0.047 ± 0.135
0.086 ± 0.166

SRB Percentage of shrublands, typically distributed in open land
along the river and disturbed areas.

0.035 ± 0.097
0.041 ± 0.134

Topography

ELV Elevation (meters) derived from the aggregated ASTER GDEM
at 240 m spatial resolution.

1089 ± 92.862
1017 ± 107.316

PSR Potential solar radiation. It ranges from −1 to 1, where high
values represent xeric exposures.

−0.024 ± 0.715
−0.173 ± 0.683

SLP Slope (degree) computed from aggregated DEM. 8.840 ± 4.090
8.958 ± 3.992

TWI Topographic wetness index (unitless) is computed from the
slope and the upslope contributing area per unit contour length.

13.953 ± 1.313
14.024 ± 1.528

Surface
moisture

SMA
SMA is calculated from MOD16A2 and represents land surface

moisture availability. The higher SMA value indicates the
wetter land surface.

0.494 ± 0.099
0.411 ± 0.153

† Statistics of five non-vegetation land cover types were not listed.
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2.5. Spatial Data Processing

To mitigate the issue of inconsistent spatial resolutions between various spatial datasets,
we conservatively selected a 240 m spatial resolution as the overall standard. This resolution (240 m) is
exactly eightfold the resolution (30 m) of the Landsat-derived vegetation maps and the ASTER GDEM
data. This resolution is particularly suitable for aggregating the fine-resolution categorical map to
the coarse-resolution continuous imagery. In addition, it is close to 250 m, which is the finest spatial
resolution of MODIS products, and many remote sensing studies use 250 m to conduct downscaling for
1 km MODIS ET products [77]. To downscale the SMA data, we used a nearest neighbor interpolation
approach to resample the data from 1 km to 240 m.

Three different spatial aggregation methods were employed to upscale the vegetation,
topographic, and fire severity data. Based on the Landsat-derived vegetation cover maps, we calculated
the fractional coverage of each vegetation type by calculating the proportion of occurrence within
an 8 × 8 pixel window (8-PW). Thus, the 30 m categorical vegetation maps were converted into
240 m continuous vegetation coverage images. For the numerical ASTER GDEM data, we calculated
an average value for each 8-PW and subsequently used the aggregated DEM data to calculate the
abovementioned topographic metrics.

To generate a fire severity value that can be consistently interpreted at different spatial scales,
we used an area-weighted average method to aggregate the 30 m categorical fire severity map to
240 m. We first analyzed the proportions of unburned, low, moderate, and high severity pixels within
each 8-PW; pixel proportions in the 8-PW serve as the area-weight values in the aggregation function.
For instance, if 32 pixels within a given 8-PW (64 pixels) were classified as high severity, the weight
value of high severity would be 50% (i.e., 32/64). If no pixel was classified as high severity in the 8-PW,
the weight value of high severity would be 0. Then, a set of fire severity rating integers from 0 to 3 was
used to indicate the fire severity gradient from unburned to high severity, respectively:

Severity = 0 × ωunburned + 1 × ωlow + 2 × ωmoderate + 3 × ωhigh (7)

where ω is the weight value of four severity gradients. The area-weighted average value of fire
severity ranged from 0 to 3, with higher values representing higher fire severity. The area-weighted
averaging process considers the relative importance of each severity level and provides a more balanced
interpretation of the data.

2.6. Statistical Modeling

A boosted regression tree (BRT) model was applied to explain the relationships between remote
sensed fire severity and selected environmental variables. The BRT model is a useful machine
learning approach that uses recursive binary splits and a boosting technique to combine a large
number of sequential trees to improve the fit and predictive performance [78,79]. It has the capacity
to handle complex relationships among numerical and categorical variables, quantify interactions
between explanatory variables and overcome inaccuracies associated with regression and classification
methods [78]. We applied the “gbm” package (version 2.1.3) in R 3.4.1 (R Development Core Team 2017,
Boston, MA, USA) to run the BRT analysis. We ran two sets of BRT models for the two different fire
years, 2000 and 2010. We used the same parameter settings and amounts of training data to ensure that
the outcomes of the two models were comparable. The random subsampling and bagging procedures
in a BRT model may introduce stochasticity into the model outcomes. To mitigate the stochastic errors
and create stable model outputs, we carried out 50 BRT modeling trials independently and calculated
an average as the final result.

Before running the BRT models, we carried out a data exploration procedure to assess whether
there was any conspicuous spatial autocorrelation or collinearity. Using functions in the “ape”
package [80], we calculated the Moran’s I index to examine spatial autocorrelation in fire severity and
explanatory variables. Moran’s I is similar to a correlation coefficient and represents the similarity of
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an observation to its nearby observations [81]. It ranges between −1 and 1. Higher positive values
indicate greater similarity, which can be interpreted as a spatially clustered distribution, while lower
negative values indicate stronger dissimilarity (i.e., a more dispersed spatial pattern), and the zero
value indicates a random spatial pattern (i.e., perfect randomness). We set a 300 m sample spacing
distance (>1 pixel) when computing the Moran’s I index. Although p-values were less than the
0.05 level, the Moran’s I values of both response and explanatory variables were small (mostly less than
0.20, see Table A1), suggesting weak spatial autocorrelations among sampling pixels. Similar or higher
Moran’s I thresholds for determining suitable sampling spaces have been used in wildfire-related
literature [36,45,50]. We also calculated the pairwise Pearson correlation coefficient (r) using the
“Hmisc” package to evaluate potential collinearity among predictor variables. All variables selected
for modeling had low pairwise Pearson correlations (|r| < 0.60), suggesting relatively low levels
of collinearity. We used a subset of 200 random sampling pixels to build the BRT model, while the
remaining 100 pixels were used for validation.

The optimization of a BRT model is jointly controlled by the learning rate, tree complexity, bagging
fraction, and number of trees. In this study, we set these parameters at 0.01, 5 and 0.5, respectively,
following the recommended model inputs of Elith et al. (2008) [79]. The number of trees in each BRT
trial was automatically selected based on a 5-fold cross-validation procedure to avoid over-fitting
problem. The relative importance of each explanatory variable to fire severity was measured by
averaging the frequency it was selected for splitting among all trees, and the importance was weighted
by the squared improvement to the model as a result of each split [79]. The relative importance values
of the predictors were scaled as a percentage, the sum of which equals 100%. Higher importance values
represented stronger impacts on controlling fire severity. In addition, we explored the dependency
relationships between several important variables and fire severity by plotting the effect of a specific
explanatory variable on the response variable after averaging the effects of remaining explanatory
variables in the same model.

The coefficient of determination (R2) reported by the BRT model was used to evaluate how well
the model fits the training data. We used the 100 samples that were independent of the training
data to assess the predictive power of our BRT models. We examined the goodness of fit between
simulated fire severity values and observed fire severity values by applying a linear regression model
and calculating the squared multiple correlation coefficients (denoted r2). To provide a standalone
evaluation of model performance, we used the error matrix method to evaluate the predicted fire
severity maps. We selected an optimal simulation image for each fire year based on the r2 value and
classified the burned pixels into low (fire severity ≤ 1), moderate (1 < fire severity ≤ 2), and high
(2 < fire severity ≤ 3) severity levels. The two aggregated fire severity images were also converted into
categorical severity maps using these same thresholds and were then used as reference maps. We used
all burned pixels from each fire severity level to ensure unbiased evaluation for both fire years.

3. Results

3.1. Evaluation of Model Performance

We found that the two sets of BRT models fit the training data very well, as they explained 83.0%
(R2

max = 85.0%, SD = 0.008) of the variation in fire severity in 2000 (Figure 3a) and 73.8% (R2
max = 81.3%,

SD = 0.035) of the variation in fire severity in 2010 (Figure 3b). Similarly, the 50 validation models
of the two years showed goodness of fits of 0.795 (r2

max = 0.820, SD = 0.040) (Figure 3c) and 0.618
(r2

max = 0.656, SD = 0.012) (Figure 3d), respectively, suggesting that the predicted fire severity results
were well correlated with the reference values.

The confusion matrices indicated that the optimal BRT model in 2000 achieved higher prediction
accuracy than the optimal model in 2010 (Table 3). The predicted severity map of 2000 produced fewer
commission errors in moderate (44.3% vs. 71.6%) and high (11.2% vs. 24.0%) severity pixels than 2010,
but it generated a high commission error for low severity (85.8%) pixels, indicating more pixels were
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erroneously predicted as low severity than were actually observed in the severity results. The predicted
severity map of 2010 generated high commission error (71.6%) for moderate severity level and high
omission error (64.6%) for low severity level, indicating overestimated moderate severity area and
underestimated low and high severity area (Figure A3). Overall, we found the prediction map of 2000
to represent very good agreement with the observed severity map, while the prediction map of 2010
underestimated the severity of most of the 18 fires (Figure 4).

R^2 = 0.85, p < 0.05 R^2 = 0.813, p < 0.05

r^2 = 0.82, p < 0.05 r^2 = 0.656, p < 0.05

Figure 3. Two examples of linear relationships used for validating model performance of 2000 (a,c)
and 2010 (b,d) based on 200 training samples (a,b) and 100 verification samples (c,d). Coefficients
of determination (R2 for training samples), and the squared multiple correlation coefficients (r2 for
verification samples) are also plotted. Blue solid lines show predicted linear regression fit. Black dashed
lines represent 1:1 line.

Table 3. Accuracy assessment of predicted fire severity classification for fire year 2000 and
2010, respectively.

Predicted Severity of 2000 Predicted Severity of 2010

Severity Class Low Moderate High
Producer’s
Accuracy

Low Moderate High
Producer’s
Accuracy

Low 50 26 7 60.2% 196 263 94 35.4%
Moderate 261 496 142 55.2% 95 276 115 56.8%

High 42 369 1184 74.2% 33 431 662 58.8%

User’s Accuracy 14.2% 55.7% 88.8% - 60.5% 28.5% 76.0% -

Overall Accuracy 67.1% 52.4%

3.2. Relative Importance of Environmental Variables

The relative importance of individual environmental variables varied substantially in the different
fire years (Figure 5). For the fires in 2000, the six most important predictors of fire severity in decreasing
order were DBF, SRB, MF, TWI, SLP and ELV. These predictors contributed to a total of 76.8% of the
relative importance. Three vegetation variables together contributed over 55% relative importance,
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indicating the spatial pattern of fire severity in 2000 was largely driven by the distribution of these
three vegetation types. For the 2010 burns, the six most important predictors were ECF, SMA, SLP,
PSR, ELV and TWI, which together contributed to 75.1% of the relative importance. The ECF and SMA
variables independently contributed as much as 23.3% and 12.8% relative importance respectively.
The 500 m version 6 SMA was found to have a slightly lower (11.0%) relative importance than the
1 km version 5 SMA product when modeling spatial variability of fire severity in 2010 (Figure A4).
An overall ranking of 11 variables was calculated based on a weighted average approach (see y-axis of
Figure 5), which identified four vegetation variables (ECF, DBF, SRB, and MF) as the primary controls
of fire severity, followed by SMA and topographic variables.

Figure 4. Observed fire severity (a) aggregated from Landsat observations versus the modeled fire
severity (b) for 21 fires based on boosted regression tree models. All fire severity images were plotted
at 240 m spatial resolution.

Figure 5. Relative importance proportion (RIMP) of explanatory variables for 50 boosted regression
tree models (Mean + SD) of fire severity in 2000 and 2010. The y-axis (ECF to GRS) shows an overall
rank of 11 variables in descending order according to a weighted average of RIMP, which is calculated
by multiplying two mean R2 (i.e., 0.830 for RIMPs of 2000, 0.738 for RIMPs 2010) with two mean
RIMP values (i.e., RIMP2000 and RIMP2010) of each variable. The ECF has the highest overall relative
importance while the GRS has the lowest value. See Table 2 for definition of variable abbreviations.
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When the 11 variables were grouped into three broad control types of vegetation, topography,
or SMA, the relative importance of these three control types became quite similar between the two fire
years. Vegetation consistently played a strong role in determining fire severity in the two fire years
because it contributed about 40–80% of total relative importance (Figure 6a). Together with 20–50% of
the total relative importance contributed by topographic variables, the results revealed that potential
fire severity in our study area is mostly controlled by vegetation and topography. At the same time,
we found SMA has similar relative importance to the maximum importance value of topographic
variables, indicating that SMA also has considerable predictive power over fire severity (Figure 6b).

Figure 6. Ternary plot (a) showing the total relative importance proportion (RIMP) of three groups
of explanatory variables (i.e., Vegetation, Topography and Surface Moisture Availability (SMA)) in
controlling fire severity of 2000 (blue) and 2010 (red). In considering the difference of variable numbers
among three groups, a variable which has the maximum RIMP (MaxRIMP) of each group is selected
and compared (b). Axis in ternary plot (b) representing relative proportions of MaxRIMP for three
types of variables.

3.3. Relationships between Environmental Variables and Fire Severity

Partial dependence plots were helpful for visualizing the response of fire severity to explanatory
variables. We found that the relationships between fire severity and environmental variables were
mostly nonlinear and varied little in different years (Figure 7). In general, high severity fires were
more likely to occur in dense evergreen forests (Figure 7a), especially on well-drained, gentle slopes
at high altitudes (Figure 7f–h). On the other hand, the partial dependence of fire severity generally
decreased with increasing DBF and SRB (Figure 7b,c), suggesting that the fire-resistant traits of these
two vegetation types may mitigate the adverse effects of severe burning. We found that increased
coverage of mixed forests generally had a negative impact on fire severity (Figure 7d), especially
in the year 2000, in which MF was recognized as an important variable. Fire severity in deciduous
coniferous forests was significantly lower than in evergreen coniferous forests (Figure 7j vs. Figure 7a)
but higher than in the other forest types. DCF did not exhibit a strong relationship with fire severity in
2010, but did exhibit a positive relationship with fire severity in 2000. The GRS variable was found to
have little relative importance to fire severity and represented a weak negative impact on fire severity
in 2010 (Figure 7k). The south facing slopes and areas with high TWI values typically experienced
moderate severity fires (Figure 7h,i). Our results also indicated that higher probabilities of moderate-
to high-severity fires were related to canopy or surface dryness (Figure 7e), especially when the 1 km
SMA ranged from 0.13 to 0.30 in the summer. In contrast, we found a strong positive association
between fire severity and 500 m SMA (Figure A5), as a result of inconsistent SMA values.
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Figure 7. Partial dependence plots of explanatory variables on regulating fire severity in different fire
years (2000 in red and 2010 in cyan). This grouping of variables was following the rank as shown
in y-axis of Figure 5. The curves demonstrate the smoothed means (solid line) and 95% confidence
intervals (gray zone) of an ensemble of 50 models. Variable abbreviations were described in Table 2.

4. Discussion

4.1. Environmental Influences on Fire Severity

We found that the BRT method was effective in investigating the relationships between fire
severity and environmental gradients, such as vegetation composition, terrain, and surface moisture
status. Fire severity is a complex function of these environmental gradients and such relationships
may vary in different years and locations. With thousands of 240 m sampling data from representative
historical fires, we found that the spatial distribution of fire severity could be predicted with adequate
precision in a Great Xing’an boreal forest landscape. In our exploration of the relative importance of
these spatial controls on fire severity, we found that fuel conditions are the most influential predictor in
determining the magnitude of fire severity. This finding is in accordance with our previous study [43],
which was conducted at burned patch level for the entire Great Xing’an boreal forest, and studies in
similar ecosystems, such as Canadian boreal forests [82,83] and subalpine forests [37,84,85].

Coniferous forests/shrubs experience higher severity fires than broadleaf forests and shrublands
in our ecosystem. Such result is generally consistent with observations in North America boreal forests
where deciduous tree dominated stands are found to be fire break and reduce landscape flammability
owing to higher foliage moisture and less surface fuels [86,87]. Larix gmelinii is the dominant coniferous
tree species in the boreal forests of Northeastern China (Figure 8a). Unlike the dominant evergreen
coniferous species (e.g., black spruce) in Northern American boreal forests or subalpine forests
(e.g., spruce-fir, ponderosa pine) in Western US, larch is a deciduous coniferous species; it is considered
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fire-tolerant because its self-pruning trait can reduce ladder fuels, and the open crown can reduce
the bulk density and connectivity of canopy fuels [88]. However, we found that larch forests usually
experience high mortality in flat areas and valley bottoms due to heat-induced root damage (Figure 8c).
To adapt to shallow soil and permafrost, Larix gmelinii develops lateral roots in the thick, flammable
moss and organic soil layers to improve adhesion and nutrient supply, but this also means it can
be easily injured or killed by surface fires [43]. Larch forests are also characterized by abundant
understory plants due to their open-canopy environment, which can contribute higher fire severity
than the forests without an abundant understory component. Another important coniferous species in
this region is Pinus pumila (Figure 8b), which is evergreen and usually mixed with Larix gmelinii in open
forests at altitudes of 800–1200 m or grows densely on rocky ridges at altitudes higher than 1200 m [89].
Pinus pumila is highly flammable because it contains abundant volatile organic compounds in its
needles, twigs, and seeds [90]. Furthermore, windy and dry conditions can accelerate the spreading
of fires on the ridges of mountains. Therefore, as demonstrated in our analysis, the increases in
Pinus pumila coverage may considerably increase the probability of high severity fires (Figure 8d).
Such finding is in consistent with Estes et al. (2017) [38], who reported that shrub species that
are favored by fires can generate higher fire severity than mixed hardwood/coniferous forests and
hardwood forests in northern California.

Figure 8. Photographs of two unburned stands dominated by the deciduous coniferous tree
Larix gmelinii (a) and the evergreen coniferous shrub Pinus pumila (b), and two 1-year post-fire stands
previously dominated by Larix gmelinii (c, surface fire) and Pinus pumila (d, canopy fire) in Huzhong
Natural Reserve, China.

Our results indicated that topographic factors had a considerable influence on fire severity. It is
well known that topography can influence fire behavior by impacting fuel moisture, local wind
patterns, fire spread direction, and vegetation composition [32], but quantitative demonstrations of
these relationships are still needed for optimal mitigation of adverse fire effects. Our results showed
that slope and elevation are the two most important topographic variables, followed by TWI and
PSR. This suggests that the primary pathway by which topography regulates fire severity in this
Siberian boreal ecosystem is by governing fuel moisture and by strongly interacting with vegetation
conditions. For example, we found that severe fires were more likely to occur in high altitude regions.
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A similar pattern was found in dry ponderosa pine forests of the western US and boreal forests in
Europe [42,51,91]. Surface fuels on the upper slopes could dry quickly due to efficient drainage
and greater degrees of solar exposure, which may increase the flammability of fuels and facilitate
more severe burns. The preheating effects of upslope fires on the adjacent fuels can also increase fire
severity [32]. In addition, it cannot be ignored that the ECF are generally densely distributed at high
altitudes in this region. In general, north-facing slopes possess higher fuel moisture and lower surface
temperature than south-facing slopes. However, in our ecosystem, we found that the north-facing
slopes burned more severely due to higher biomass coverage [60]. Similar findings were also reported
in studies conducted in boreal and subalpine ecosystems [42,43,84].

Fuel moisture interacts with many complex ecological and physical processes, making it important
yet difficult to represent in a modeling framework used to study its spatiotemporal dynamics and
influences on fire regime [75]. Topographic gradients could provide a partial explanation for the spatial
variation of fuel moisture, especially in light of our finding that TWI is inversely associated with
fire severity, as expected. Previous studies proved that TWI is closely associated with soil moisture
in European boreal forests [72,92]. Thus, we believe the drainage condition largely determines the
moisture gradient of a forest stand and further influences fuel moisture dynamics. Dead fuel moisture
dynamics are driven by three mechanisms—capillary forces, infiltration, and diffusion—among which,
infiltration and diffusion are the primary driving mechanisms and are both influenced by moisture
gradients [75]. Although live fuel moisture is driven by different mechanisms than dead fuel moisture
dynamics, soil water dynamics are still an important part of those mechanisms and can directly
influence plant transpiration.

The MODIS-derived 1 km SMA exerted considerable influences on model performance, and its
relationship with fire severity was negative, as expected. This finding aligns with the work of van
Mantgem et al. (2013) [18], which suggests that a pre-fire water deficit can increase fire severity
(tree mortality) because the drought-stressed trees are vulnerable to fire-induced injury. Similarly,
Xiao and Zhuang [93] found that drought directly affected fire activity in Canadian and Alaskan boreal
forests by enhancing fuel flammability and increasing ignitions. However, it should be noted that the
pre-fire SMA applied in this study can only represent the short-term temporal variability of the surface
moisture conditions, which may not necessarily reflect the long-term effects of drought stress on fire
severity. It has been reported that plant communities within a forest stand, especially understory
vegetation layers, may be influenced by the long-term drought stress that is regulated by topographic
and climatic factors [94].

Although the ranking of relative importance of vegetation, topography, and SMA was similar
between the two fire years (Figure 6), the relative importance of individual explanatory variables
differed between the two fire years (Figure 5). Such differences may be attributable to their different
pre-fire vegetation composition, structure, and disturbance history. By comparing the pre-fire
vegetation compositions (Figure 9), we found that fires in 2000 had lower proportions of DBF and MF
but higher proportions of DCF than the 2010 fires. Fires in 2000 burned more areas in the Huzhong
Natural Reserve where it is dominated by mature (>100 years) larch forest (DCF) due to the strictly
enforced cutting ban, and most DBF, MF, and shrubs are located in recently burned/disturbed areas
that carry significantly less fuels. Consequently, the proportion of DBF, MF, and shrubs were considered
more important than proportion of DCF in modeling severity of 2000 fires. In contrast, fires in 2010
burned more areas in the Huzhong Forestry Bureau jurisdiction that had been disturbed by clear
cutting since 1950s, and as recent as 2000s, leading to greater abundance of young stands irrespective of
forest type [95]. This could partly explain why fire severity of 2010 in the areas with high proportions of
DCF was similar to the areas with high proportion of DF or MF (Figure 7j vs. Figure 7b,d). In contrast,
because the highly flammable evergreen coniferous shrub species Pinus pumila is not an economically
viable species to cut, its fuel loading is generally higher than young stands of other forest types.
Consequently, the fire severity in areas with high proportion of ECF was high (Figure 7a), and ECF
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was considered a more important vegetation variable in driving overall fire severity variability of
2010 fires.

Figure 9. An overview of the pre-fire vegetation composition within fires of 2000 (a) and 2010 (b).
Variable abbreviations were described in Table 2.

4.2. Prediction of Fire Severity

Our results revealed that landscape-level fire severity is primarily determined by fuel and
terrain features, suggesting that fire severity is predictable at this scale. The prediction accuracy is
determined by the quality of the relevant predictors or proxies. Fuel conditions are usually complicated
and difficult to characterize, not only because of the endogenous variety of plant communities
throughout the landscape but also because of exogenous factors, such as disturbance regime, climate,
and anthropogenic activities [75]. Although various remote sensing methods were proposed to
improve fuel mapping, there are still challenges in accurately quantifying the critical fuel parameters
that can regulate fire effects, such as fuel loading and canopy bulk density [96,97]. Remotely sensed
spectral information is usually applied as ancillary data or proxies when modeling fuel parameters,
as it is strongly correlated with many biophysical vegetation parameters, such as biomass, leaf area
index, and productivity [26,98,99].

However, remotely sensed imagery cannot detect surface fuels obscured by the forest canopy
and insufficiently distinguishes fine fuels from dead biomass pools due to the inconsistency between
particle size and the spatial resolution of the image [100]. Compared with the spatial complexity and
high variability of fuel parameters at the landscape scale, vegetation cover type is relatively identifiable
due to the unique spectral features of plant communities. The Landsat-derived vegetation cover data
can reflect the general variability of vegetation composition but may not necessarily depict parameters
related to fuel type or fuel particle size. Our results indicated that vegetation coverage could reliably
explain the variability of fire severity at a 240 m spatial scale. The classification accuracy of vegetation
mapping could also affect the predictability of fire severity models. The spatial aggregation process
may confound the accuracy of the 240 m vegetation coverage data, thus increasing the uncertainty of
the modeling results.

The large-scale terrain features of wildlands are usually invariant over long periods. In addition,
terrain features can be accurately characterized using various traditional or modern survey
technologies. Together with their close relationship with fire behavior, topographic variables are
commonly used as predictors of fire severity. Digital elevation models provide essential topographic
information from which aspect, slope, and other terrain features can be derived. However, it should be
noted that some topographic conditions are inherently scale-dependent. Thus, the upscaling process
used for the ASTER GDEM data may filter out some detailed terrain features that would be reflected at
the 30 m spatial resolution. Because we focused on the 240 m spatial resolution, we did not examine the
sensitivity of the relationships between fire severity and topographic variables to the scaling process.
Many studies have reported scale dependency in the relationships between topographic characteristics
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and fire attributes, such as severity, frequency, burned area, and burn probability [101–104]. Despite
the good performance of our BRT models, we conclude that 240 m may not be the optimal spatial
resolution for predicting fire severity. Enlarging spatial scales (e.g., from 30 to 240 m) can be beneficial
in refining the relationships between fire severity and environmental gradients, but it may decrease
the visual effect of the prediction maps due to the coarse spatial resolution. Therefore, we suggest
that future applications should weigh the model performance against the practical applicability of the
prediction maps.

4.3. Limitation and Uncertainty

Despite efforts to improve the prediction of fire severity by incorporating sound explanatory
variables, some knowledge gaps should be noted as they may influence the interpretation of the
modeling results. First, each MOD16A2 pixel contains the best possible daily ET estimation during
the 8-day period, which was selected based on the imaging conditions and observation coverage.
The arbitrary application of SMA as a proxy for fuel moisture may increase the alternative quantification
of land surface status for modeling fire severity, but its real relationship with actual fuel moisture
still needs to be validated in our ecosystem. Due to the lack of daily fire progression maps, and to
very sparse weather station coverage in our study area, we cannot address how day-to-day weather
impacts fire severity in this study. With the advantage of high-frequency MODIS observations,
many recent studies have begun to incorporate spatial interpolation approaches using MODIS data to
characterize daily progressions of large fires [105,106]. We believe such efforts can greatly improve
the understanding of spatial controls on fire severity. For example, based on Landsat-derived fire
progression maps and fire weather observations at 4-km spatial resolution, Birch et al. (2015) [37]
investigated the influences of vegetation, topography, and daily fire weather on severity patterns
of wildfires in the Western US and reported that vegetation cover had the greatest influence on fire
severity; this is quite similar to our findings in this study, as well as in our previous patch-scale
analysis [43]. They also acknowledged that the coarse weather conditions may not fully reflect the
influences of microscale meteorological conditions on severity patterns. The inconsistent temporal and
spatial resolution among daily weather observations, vegetation, and topography can obscure the real
effects of weather on fire severity.

Fire severity is a result of accumulated fire effects on forest ecosystems because the thick and moist
organic layers in boreal regions can prolong the fire duration. Although we tried to balance the spatial
resolution among explanatory variables, it is somewhat challenging to reflect environmental gradients
and fire activities at both fine spatial and temporal scales using the data sources available to us. At the
same time, because MODIS ET product updates led to considerable changes in SMA values, we found
that 500 m SMA has different relative importance and influences on fire severity. Our intentions
were not to arbitrarily justify which kind of ET product is more reliable for fire severity prediction,
especially without sufficient validation of 500 m ET products with site-based flux observation, but any
improvement in spatial resolution is valuable and further efforts are encouraged to verify the suitability
of these products for specific ecosystems.

Although our study area, the Huzhong Forestry Bureau jurisdiction, is a representative forest
landscape of Great Xing’an Mountains and shares a similar fire regime as other nearby areas [54,56],
we could not conclude that fire severity patterns of the entire region are following the same causal
mechanism at finer scales. The purpose of this study is not to establish a global prediction model for
fire severity that can be generalized for all Chinese boreal ecosystems. There were fires occurring in
meadow and wetland ecosystems, as well as in forests dominated by broadleaf trees in the southern
part of the Great Xing’an region. We believe our results may not be suitable for predicting the severity
of those kinds of wildfires. In addition, sampling data were extracted from fires occurring in summer;
although the vegetation coverage and topographic variables adopted in this study are insensitive
to intra-annual variability, the relationship between SMA and fire severity may change in different
seasons and should be further investigated.
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5. Conclusions

Although the parallel comparison of the two models did not show strictly consistent modeling
relationships, the models generally demonstrated that fire severity was strongly controlled by the
coverage of certain vegetation types that have high flammability or fire resistance. The topographic
conditions can help determine the distribution of flammable plant types and communities. Topography
can also directly influence fuel moisture and create firebreaks through the drainage systems. Remotely
sensed fuel moisture proxies (such as MODIS ET products) were also proven to play important roles in
modeling fire severity. These findings reveal that fire severity is predictable at the landscape scale in
our study area, and its prediction can be improved by incorporating spatial variables related to fire
behavior. Our study provides an overview of the hotspot areas within the landscape where severe
fires are most likely distributed. Such mapping capabilities can allow managers to optimize fuel
treatment strategies by considering the vegetation, topography, and spatial patterns of land surface
moisture. The modeling framework employed in our study can readily incorporate new observations
and simulated spatial datasets, promoting the more reliable prediction of fire severity in the future.
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Appendix A

Figure A1. The integrated pre-fire surface moisture availability (SMA) of 2000 (a) and 2010 (b,c) derived
from 8-day MODIS MOD16A2 Version 5 (b) and Version 6 (c) product. The good quality pixels selected
from five 8-day MOD16A2 datasets (d–f) were composited. Fire patches of 2000 (in blue, a,d) and 2010
(in red, b,d–f) were also plotted.
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Figure A2. The scatter plot representing inconsistent surface moisture availability (SMA) values of the
whole study area (black dot) and burned pixels of 2010 fires (red dot) derived from MOD16A2 Verison
5 (V5) and Version 6 (V6) with good quality.

Figure A3. Comparison of pixel proportions of low, moderate and high severity levels between
observed fire severity maps and predicted severity maps.

Figure A4. The relative importance (RIMP) of variables generated by 50 boosting regression tree (BRT)
models using two different versions (V5 and V6) of surface moisture availability (SMA) derived from
MODIS ET products. Variable abbreviations were described in Table 2.
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Figure A5. Partial dependence plots of nine variables on regulating fire severity in fire year 2010 using
different versions of MODIS derived surface moisture availability (SMA) (Version 5 in cyan and Version 6
in red). This grouping of variables was selected as the top 9 variables following the rank as shown in
y-axis of Figure 5. The curves demonstrate the smoothed means (solid line) and 95% confidence intervals
(gray zone) of an ensemble of 50 models. Variable abbreviations were described in Table 2.

Appendix B

Table A1. The Moran’s I for examining spatial autocorrelation of fire severity and explanatory variables.
Variable abbreviations were described in Table 2.

Variables Moran’s I of Fires 2000 Moran’s I of Fires 2010

Fire Severity 0.132 0.078
SMA_V5 0.224 0.124

ELV 0.192 0.236
PSR 0.061 0.066
SLP 0.120 0.075
TWI 0.054 0.06
ECF 0.078 0.092
DCF 0.178 0.107
DBF 0.041 0.19
MF 0.134 0.07
GRS 0.104 0.056
SRB 0.035 0.156
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Abstract: Wildfires and outbreaks of the spruce budworm, Choristoneura fumiferana (Clem.), are the
two dominant natural disturbances in Canada’s boreal forest. While both disturbances have specific
impacts on forest ecosystems, it is increasingly recognized that their interactions also have the
potential for non-linear behavior and long-lasting legacies on forest ecosystems’ structures and
functions. Previously, we showed that, in central Canada, fires occurred with a disproportionately
higher frequency during a ‘window of opportunity’ following spruce budworm defoliation. In this
study, we use Ontario’s spatial databases for large fires and spruce budworm defoliation to locate
where these two disturbances likely interacted. Classification tree and Random Forest procedures
were then applied to find how spruce budworm defoliation history, climate, and forest conditions
best predict the location of such budworm–fire interactions. Results indicate that such interactions
likely occurred in areas geographically bound by hardwood content in the south, the prevalence
of the three major spruce budworm host species (balsam fir, white spruce and black spruce) in the
north, and climate moisture in the west. The occurrence of a spruce budworm–fire interaction inside
these boundaries is related to the frequency of spruce budworm defoliation. These patterns provide
a means of distinguishing regions where spruce budworm attacks are likely to increase fire risk.

Keywords: spruce budworm defoliation; forest fire; disturbance interactions; forest composition; weather

1. Introduction

Historically, two main types of natural disturbances have dominated Canada’s boreal forest:
wildfire and outbreaks of spruce budworm (SBW), Choristoneura fumiferana (Clem.) [1,2]. While each
type has specific impacts on forest composition and dynamics, biogeochemical cycling and numerous
ecological processes, there is an increasing recognition that the interaction of these types of disturbance
can also have dramatic long-term effects on the ecosystem’s structure and functioning [3,4].

As climate change is expected to affect both types of disturbance regimes (e.g., [5,6]), understanding
their interactions will also be critical for appropriate risk-assessment and management planning in the
future. In the simplest and most direct form of these interactions, a warmer, drier climate is expected to
increase the tendency of SBW-killed stands to burn [7]. This effect would likely be magnified by the fact
that the spatial extent of SBW outbreaks, and thus the availability of SBW-attacked stands, already much
greater than the extent of fires [2], may increase with climate change [5].

When considered together, these factors suggest that in a drier, warmer climate, the boreal forest
may experience accelerated carbon releases due to the interaction of SBW and wildfire disturbance
regimes. Indeed, recent carbon budget studies have shown that climate change-induced modifications
of disturbance regimes have critical impacts on the net atmospheric carbon exchange [8,9].

The idea that SBW-damaged stands represent an increased risk of wildfire has long been based
on anecdotal observations of severe forest fires occurring shortly after SBW outbreaks (e.g., [10–13]).
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The first attempt to examine empirical evidence of an interaction between SBW defoliation and fire
was carried out through a series of experimental burns in northern Ontario from 1976 to 1982 [14,15].
Although the number of experimental plots successfully burnt was low (n = 5) and no control plots were
established, the results suggested that the abundance of ‘ladder fuels’ could make SBW-killed stands
an extreme fire risk [14,15]. ‘Ladder fuels’ are dead and broken treetops and branches that became
snagged and entangled by other branches before falling completely to the ground. These ‘ladder fuels’
present a vertical structure that increases the risk of conducting relatively harmless surface fires up into
the crown where the fires can become much more dangerous. In practice, wildfire risk assessment uses
a separate class of fuel types for SBW-killed conifers (i.e., M3 and M4: Dead Balsam Fir Mixedwood,
leafless and Green respectively [7]). The presence of this class testifies to the importance of the relation
between SBW damage and the risk of wildfire for fire managers, but the calculation of risk is still based
almost entirely on the results from Stocks’ single experiment.

Following Stocks’ experiment, Péch [16] conducted a long-term monitoring of fuel distribution
in plots affected by extensive spruce budworm defoliation in Cape Breton (Nova Scotia). The study
showed that, despite heavy mortality, there was no accumulation of fine fuels, and fuel loadings were
decreasing after the outbreak except for the larger, less flammable, size class. The risk of fire was
further decreased by the proliferation of new growth quickly after the stand was opened. Differences
between Stocks [14,15] and Péch’s [16] results were attributed to cooler, wetter weather in Cape Breton
compared to Ontario that would accelerate the decomposition of spruce budworm-related fuels and
decrease the overall fire risk. The comparison of these studies highlighted the importance of local
conditions in mediating the influence of insect damage on subsequent fire risk.

Later, a statistical analysis of the spatio-temporal patterns of spruce budworm defoliation and large
(i.e., crown) wildfires in Ontario [17] revealed that, within the area defoliated at least once by spruce
budworm since 1941, (1) areas that suffered moderate frequencies of defoliation (9–11 years) were the
most likely to be burnt; (2) large fires (>2 km2) rarely occur shortly before defoliation (presumably
because spruce budworm populations cannot reach outbreak level in burnt stands); (3) large fires
tended to occur disproportionately more often during a ‘window of opportunity’ of 3–9 years after
a spruce budworm outbreak. Fleming et al. [17] hypothesized that this ‘window of opportunity’ was
related to the accumulation of ‘ladder fuel’ from the breakage of SBW-killed top trees and windthrow
of SBW-killed trees. To test this hypothesis, Watt [18] investigated differences in the vertical fuel
structure of boreal mixedwood stands that suffered varying durations of SBW defoliation. The results
of this investigation show that vertical fuel continuity (i.e., “ladder fuel”) increases with the duration
of continuous defoliation. Using his estimates of stand fuel characteristics in a crown fire model,
Watt was then able to demonstrate how the potential for surface fires to reach the canopy and become
crown fires increases with the duration of SBW defoliation. More recently, in a landscape-scale analysis
of SBW–fire interaction in Central Canada, James et al. [19] found that lagged cumulative defoliation
increased the risk of fire ignition, thus supporting further Fleming et al.’s [17] conceptual model.

The notion of “window of opportunity” is a key component of Fleming et al.’s [17] model.
In their analysis, they found that the timing and the duration of this time window both vary
geographically, presumably because regional biogeographical factors affect fuel dynamics after
defoliation. James et al. [19] reached the same conclusion. More specifically, regional differences
in the lag between the end of the defoliation and the start of the “window of opportunity” are thought
to be related to the varying speeds at which SBW-killed trees break down depending on weather and
forest composition while the end of the “window of opportunity” (i.e., a reduction of the fire risk
to each pre-defoliation level) might be more related to decomposition of the accumulated fine fuel
and the ‘greening up’ of the understory as herbaceous plants and suppressed trees fill in the opening
created in the stand by SBW defoliation.

In this paper, we expand on the analyses of Fleming et al. [17] and James et al. [19] by examining
how the timing and duration of the “window of opportunity” vary over the landscape as a function of
factors related to insect damage history, climate, and fire.
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2. Data and Methods

Our study area covers a latitudinal belt that spans across the province of Ontario between the 45th
and 52nd parallels. The area corresponds to an updated version of what Candau et al. [20] referred to
as the ‘defoliation belt’, i.e., the area within which moderate to severe SBW defoliation occurred at
least once between 1941 and 2005. Large-scale, spatially explicit data of historical SBW defoliation,
large fires (>2 km2), forest composition and climate were compiled for the entire study area. Since 2005,
SBW defoliation in Central Canada has been limited to small areas and sporadic but historical patterns
suggest that a new outbreak is to be expected in the next few years [20]. All the data were entered into
a Geographic Information System (GIS) and transformed into a 10-km grid before analysis. Once areas
covering large lakes and those with missing data were removed, the remaining study area covered
386 × 103 km2.

2.1. Spruce Budworm Defoliation Data

The Forest Insect and Disease Survey (FIDS) of the Canadian Forest Service conducted aerial
reconnaissance of large-scale defoliation events throughout Ontario’s productive, exploitable forest
from 1941 to 2005. Each year, survey flights are organized as soon as the current season’s defoliation is
completed, usually in mid- to late-July. In the aircraft, areas within which defoliation has occurred
are sketched on 1:125,000 or 1:250,000 maps [21]. For each area, the level of defoliation is recorded
as light, moderate or severe, based on the percentage of new foliage lost (0–25%, 26–75%, 76–100%,
respectively). All the maps collected one year were later compiled and transferred to smaller scale maps
(e.g., 1:600,000). In the early 1990s, annual maps of defoliation since 1941 were digitized and stored into
a spatial database. Since then, areas sketched on 1:125,000 or 1:250,000 maps are directly digitized and
stored in the database. Records of light defoliation are often considered relatively unreliable [21,22],
so only records of moderate and severe defoliation were included in the present analyses.

The map of the frequency of defoliation by spruce budworm converted to a 10-km grid (Figure 1A)
shows the patterns reported in Candau et al. [20]: areas defoliated at least one year during the period
1941–2005 extend over a continuous east–west ‘defoliation belt’ divided into three zones centered
around ‘hot spots’ of frequent defoliation which are separated longitudinally by two corridors where
defoliation is less frequent. In a previous study, Candau and Fleming [23] showed that areas of high
defoliation frequency were associated with dry Junes and cool springs. Conversely, low frequencies
were associated with cold winters in the north and a low abundance of host species in the south.

Figure 1. Cont.
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Figure 1. (A) Frequency (number of years) of moderate to severe defoliation by spruce budworm
between 1941 and 2005 on a 10-km grid; (B) Average climate moisture index (cm/year) between
1 November and 31 October on a 10-km grid from 1941 to 2003. (See text for calculating algorithm).

2.2. Fire Data

Fire data were extracted from the same spatial database used in Fleming et al. [17] updated to
2005. Two different sources were used to compile fire data. B.J. Stocks (Canadian Forest Service)
provided records extracted from microfiche compiled by the Ontario Ministry of Natural Resources
for the period 1941–1979. The rest of the records (i.e., for fires from 1980 to 2005) were extracted from
an updated version of the Canadian Large Fire Database [24]. Although the database contains less
than 5% of fires reported in Canada, these large fires account for more than 97% of the area burned
and thus represent the vast majority of the fire impacts [24].

Independently of their origin, fire polygons included in the final database are fire perimeters
mapped from aerial photography, satellite imagery, and aircraft observation (more recently using global
positioning system units). Indeed, although most large fires leave unburned islands [25], only a small
percentage of the polygons have this information [26], as only the outside perimeter was mapped
for most of the fires. Fire data accuracy has likely improved through time, as recent technological
developments facilitate mapping and increase accuracy. The area where fires were recorded has
probably varied considerably between 1941–2005 with new areas being monitored, particularly in
the north of the province. However, most of these areas are located north of the spruce budworm
‘defoliation belt’ so they were excluded in our analyses.

Previously, Fleming et al. [17] showed that, inside the spruce budworm defoliation belt, large fires
occurred disproportionately more often during a period of a few years after a spruce budworm
outbreak. This period of time, hereafter called the spruce budworm–fire interaction period (or SFIP),
during which fire probability increases in areas previously defoliated does not occur immediately
after the defoliation ends but with a delay of a few years. Therefore, SFIPs can be characterized
by their duration and by the delay between the end of the outbreak (defined as the last year of
moderate–severe defoliation there) and the onset of the SFIP. Both the duration and the delay of the
SFIP, varied geographically. In the eastern part of the defoliation belt, the SFIP occurs between 3 and
6 years after an outbreak; in the western part of the defoliation belt, it occurs between 6 and 16 years
after an outbreak; in the central part, it occurs between 4 and 9 years.

In this paper, we use both spatial and temporal conditions to define a ‘likely interaction’ between
spruce budworm defoliation and a large fire. First, there must be geographical overlap between the
fire and defoliation. Second, the fire must have occurred within the SFIP for the region of concern.
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The spruce budworm defoliation and fire spatial databases were merged so every fire could be assessed
against these two conditions. Fires that met both conditions were classified as ‘likely interaction’.
Clearly, this classification system has shortcomings. A fire falling within the SFIP may have occurred
regardless of any previous defoliation. On the other hand, a fire occurring after the SFIP finished may
have been promoted by longer-term effects of defoliation than were recognized by Fleming et al. [17].
A fire starting inside (or outside) a defoliated area may have spread widely in a non-defoliated
(or defoliated) area. Perhaps, without starting where it did, no fire would have occurred at all. Perhaps
there were special conditions (e.g., previous defoliation) that allowed the fire to spread as well as it
did. The problem is that even with ‘boots on the ground’ it is often extremely difficult to distinguish
between these possibilities. Consequently, we view our approach to defining a ‘likely interaction’ as
a practical compromise, which is not without difficulties. The opposite interaction (of fire affecting the
likelihood of subsequent spruce budworm defoliation) has received more attention [17,27–29].

Several hypotheses have been proposed to explain the spatial variation in the timing and duration
of SFIPs. In particular, forest composition and climate may play an important role by affecting the
decomposition rate of surface fuel and the duration of vertical continuity of ‘ladder fuel’ after a spruce
budworm outbreak.

2.3. Forest Data

Forest composition has been found to affect the distribution of spruce budworm defoliation [23]
and fire hazard [30] and was thus considered as a potential factor in explaining the location of spruce
budworm–fire interactions. The northern part of the study area is part of the Boreal forest region,
dominated by conifer (mainly spruce, jack pine and fir), while the southern part is in the Great
Lakes—St Lawrence region, dominated by hardwoods (mainly tolerant hardwoods, birch, poplar).
Forest data were extracted from the forest resource inventory (FRI) conducted by the Ontario Ministry
of Natural Resources [31]. In the FRI, forest characteristics are determined at the stand level with
a combination of aerial photo interpretation and ground surveys. We used a large-scale version of the
inventory summarized over grid cells varying in size between 5 × 5 km and 20 × 20 km. For each grid
cell, the data include the percentage of the total basal area of balsam fir and white spruce (i.e., ‘FbSw’),
and of balsam fir, white spruce and black spruce (i.e., ‘FbSwSb’), and hardwood (i.e., ‘hw’). FbSw
accounts for the tree species (balsam fir and white spruce) on which spruce budworm feeds primarily,
while FbSwSb covers all major hosts in Ontario. Hardwood content was included as it may affect fire
behavior [30]. Forest resource inventory data are not available in the northernmost part of the province,
but aerially visible defoliation is quite rare there (G. Howse, personal communication). For this study,
we used the earliest large-scale Ontario forest inventory available on GIS. This inventory was compiled
in 1996 [31] from data acquired between 1988 and 1992. Although, at the stand level, forest composition
has likely changed during the 65 years of the study, we assumed that at the large scale, low resolution
of our study, the relative proportions of each broad forest type remained relatively stable.

2.4. Climate Data

The historical climate data are spatial interpolations of monthly minimums and maximums for
temperature (◦C) and precipitation (mm) from 471 meteorological stations across Ontario, eastern
Manitoba, and western Quebec, over the period 1901–2000 [32] updated with data from 2001 to 2003.

These data were used to calculate a climate moisture index (cmi) according to the algorithm
published by Hogg [33] modified to replace Tdew = Tmin − 2.5 ◦C with Tdew = Tmin (Tdew is the
mean dew point temperature and Tmin the mean daily minimum temperature) to take into account
moister conditions in Ontario than in Alberta (E. Hogg, personal communication).

Annual CMIs were calculated from 1941 to 2003 for years starting 1 November and ending 31 October
[i.e., CMI(year) = ∑CMI(m), m = Nov(year − 1) − Oct(year)]. This division of months into years follows
Girardin et al. [34] and highlights how annual moisture fluctuations relate to the seasonal fire cycle.
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The average of the annual CMI (cmi_ave) was then calculated over the period 1941–2003 for
each cell of a 10-km grid. Based on this variable, the province is clearly partitioned into a dryer
(cmi_ave < 40 cm/year) zone in the West along the Manitoba border, wet (cmi_ave > 60 cm/year)
areas along the eastern shores of Lakes Huron and Superior and average areas in the north and
northeast (Figure 1B).

2.5. Classification Tree (CART) Analysis

We used classification trees (CART, [35]) to model how climate, forest composition and spruce
budworm defoliation history affect wildfire potential. Such models belong to the classification
and regression tree family of analysis methods. Compared to classical methods for predictive
modelling (e.g., Generalized Linear Models), CART models do not require the restrictive assumptions
of (a) Gaussian relations between response and predictor variables; (b) uniform effects of predictors
and their interactions on the response over their range of values; and (c) constant interactions among
predictors over their range of values. Classification trees also have several advantages over linear
discriminant and multiple regression analyses. They can capture non-linear and non-additive behavior,
as well as general interactions among predictors, such as when relationships between a response
variable and certain predictors are conditional on the values of other predictors. Classification trees
can also accommodate both continuous and categorical predictor variables without transformation.

Classification trees can be unstable in the variables retained, in their branching patterns, and in
the values of their split points. In this sense, a particular classification tree is but one realization of
an ensemble of possible trees and the issue then centers on how well this particular classification tree
represents the ensemble. To address this question, we assessed the robustness of this classification tree
against each possible source of variation and verified that it was representative of the general relation
between the predictor and the response variables.

The first source of instability stems from the fact that the pruning procedure used to reduce the size
of a classification tree is based on a 10-fold cross-validation. The cross-validation algorithm separates
the original data set into 10 mutually exclusive random subsets and then uses each subset once to
independently calculate a cross-validation relative error for the subtrees grown on the 9 remaining
subsets. The algorithm uses the cross-validation error to determine at which level (i.e., split) the
pruning is performed. Different random samples taken during the cross-validation procedure could
produce classification trees of different sizes (but with the same split variables and values up the
point of pruning) because the procedure is based on samples drawn randomly from the dataset.
We performed 50 independent pruning procedures on the classification tree described above to test the
stability of classification tree size after pruning.

The second source of instability, i.e., multicollinearity in explanatory variables, often produces
misleading coefficients in linear or nonlinear regressions [36]. One common approach to dealing with
multicollinearity is to drop collinear explanatory variables from the analysis but in CART this approach
reduces efficiency in finding the best explanatory variable at each split. For this reason, we did not drop
collinear explanatory variables. Instead, we verified how representative the variables included in the
model were by testing their importance with the randomForest procedure [37,38]. In this procedure,
classification trees are constructed using different random subsamples of the originally selected pixels
used to build the original tree. At each split, the randomForest procedure finds the best split possible
that can be found among the randomly chosen subset of explanatory variables that are available.
We constructed 500 classification trees, with two explanatory variables randomly chosen at each split.
The importance of each explanatory variable was estimated as the mean decrease in accuracy in the
test sample (the 10% of the data held back for testing the classification tree) when data for only that
variable are randomized. The random selection of explanatory variables in each classification tree of
the randomForest alleviates the instability related to multicollinearity.

Using a different random sample of cells from the dataset might produce different classification
trees. To test the stability of our results over variation in the cells sampled, we used a resampling
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process which involved drawing 50 random samples from the original grids (Figure 1) and then fitting
a classification tree and a randomForest to each of these samples. This allowed us to build distributions
of the various classification tree ‘characteristics’ (e.g., misclassification error rates, number of terminal
leaves after pruning, the explanatory variables used in the splits) and variable importance rankings as
measured by the mean decrease in accuracy in the randomForests procedure.

We also assessed the spatial variability among the areas of likely spruce budworm–fire interaction
that were predicted by the classification trees built on the 50 random samples. We used each of these
50 classification trees to predict areas of likely spruce budworm–fire interaction. The probability of
spruce budworm–fire interaction was calculated based on the 50 predictions for each 10-km grid cell.

3. Results

3.1. Locating Where Spruce Budworm Defoliation Contributed to Fire Potential

We began by distinguishing the bioclimatic conditions in the areas of the spruce budworm belt
where a ‘likely interaction’ (as defined above) between spruce budworm defoliation and a large fire
occurred, from those areas of the belt where there was no ‘likely interaction’. These latter areas may have
never been burnt, or large fires may have occurred there but not during the SFIP. ‘Likely interactions’
occurred in 450 of the 3865 cells used to map the spruce budworm belt on a 10-km resolution grid
(Figure 2). Unbalanced samples can affect the performance of CART models, particularly in the
prediction of the minority class, which is of particular importance in this analysis. For this reason,
we re-balanced the sample by keeping all the observations of the minority class (i.e., 450 cells of ‘likely
interactions’) and randomly sampling (without replacement) an equivalent number of cells with no
‘likely interactions’.

Figure 2. ‘Likely interactions’ (in red) of spruce budworm defoliation and large (>2 km2) fires in the
spruce budworm belt (gray) mapped on a 10-km grid for 1941–2005.

The classification tree used to distinguish areas of the defoliation belt with ‘likely interactions’
from those areas without is shown in Figure 3. Four bioclimatic variables were retained: the percentage
of the total basal area contributed by hardwood species (hw), and by balsam fir, white spruce and
black spruce combined (fbswsb), the average climate moisture index (cmi_ave), and the frequency of
defoliation (sbwfreq).
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The classification tree has six leaves (colored circles numbered 1–6 from left to right) and an overall
rate of correct classification of 69.2%. The number ‘1’ directly under the circles for leaves 5 (red) and
6 (brown) indicates the presence of ‘likely interactions’ between spruce budworm defoliation and
large fires. Working down from the top of the classification tree (Figure 3) toward these leaves reveals
the predicted conditions for these interactions. Areas where such interaction likely occurred are
characterized by a mix of tree species according to the top two splits in Figure 3 (total basal area
was less than 54.4% hardwood (highest split) but also less than 77.6% of the spruce budworm’s
host species in Ontario (balsam fir, white spruce and black spruce)). The third split (cmi_ave > 33.2)
eliminates roughly 4% of the driest remaining areas from further consideration as locations where
‘likely interaction’ occurred. The fourth split, leads to leaf 6 (brown) suggesting that one condition for
‘likely interaction’ in the spruce budworm belt was moderate climate moisture (33.2 < cmi_ave < 45.1).
The fifth split leads to leaf 5 (red) which suggests that likely spruce budworm–fire interaction also
tended to occur in moist areas (cmi_ave > 45.1) which had experienced at least 8 years of defoliation
from 1941 to 2003.

hw >< 54.4
0; 900 cells; 50%

0
147 cells
(111/36)

1 fbswsb >< 77.6
1; 753 cells; 55%

0
108 cells
(81/27)

2 cmi_ave <> 33.2
1; 645 cells; 60%

0
29 cells
(21/8)

3 cmi_ave >< 45.1
1; 616 cells; 61.5%

sbwfreq <> 8.5
1; 354 cells; 55.9%

0
47 cells
(39/8)

4

1
307 cells
(117/190)

5

1
262 cells
(81/181)

6

Total classified correct = 69.2 %

Figure 3. Classification tree of the presence (1) or absence (0) of ‘likely interaction’ between large
fires and spruce budworm defoliation in Ontario’s spruce budworm belt (Figure 1A) from 1941 to
2005. Five splits (horizontal bars) and six leaves (circles numbered 1–6 from left to right) are shown.
A variable is shown above each bar followed by the two inequality signs, ‘>’ and ‘<’. The inequality
sign on the left (right) applies to the left (right) end of the bar. The variables are the number of years of
moderate–severe defoliation (sbwfreq), the average climate moisture index (cmi_ave), the percentage
of the total basal area that is hardwood (hw) or balsam fir, white spruce and black spruce combined
(fbswsb). The ‘0’ or ‘1’ directly below the circle at each leaf and leading the second line above each bar
indicate whether the previous split classified this group of cells as having conditions conducive to the
presence (1) or absence (0) of interaction. The ‘0’ or ‘1’ is followed by the group size (# cells) and then,
for the bars, the correct classification %, and for leaves, parentheses enclosing the numbers of cells
where absence/presence [of a “likely interaction”] is predicted. See text for further explanation.

Misclassification error rates can be calculated for each leaf using the two numbers there (Figure 3)
in parentheses (number of cells where absence/presence (of a ‘likely interaction’) is predicted).
The misclassification error inside the terminal leaves is generally higher in the leaves predicting
a ‘likely interaction’ between spruce budworm defoliation and fire (38.1% in leaf 5 and 30.9% in leaf 6)
than in the leaves predicting no interaction (from 17.0% in leaf 4 to 25.5% in leaf 3).

Figure 4 maps the unique area defined by each leaf of the classification tree (Figure 3). Leaves 1
and 2 respectively demark areas with high content of either hardwood or Ontario’s spruce budworm
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host trees (balsam fir, white spruce and black spruce). These areas largely define the southern and
northern boundaries of spruce budworm defoliation, respectively, particularly in the eastern part of the
province. The areas defined by these two splits are also characterized by a low frequency of defoliation
(Figure 1A). The third leaf identifies the dry western edge of the defoliation belt where the climate
moisture index is lowest. The boundary between this western edge and the rest of the defoliation belt
is closely associated with a gradient in the climate moisture index (Figure 1B). Leaf 4 defines a scattered
group of moist areas that experienced relatively little defoliation from 1941 to 2005. Leaf 5 accounts for
the largest area in Figure 4. It is moist and has at least 9 years of moderate–severe defoliation in its
1941–2005 history. Spatially, leaf 6 identifies a largely contiguous area of moderate climate moisture
in the western part of the defoliation belt. Defoliation history does not factor in delimiting leaf 6.
The classification tree suggests that the areas defined by leaves 5 and 6 were conducive to spruce
budworm–fire interaction.

Figure 4. Areas uniquely associated with each leaf of the classification tree in Figure 3.

3.2. Error Analysis

The representiveness of the classification tree in Figure 3 was assessed against three sources of
instability. To test for variations in tree size after pruning, 50 independent pruning procedures were
performed. The final 50 classification trees ranged in size from 6 to 14 leaves with 6 being the most
common (i.e., 48% of the time). Multicollinearity in explanatory variables (Table 1) was addressed by
running a randomForest procedure which produces a measure of variable importance based on the
mean decrease in accuracy of the model when the data for a variable is randomized. According to
this criterion, the climate moisture index and the frequency of defoliation were the most important
explanatory variables (Figure 5). When a classification tree was run using only these two explanatory
variables (Figure 6), the cross-validated misclassification rate was 100% − 69.4% = 30.6%. This is only
0.2% lower than the misclassification rate of the original classification tree (Figure 3).

The misclassification error rates of the 50-fold random sample ranged from 25–35%. The 30.8%
rate produced by our classification tree (Figure 3) is near the middle of this range. The distribution of
the number of leaves after pruning ranged from three to 24 leaves, with most of the classification trees
having either three or, as in the initial tree (Figure 3), six leaves. Both of these results suggest that our
classification tree (Figure 3) is representative of other potential trees for these characteristics.
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Table 1. Cross-correlations between explanatory variables. These variables are the average climate
moisture index (cmi_ave); the percentages of the total basal area, that is, hardwood (hw), balsam fir
and white spruce combined (FbSw), or balsam fir, white spruce and black spruce combined (FbSwSb);
and the number of years of moderate–severe defoliation (sbwfreq).

cmi_ave FbSw FbSwSb hw sbwfreq

cmi_ave 1 −0.02 −0.09 0.33 −0.09
FbSw −0.02 1 0.22 0.01 0.18

FbSwSb −0.09 0.22 1 −0.77 −0.03
Hw 0.33 0.01 −0.77 1 −0.07

sbwfreq −0.09 0.18 −0.03 −0.07 1

 

fbsw

fbswsb

hw

sbwfreq

cmi_ave

0.85 0.90 0.95 1.00 1.05

Importance according to mean decrease accuracy

MeanDecreaseAccuracy

Figure 5. Importance of the explanatory variables used to construct the classification tree (Figure 3),
as assessed by the randomForest procedure. These variables are the average climate moisture index
(cmi_ave); the number of years of moderate–severe defoliation (sbwfreq); and the percentages of the
total basal area, that is, hardwood (hw), balsam fir and white spruce combined (fbsw), or balsam fir,
white spruce and black spruce combined (FbSwSb).
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cmi_ave >< 45.1
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Figure 6. Classification tree of the presence (1) or absence (0) of the interaction between fire and spruce
budworm defoliation as a function of just the two most important explanatory variables (Figure 5) from
the data used to grow the tree shown in Figure 3. These two variables are the frequency of defoliation
by spruce budworm (sbwfreq) and the annual average climate moisture index (cmi_ave). See the
caption to Figure 3 for additional detail.
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On the other hand, the identity and importance of the explanatory variables retained in the
final 50 classification trees after pruning vary slightly from the corresponding results for our original
classification tree (Figure 3). In the classification trees based on the 50 random samples, climate moisture
index (cmi_ave) and hardwood content (hw) were the explanatory variables most often retained.
The proportion of balsam fir, white spruce and black spruce (FbSwSb) and the proportion of balsam
fir and white spruce (FbSw) were next. Defoliation frequency (sbwfreq) was the least often selected.
However, selection frequency is only one of many possible measures of importance. As shown above,
an explanatory variable selected near the bottom of a classification tree (e.g., defoliation frequency
in Figure 3), and consequently susceptible to pruning, can have a considerable importance for the
accuracy of the classification tree (Figure 5).

For each of these 50 classification trees, the explanatory variables were ranked according to
their importance. Figure 7 shows the distribution of these ranks. The importance of average climate
moisture index (cmi_ave) and hardwood content (hw) is confirmed as they tend to rank first or
second. In contrast, the proportion of balsam fir, white spruce and black spruce combined (FbSwSb),
and defoliation frequency (sbwfreq) tend to rank third or fourth. The proportion of balsam fir and
white spruce combined (FbSw) almost always ranks fifth (last) in importance in this analysis.

Figure 8 maps the location-specific probabilities of likely spruce budworm–fire interaction based
on predictions from 50 random samples. Areas with a high probability of interaction (0.8–1) are mostly
located in large patches in (1) the northwest of the province; (2) on the southwestern side of Lake
Nipigon and (3) in a fairly narrow band running NW to SE from the southeastern side of Lake Nipigon
to the Mississagi river watershed. In between these areas, the probability of predicting an area of
interaction is still high (80%) or medium (60%).

1 2 3 4

cmi_ave

Fr
eq

ue
nc

y

0
10

20

4 5

fbsw

Fr
eq

ue
nc

y

0
20

40

2 3 4

fbswsb

Fr
eq

ue
nc

y

0
5

15
25

1 2 3

hw

Fr
eq

ue
nc

y

0
5

15

2 3 4 5

sbwfreq

Fr
eq

ue
nc

y

0
5

15

Figure 7. Distributions of the importance rankings of the explanatory variables in 50 classification trees
calculated on random samples of the original dataset. Importance was measured by the mean decrease
accuracy in the randomForests procedure.
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Figure 8. Probability of interaction between spruce budworm and fire based on predictions from
50 classification trees calculated on random samples of the original dataset.

4. Discussion

In our analysis, hardwood content, closely followed by climate moisture (Figure 1B), were the
two dominant explanatory variables for predicting where spruce budworm defoliation most likely
promoted subsequent large fires in Ontario (Figure 7). The third most important explanatory variable
was the prevalence of the spruce budworm’s host species (i.e., balsam fir and white and black spruce,
combined) and fourth, by the propensity (number of years recorded) for spruce budworm defoliation
to occur at that location (Figure 1A). Of least importance was the content of just the two principal
spruce budworm host species (i.e., balsam fir and white spruce, combined).

The relative importance of these explanatory variables is evident in (a) the maps (Figures 4
and 8) showing the estimated likelihoods that spruce budworm defoliation will promote subsequent
large fires; and (b), the classification trees on which these maps are based (e.g., Figure 3). The areas
where spruce budworm defoliation most likely promoted subsequent large fires are best defined
by a geographical limit related to hardwood content in the south, balsam fir, white spruce and
black spruce together in the north, and moisture in the west. Inside these limits, areas of spruce
budworm–fire interaction are related to spruce budworm defoliation frequency. There is little evidence
that spruce budworm defoliation promotes subsequent large (>2 km2) fires in the southeast where
hardwood content was high and SBW defoliation rare, in the northeast where there was also little
history of defoliation, and in the dry western and southwestern regions. Within the area defined
by these boundaries and towards the northern limit of the spruce budworm belt in the west, spruce
budworm–fire interaction seems likely.

The steepness of the probability gradients in Figure 8 indicates the relative spatial certainty in
locating the borders that separate regions where spruce budworm–fire interaction is likely from those
where it is not. For instance, the abrupt shift from a probability of 1 to a probability of 0 in the southeast
clearly defines the border’s location there. The location of the border is not as easily located in the
northeast where the shift from probability 1 to 0 is gradual, nor in the west where few cells have
a probability less than 0.4. In the northwest, areas of likely spruce budworm–fire interaction reach the
northern limit of the data, suggesting that they could extend further north, beyond the data, if SBW
defoliation occurs there.

These results appear robust against several sources of variation: over the ensemble of regression
trees examined, hardwood content is consistently one of the most important variables in explaining the
areas of spruce budworm–fire interaction (Figure 7). In southeastern Ontario, the latitudinal gradient
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of hardwood content matches a gradient of increasing urbanization and, as a result, of increasing fire
protection that might also explain the absence of fire in these areas [17]. At the northeastern limit of
the spruce budworm belt, the high proportion of balsam fir, white spruce and black spruce (FbSwSb
> 77.6%) is mainly due to the high proportion of black spruce, a tree that is less supportive of large
spruce budworm populations than balsam fir or white spruce [39], and a tree which can proliferate on
the wet soils there. In addition, these wet soils coupled with weather patterns bringing cold, moist
air from Hudson’s Bay limit the occurrence of fire (Figure 2 in [17]). Consequently, it is unlikely that
spruce budworm defoliation will promote fire here.

After hardwood content, the climate moisture index is the explanatory variable most consistently
high in importance over the ensemble of 50 regression trees constructed (Figure 7). Climate moisture
affects the risk of fire directly, but also indirectly through its influence on the rate of decomposition
of dead trees and branches and other fuels following spruce budworm defoliation. For instance,
compared to western Ontario, Fleming et al. [17] suggest that it is increased rates of decomposition
in the wetter climates of eastern Ontario (Figure 1B) which shorten the time-window (their Figure 6)
following spruce budworm defoliation during which fire potential remains high. In dry climates
(low climate moisture index) such as in the western reaches of the province (Figure 1B), large fires are
relatively common (their Figure 2) and seem to burn independently of spruce budworm defoliation
(Figure 8). In wetter climates such as in the red zone in Figure 1B east of Lake Superior, large fires
are rare (their Figure 2), presumably often prevented by this climate despite the prevalence of spruce
budworm defoliation there (Figure 1A). It is in the areas of moderate climate moisture that the presence
of spruce budworm defoliation is most likely to elevate the subsequent risk of large fires.

The prevalence (number of years recorded) of spruce budworm defoliation at a given location
ranks fourth in importance over the ensemble of 50 regression trees constructed (Figure 7). Hardwood
content, climate moisture, and the prevalence of spruce budworm host species all rank higher.
The relatively poor explanatory power of defoliation prevalence is partly explained by its curvilinear
relationship with fire (Figure 4 in [17]). In this relationship, areas within the spruce budworm belt
that experienced moderate frequencies of defoliation were the most likely burned. After a large fire,
the forest needs time to recover before it is again suitable for spruce budworm defoliation, so fires
tend to be relatively rare in areas with high frequencies of defoliation. Defoliation prevalence is also
low in the northeast (due to black spruce prevalence, as explained above), and in the southeast of the
defoliation belt where farms and large pockets of dense deciduous forest interrupt the continuity of
host trees species that is otherwise found further north. Large fire is rare in these areas due to climate
(northeast, see above) and aggressive fire response in the relatively urbanized southeast.

In this analysis, we searched for broad tendencies in the patterns of budworm–fire interaction over
decades of historical records at very large spatial scales. Local, instantaneous conditions such as fire
weather, topography, and fuel condition at the ignition point are important factors that directly affect
fire ignition and spread in particular sites at specific times [40,41], but over the large spatio-temporal
scales of this study, variations in weather, topography and fuel condition become so ‘smoothed out’
that they are no longer useful predictors. Hence such variables were not included in our analysis.
However, other ecological and climate factors may affect ecoregional patterns of spruce budworm
and fire interactions. The nature of understory vegetation (composition, age, and structure) is likely
one of these factors as it could affect the inter- and intra-annual dynamics of fuel moisture. Early
on [15,17], it was hypothesized that crown breakage following sustained defoliation would release the
understory by opening the canopy. The proliferation of the understory would then increase surface
fuel moisture, thus decreasing the risk of surface fire and the risk for surface fires to reach the canopy.
As such, the nature of the understory vegetation (composition, age, and structure) would likely affect
its post-release dynamics and its effect on fire intra-annually in the timing of leaf-out in the spring
(fire risk is generally thought to be higher prior to leaf-out), and inter-annually in the time that it
will require to grow enough in size and complexity to achieve a reduction in fire risk. Understory
composition, age and structure could not be included in this analysis for lack of data over the study
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area. Although the three classes of overstory vegetation we used in this analysis may somewhat
correspond to broad classes of understory vegetation [42], a better characterization of the understory
would certainly be desirable. Wind is another factor that was not included in our analysis for lack of
data although it likely increases the risk of crown breakage, which may accelerate the accumulation of
“ladder fuel”. Long-term mean wind speed in the spring and summer is spatially homogeneous over
our study area and has low inter-annual variability [43].

The elevation of fire risk by spruce budworm defoliation may seem to be a relatively small
problem. For instance, Fleming et al. [17] reported that of the 417,000 km2 defoliated by spruce
budworm in Ontario at least once between 1941 and 1996, only about 5% experienced large fires. In this
paper, we have shown that from 1941 to 2005, spruce budworm defoliated 418,000 km2 at least once,
of which 21% constitutes areas where the probability of spruce budworm–fire interaction is greater
than 0.8 (Figure 8). This percentage is larger than the former because, with only 1.5 outbreaks in our
data, many of these areas with elevated fire risk have yet to realize their spruce budworm-related fires.

According to our results, climate change could potentially affect spruce budworm–fire interaction
through changes in the bioclimatic variables that were retained in the model. Global circulation models
predict temperature increases in southern Ontario of 3–5 ◦C in summer and 4–6 ◦C in winter before the
end of the century. The corresponding predictions in northern Ontario are for seasonal temperature
increases of 3–6◦C and 4–10 ◦C, respectively. Precipitation is predicted (with less certainty than
temperature) to decrease by 20% in the summer and 10–20% in the winter (20% and 20–30% decrease
in northern Ontario, respectively) [44]. An increase in temperature combined with a decrease (or even
no change) in precipitation can be expected to decrease climate moisture. As a result, some areas of
moderate climate moisture might experience a drier climate under which spruce budworm defoliation
has less influence on the subsequent risk of large fires. Climate change can also potentially affect the
distribution of the frequency of spruce budworm defoliation. The application of climate projections
for 2011–2040 to a bioclimatic model of spruce budworm defoliation in Ontario suggests (1) a northern
extension of the area of defoliation combined with a persistence of the southern limit, effectively
increasing the total area of defoliation by more than 20% compared to the area observed in the last
outbreak (1967–1998); and (2) a decrease of the frequency of defoliation in the center of the historical
defoliation belt [5]. A northward extension of the area of defoliation could create more opportunity for
interactions with fire, especially because historically, more area has been burnt by large fires north of
the defoliation belt (particularly in the northwest) than in it [45].

Changes in temperature and precipitation regimes are also expected to affect forest composition
and distribution through their effects on the physiology and ecology of tree species. For instance,
white and black spruce respond negatively to temperature increases [46], and Lenihan and Neilson [47]
predict that future climate warming could potentially reduce their area of dominance by 20–30%.
Balsam fir has a wide distribution that could be displaced by the combination of the northward
expansion of the temperate conifer and hardwood species of the Great Lakes—St Lawrence Forest
Region south of the Boreal zone, and a northward shift of its climatically optimal habitat. While there
is certainty that changes in forest composition and distribution will occur, the rate, magnitude,
and location of such changes are all highly uncertain. In the boreal forest, changes in natural
disturbance regimes are expected to exert a stronger effect than changes in the climate itself. There is
potential for positive (or negative) feedback: disturbances may accelerate changes in forest composition
and distribution ‘imposed’ by a different climate which, in turn, may create new conditions which
favor (or hinder) more disturbances and even further forest changes.

While climate change adds another level of complexity to the interactions between spruce
budworm defoliation and fire, and the forests in which they occur, the likelihood that it will affect these
interactions and the potential impacts of spruce budworm-caused fires as described above, point to
the need for further research in this area.
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5. Conclusions

The existence of an interaction between spruce budworm defoliation and wildfire in central Canada’s
boreal forests is supported by an increasing body of experimental [14,15,18] and statistical [17,19] results.
The driving factor behind this interaction is the accumulation of “ladder fuel” (i.e., highly flammable tree
tops and branches arranged vertically) that increases the probability for surface fires to reach the canopy,
thus increasing the risk of severe fires.

In this study, we integrate and extend previous work on the influence of spruce budworm
outbreaks on the subsequent potential for wildfire. We show that factors such as climate, defoliation
history, and forest condition all help explain characteristics of this influence and its spatial variation
across the region. We use this new information to distinguish, at the landscape scale, those areas of
Central Canada’s boreal forest where spruce budworm defoliation is likely to increase subsequent fire
risk from those areas where it is not.

In the short term, these results may help fire managers in geographically allocating resources among
areas that were previously considered as having similar fire risk. In the long term, further research is
required to better understand how the increase in fire risk and changes in spruce budworm defoliation
patterns predicted under climate change will affect the interaction between these two disturbances.
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Abstract: Wildfires, which constitute the most extensive natural disturbance of the boreal biome,
produce a broad range of ecological impacts to vegetation and soils that may influence post-fire
vegetation assemblies and seedling recruitment. We inventoried post-fire understory vascular
plant communities and tree seedling recruitment in the northwestern Canadian boreal forest and
characterized the relative importance of fire effects and fire history, as well as non-fire drivers
(i.e., the topoedaphic context and climate), to post-fire vegetation assemblies. Topoedaphic context,
pre-fire forest structure and composition, and climate primarily controlled the understory plant
communities and shifts in the ranked dominance of tree species (***8% and **13% of variance
explained, respectively); however, fire and fire-affected soils were significant secondary drivers of
post-fire vegetation. Wildfire had a significant indirect effect on understory vegetation communities
through post-fire soil properties (**5%), and fire history and burn severity explained the dominance
shifts of tree species (*7%). Fire-related variables were important explanatory variables in classification
and regression tree models explaining the dominance shifts of four tree species (R2 = 0.43–0.65).
The dominance of jack pine (Pinus banksiana Lamb.) and trembling aspen (Populus tremuloides Michx.)
increased following fires, whereas that of black spruce (Picea mariana (Mill.) BSP.) and white spruce
(Picea glauca (Moench) Voss) declined. The overriding importance of site and climate to post-fire
vegetation assemblies may confer some resilience to disturbed forests; however, if projected increases
in fire activity in the northwestern boreal forest are borne out, secondary pathways of burn severity,
fire frequency, and fire effects on soils are likely to accelerate ongoing climate-driven shifts in
species compositions.

Keywords: boreal forest; burn severity; disturbance; fire effects; fire history; forest fire; regeneration;
species richness

1. Introduction

Wildfires are the most extensive stand-initiating disturbance in the northwestern Canadian boreal
forest, typically recurring every 50–100 years [1,2]. When wildfires occur, they burn with varying
intensities (energy release) in response to fire weather, topography, and fuel type, producing a range of
burn severities. Burn severity is defined as the ecological impacts of fire on vegetation and soils [3,4].
Many boreal forest plants have adapted to repeated wildfires though traits such as resprouting or
suckering, seed banking, or, in the case of some tree species, serotiny. Serotinous and semi-serotinous
conifer tree species have cones that may open in response to and survive some heating, and retain
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some viable seeds in the canopy following wildfires. Through this mechanism, serotinous species can
produce extensive seed rains from aerial seedbanks immediately following fire [1,5]. Wildfire burn
severity has important implications for post-fire understory vegetation communities and recruitment
of seedlings. Heating and combustion from wildfires kill some trees and may reduce the viability of
seeds in aerial seedbanks (including those of serotinous species) beyond a threshold of fire intensity
or if the duration of heating is extensive [6,7]. Variable combustion of organic soils provides diverse
seedbeds for plants and trees, ranging from thick remnant organic layers to exposed mineral soils,
and alters the composition and exposure of post-fire soil seed banks [8,9]. Some burning of organic
soils promotes vegetative regeneration, but deep burning may damage roots and rhizomes, negatively
affecting the capacity of resprouting species to regenerate following fires [5].

In many ecosystems, burn severity is a dominant and enduring control on post-fire understory
vegetation assemblies [10–12] and seedling recruitment [11,13,14], influencing the resulting structure
and composition of forests. Although burned sites in the boreal forest generally return to a mature
forested stand structure within 100 years [15], researchers using remote sensing to examine the post-fire
recovery of vegetation following wildfires have found different rates of revegetation amongst burn
severity classes. Severely burned sites demonstrated the highest decline in vegetation immediately
post-fire [16,17]. In the years following a wildfire, severely burned sites subsequently experienced
the largest increases in vegetation, indicating either forest recovery or colonization of these sites by
disturbance-favouring plants and trees [16,17]. In North American boreal forests, post-fire understory
vegetation communities in black spruce (Picea mariana (Mill.) BSP.) [18], jack pine (Pinus banksiana
Lamb.) [19], and mixed broadleaf and coniferous stands [20] are influenced by surface burn severity and
depth of burn, in conjunction with the availability of seed sources and vegetative propagules. In these
studies, colonizing species such as graminoids and annual forbs established themselves broadly in
severely burned areas, whereas slow-growing lichens, evergreen shrubs, and higher species richness
were more prominent in low severity and scorched areas [18–20]. Lower densities of recruitment
of coniferous trees have been observed when sites burned severely and at short intervals [21,22],
and increased proportions of early-successional tree species, such as jack pine and trembling aspen
(Populus tremuloides Michx.) are associated with high severity burning [23,24]. The relative dominance
of different species of trees and the density of post-fire forests are lasting legacies of boreal wildfire
severity [21,23,25].

When burn severity is studied at a broader landscape scale, that is, across multiple forest types
and wildfires, the effects of burn severity on post-fire vegetation communities and recruitment may be
challenging to detect. Burn severity is correlated to pre-fire forest type and stand structure [8,26–28],
potentially obscuring or explaining observed effects of burn severity on post-fire plants and trees.
Studies of burn severity that encompass multiple forest types have identified topoedaphic and pre-fire
forest conditions as the primary post-fire drivers of understory plant communities and site suitability
for tree species [18,29–32], leading some researchers to characterize burn severity as a secondary
“filtering” effect beneath the dominant landscape and climatological controls.

Ranges of burn severity and the relatively infrequent occurrence of large wildfires (≥200 ha)
produce a mosaic of stand ages and patterns on the landscape, in regions with mixed- and high-severity
fire regimes [33–35]. Wildfires interact with past burns, as previous fires and burn severity determine
current fuels. Abnormally short fire frequencies are implicated in the dominance shifts of tree
species [36], low stocking in post-fire forests [22], and even near-deforestation [37], with implications for
forest resilience [38]. Furthermore, burn severity interacts with fire frequency, potentially reinforcing
vegetation type conversions [39]. Wildfires are a weather and, therefore, climate-driven disturbance.
Fires are expected to increase in size, frequency, and intensity (and therefore in severity) [40–42] in
North America as the climate warms and severe fire weather increases [43]. The forests of the Canadian
Northwest Territories provide an interesting opportunity to study the effects of extensive free-burning
wildfires in an ecosystem with multiple dominant coniferous and broadleaf tree species, across a
moisture gradient ranging from hydric to xeric. Given the ecologically important role and actively
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changing patterns of fire in the boreal forest, studies characterizing the relative importance of fire
effects and fire history, and non-fire and climate drivers in determining post-fire vegetation assemblies
and species composition shifts will provide insights into the trajectories of future forests.

This study describes post-fire vegetation communities and seedling recruitment across a broad
range of topoedaphic vegetation classes and levels of burn severity, to identify direct and indirect
drivers of these assemblies in the northwestern Canadian boreal forest. In support of this goal, our
objectives were: 1. To characterize post-fire vegetation assemblies and recruitment of seedlings across
burn severity and topoedaphic gradients; 2. To assess the relative importance of climate and pre-fire
forests, burn severity and fire history, and post-fire soils to understory vegetation communities and
shifts in the dominance of tree species; and 3. To identify direct and indirect effects of fires on post-fire
vegetation, as well as drivers of shifts in the dominance of tree species in the post-fire cohort.

2. Methods

2.1. Study Area

Field sites were established in six, large, lightning-caused wildfires (14,000 to 700,000 ha) that
burned in 2014 (Figure 1). The year of 2014 was an extreme fire season in the northwestern Canadian
boreal forest region, with drought-driven wildfires burning a total area > 3 million ha [44]. The sampled
fires burned in the Northwest Territories and Wood Buffalo National Park. The fire regime of this
area is one of infrequent stand-initiating wildfires [45,46]. In the Canadian boreal forest, these large
wildfires comprise a small fraction of the total number of fires, but they are responsible for the vast
majority of the area that was burned [35].

Figure 1. The sampled 2014 wildfires and field site locations in the Northwest Territories and Wood
Buffalo National Park. The study area is indicated in black on the inset map, within the context of the
North American boreal forest (shown in green) [47].

The study area experiences long cold winters and short hot summers. Mean annual temperatures
at the field sites ranged from −4.3 ◦C at the furthest north site to −1.8 ◦C at the furthest south [48,49].
Topography of the study area is minimal, consisting of level terrain in the southwestern part of the study
area, on the boreal plain, and rolling granitic hills on the boreal shield in the northeast [41]. The forests
of the study area are dominated by jack pine, black spruce, white spruce (Picea glauca (Moench) Voss),
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and trembling aspen. Important secondary tree species include eastern larch (Larix laricina (Du Roi) K.
Koch), paper birch (Betula papyrifera Marsh.), and balsam poplar (Populus balsamifera L.) [48]. There is
also a substantial wetland (chiefly peatlands) component to the region. Peat-forming wetlands may
form extensive complexes and cover approximately a third of the total area [50]. Although the study
area falls within the discontinuous permafrost zone of Canada [51], no field sites had frozen active
layers in the top metre of soil.

2.2. Field Methods

We sampled 51 field sites one year post-fire and resampled 30 sites three years post-fire. The sites
were selected using a stratified random sample that was evenly distributed across high-, moderate-,
and low-burn severity classes. The mapped burn severity was produced using an initial assessment
of a differenced normalized burn ratio (dNBR) image [52], classified with thresholds developed
by Hall et al. [53]. Field sites were >100 m and ≤2 km from roads. More isolated sites were also
opportunistically accessed by helicopter. The field sites accessed by helicopter were located in order to
capture the locally available range of burn severity and topoedaphic vegetation communities (ecosites),
ensuring that each sampled site offered a distinct combination of severity and vegetation type. Field
sites were positioned in an area of homogenous burn severity, topoedaphic setting (upland or wetland),
and dominant vegetation that extended ≥60 m in any direction. The site moisture (from hydric to
xeric) and ecosite categories were classified according to Beckingham and Archibald [54]. Ecosites
were generalized into the dominant topoedaphic vegetation classes of open wetland, treed wetland,
upland spruce, upland mixedwood, and upland jack pine (from wettest to driest). All the sampled
wetlands were peat-forming wetlands (peatlands). Plot centres were recorded with a differential GPS
unit. The mean distance between the plot centres of all the field sites was 170 km, with a minimum
distance of 103 m.

When sampling one year after the fire, the sample plots were 30 × 30 m, with two 30-m transects
oriented in the cardinal directions, crossing at the plot centre. A detailed figure of the plot layouts
used for field sampling is included in Appendix A: Figure A1. Compositions of tree species, percent
overstory mortality due to fire, stem density (stems ha−1), and basal area (m2 ha−1) of mature trees
in the pre-fire stand were measured at this time for 32 trees ≥ 3 cm diameter at breast height (DBH)
using the point-centered quarter method [55,56] at eight evenly-spaced points along the two transects.
In very low stem-density areas (i.e., open wetlands), a variable-radius circle plot with a minimum
radius of 15 m was used to sample overstory trees. Pre-fire understory stem densities of seedlings
and saplings (stems ha−1) were measured using 3-m radius plots at the endpoints of each transect.
The number of understory density plots sampled ranged from one to four, depending on the density
and evenness of the seedling and saplings.

We collected basal sections from fire-scarred trees to determine the time since the stand origin
(TSO) and time since the last fire (TSLF) at each plot. If no scarred trees were identified nearby, a section
of a mature dominant tree was sampled. Some open wetlands (fens) had no trees. Samples were
sanded and digitally scanned, and annual growth rings and fire scars were dated in CooRecorder [57].

Burn severity was measured in 10 × 10 m subplots at the four corners of each plot. Surface burn
severity was measured using the surface Burn Severity Index (BSI) [58]. BSI values range from zero
(unburned) to four (ash, mineral soil exposed) using classes defined by Dyrness and Norum [59].
Overstory burn severity was measured using the Canopy Fire Severity Index (CFSI) [60]. CFSI classes
range from zero (no tree mortality) to six (no primary branches remaining, pole charring occurred).
The percent cover of each BSI and CFSI severity class was estimated within the four subplots, and final
values of the two severity metrics were calculated using area-weighted means of each class value, and
then averaged for each field site.

We measured the post-fire organic soil depth (cm; up to a maximum of 10 cm) at the inner corners
of the same subplots used for estimates of severity and seedling density. The soil cores (13.5 cm
in depth, 5.5 cm in diameter) were taken one year post-fire at the plot centre and inner corners of
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the southwest and northeast subplots, as well as at a complementary set of neighbouring unburned
control sites (n = 12) representing unburned examples of all sampled vegetation communities. Cores
were inserted to a minimum depth of 8.5 cm and the soil samples were separated into organic and
mineral horizons; the three samples from each site were pooled by the horizon. If mineral soil was
not present in the top 13.5 cm of the soil profile, it was not collected. Soils were oven-dried and the
physicochemical properties of both organic and mineral samples were measured in the lab. These
properties were: pH, electrical conductivity (EC; mS cm−1), percent total nitrogen (N), percent total
carbon (C) measured by loss on ignition, calcium (Ca; mg kg−1), potassium (K; mg kg−1), magnesium
(Mg; mg kg−1), and sodium (Na; mg kg−1). The percentages of sand, silt, and clay in mineral soils
were also measured. Measurements from the two pooled horizons from each site were combined using
sums weighted by the mean proportion of the core occupied by each horizon.

Estimates of percentage cover of understory vascular plant species were made one year post-fire
in five 1 × 1 m plots per field site. Vegetation plots were located at the plot centre and at the inner
corners of subplots. Species were identified according to Moss [61] and Cody [62], and the estimated
percentage cover for each species was summed across the five plots and scaled to sum to 100%.
Carex spp. and Salix spp. were distinguished for counts of species richness but were not identified
beyond genus for ordination or indicator species analyses (vegetation analysis explained in detail in
Section 2.3).

The density of seedling recruitment was measured one year post-fire (2015), and subsequently
re-measured three years post-fire (2017) in 30 forested sites (excluding open wetlands). Initial measures
of seedling density were made in the 10 × 10 m subplots in 2015. In 2017, seedling density was
re-measured using a 2-m wide 35-m long belt transect that was oriented north-south, crossing the
original plot centre at 17.5 m. Belt-transect length varied by seedling and sapling size classes. Seedlings
that were 0–10 cm were counted for the first 10 m of the transect (area 20 m2) and seedlings that were
10–50 cm were counted for the first 20 m (area 40 m2). Seedlings > 50 cm and saplings (live trees
> 1.33 m with a DBH < 3 cm) were counted for the entire transect length. In cases of very uneven
seedling density, transects of all size classes were extended to better represent the actual composition
and density. This set of resampled sites excluded non-forested open wetlands (n = 11) and inaccessible
sites (no helicopter or road access, n = 7). A further three sites were abandoned due to subsequent
disturbances. The two datasets were combined and the latest available seedling density measurement
for each site was used.

We calculated site climatic variables that described the average heat load and moisture stress
from 30-year normals (1981–2010) of PRISM climate data [63] downscaled to local elevation [64] using
bilinear interpolation and elevation adjustment in ClimateWNA [49]. The climatic moisture deficit
(CMD; mm) was calculated as the sum of the monthly difference between Hargrave’s atmospheric
evaporative demand and monthly precipitation. Annual heat-to-moisture index (AHM) was calculated
as the scaled ratio of mean annual temperature and mean annual precipitation [49].

2.3. Analysis

All statistical analyses were conducted in R [65]. The variance of burn severity explained by
the topoedaphic vegetation classes was assessed using a linear mixed-effects model with a random
term of the fire name, fitted in the lme4 [66] and lmerTest [67] packages. We examined all model
residuals and found them to be normally distributed. The statistical significance of fixed effects was
estimated using an analysis of variance (ANOVA) with Type II sums of squares and a Satterthwaite
approximation of degrees of freedom [68]. We conducted post-hoc comparisons of least-squares
means with a Tukey test for multiple comparisons in the lsmeans package [69]. Species richness and
Shannon diversity index of understory vascular plant communities of each site were calculated in
the vegan package [70]. Bray-Curtis dissimilarities between understory vegetation communities were
ordinated using non-metric multidimensional scaling (NMDS). We fitted vectors of environmental
variables to the NMDS axes and assessed the goodness of fit (R2) of these relationships also using vegan
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(Table 1). Indicator species for each topoedaphic vegetation class were identified from understory
vascular plant assemblies using 1000 permutations of a multi-level pattern analysis in the indicspecies
package [71]. We assessed the influence of burn severity on soil properties when controlling for
topoedaphic vegetation class (as a proxy for pre-fire site conditions) using an ANOVA of multivariable
linear mixed-effects models with a random term of the fire name. Once again, model residuals
were examined for normality. We employed Type II sums of squares where interactions between
independent variables were not significant. We applied a Type III ANOVA if there were significant
interactions between independent variables. The same approach was used to assess the influence of
burn severity, TSLF, and topoedaphic vegetation class (pre-fire conditions) on the Shannon diversity
index and seedling density. We used comparisons of least-squares means with a Tukey test for multiple
comparisons to assess significant differences in species dominance shifts and seedling density between
different topoedaphic vegetation classes.

Table 1. Significant (* p ≤ 0.05) explanatory environmental variables fitted to nonmetric multidimensional
scaling (NMDS) of the understory vegetation community data (Figure 2). Unitless variables are
identified with a hyphen in the Units column.

Environmental Variable Abbreviation Units Mean Range

Basal Area BA m2 ha−1 10.8 0.00–53.39
Burn Severity Index BSI - 2.39 0.54–4.00

Electrical conductivity of soil EC mS cm−1 0.73 0.05–3.53
Organic soil depth OSD cm 4.7 0–10

Percentage sand in mineral soil % Sand % 43.9 0–95
pH pH - 6.29 3.21–8.12

Potassium K mg kg−1 411.1 74.1–1148.4
Site moisture Moisture - - Xeric–Hydric

Sodium Na mg kg−1 137.8 38.52–494.48
Time since last fire TSLF year−1 58 9–151

Total carbon Total C % mass 21.9 0.61–52.8
Total nitrogen Total N % mass 0.81 0.18–2.66

Total stem density of overstory and understory trees Density stems ha−1 5822 0–29,012

Differences in the pre-fire and post-fire cohorts of trees were examined using compositional
data. Overstory basal areas and total (understory and overstory) stem densities of each dominant tree
species were converted to proportions relative to the absolute basal area and stem density for each site.
Seedling counts were also converted to proportions by species, and these proportions, or compositions,
were transformed with a centred log-ratio using the compositions package [72]. We then used paired
t tests to identify statistical differences in the pre-fire and post-fire composition of trees, by species.
We compared the natural logarithm (loge) of seedling density in sites that experienced very short
fire return intervals to that of sites experiencing more typical fire return intervals with a Wilcoxon
signed-rank test. Significant differences in loge seedling density between topoedaphic vegetation
classes were also tested using a Tukey test of least-squares means.

To examine shifts in the relative importance or dominance of tree species we calculated fractional
ranks of pre-fire overstory tree species proportions of jack pine, white spruce, black spruce, trembling
aspen, and all other tree species combined, by basal area. The most prevalent species received a rank
of 1 and the least dominant (or absent) species received a rank of 5. In the case of ties, ranks were split
between species, so that total rank values always summed to 15. We chose to use the pre-fire basal
area rather than the number of stems as a measure of dominance as we felt that stem density did not
adequately capture the potential fecundity and relative importance of less-common but large trees in
mixedwood stands (e.g., white spruce). Because the basal area of trees established after fire represents
only a small fraction of the pre-fire measure, post-fire tree species proportions were assigned fractional
ranks by seedling stem density. The pre- and post-fire fractional rank scores of each species at each
site were differenced to characterize shifts in tree species dominance in the post-fire cohort, producing
a matrix of shifts in ranked dominance for each species by site. Rank shifts of near-zero indicated
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minimal change in the species’ prevalence in the post-fire cohort, whereas negative values indicated
a decrease and positive values indicated an increase in ranked dominance. Rank shift data had a
theoretical range of −4 to 4. Analyses using the shift in rank dominance data were only performed for
the four dominant tree species, excluding the combined “other” category. This application of fractional
rank shifts characterizes the proportional change of tree species dominance relative to all tree species
present in the community, rather than considering a single species at a time (as is the case with ratio
data), and offers a normally distributed variable for analysis of dominance changes.

Subsequently, we assessed the relative importance of three groups of variables in the categories
“Soils”, “Site”, and “Fire” to understory vegetation community dissimilarities and shifts in the
dominance of tree species using variance partitioning. Soils were represented by post-fire soil
properties, whereas Site category variables were pre-fire forests, topoedaphic context, and recent
spatial climate averages. The Fire category included burn severity and fire history variables (Table 2).
All measured and downscaled environmental variables were considered for inclusion in variance
partitioning models. If the variables were highly correlated (Spearman’s |ρ| ≥ 0.7) one explanatory
variable of the pair was selected for inclusion in the model. Several highly correlated soil properties
were decomposed using a principal components analysis (PCA; Table 2). Sites with incomplete data
were removed (n = 5), and explanatory variables were standardized before variance partitioning.
The significance (α = 0.05) of the unique variation explained by each group of environmental drivers
(Soils, Site, and Fire) was tested using distance-based redundancy analysis, also in the vegan package.

Table 2. Environmental variables incorporated in the explanatory variance partitioning of understory
vegetation community dissimilarities and shifts in tree species dominance. Correlated soil properties
collapsed with a principal components analysis for inclusion in variance partitioning are indicated
with a †. Unitless variables are identified with a hyphen in the Units column.

Environmental Variable Units Mean Range
Variance

Partitioning
Category

Calcium † mg kg−1 13,648.6 217.1–60,815.4 Soils
Electrical conductivity † mS cm−1 0.73 0.05–3.53 Soils

Magnesium † mg kg−1 1461.9 22.0–5191.3 Soils
Percentage sand in mineral soil % mass 44 0–95 Soils
Percentage silt in mineral soil % mass 14 0–51 Soils

pH - 6.29 3.21–8.12 Soils
Potassium † mg kg−1 411.1 74.1–1148.4 Soils

Sodium † mg kg−1 137.8 38.5–494.5 Soils
Total carbon † % mass 21.9 0.61–52.8 Soils

Total nitrogen † % mass 0.81 0.02–2.66 Soils

Absolute stem density of overstory and
understory trees stems ha−1 5822 0–29,012 Site

Annual Heat-Moisture Index - 20.32 16.5–23.6 Site
Black spruce basal area m2 ha−1 2.37 0–29.07 Site

Climatic Moisture Deficit mm 191 171–214 Site
Jack pine basal area m2 ha−1 5.61 0–51.38 Site

Site moisture - - Xeric–Hydric Site
Trembling aspen basal area m2 ha−1 0.87 0–6.22 Site
Total overstory basal area m2 ha−1 10.8 0–53.4 Site
White spruce basal area m2 ha−1 1.55 0–36.53 Site

Burn Severity Index - 2.38 0.54–4 Fire
Percentage overstory mortality % 89 6–100 Fire

Post-fire organic soil depth cm 4.7 0–10 Fire
Time since last fire year−1 58 9–151 Fire

Time since stand origin year−1 104 9–237 Fire

Finally, we fit explanatory classification and regression trees (CARTs) to shifts in the ranked
dominance of each tree species derived from ranked proportions of the pre-fire basal area and post-fire
stem density, using the tree package [73]. The regression trees were constrained by requiring a
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minimum of five field sites per node, and a minimum within-node deviance of 0.05. We intentionally
excluded pre-fire basal area and stem density of any tree species as regression tree predictor variables
in order to learn about secondary climatic, soil, and burn severity effects on the dominance shifts of
tree species. The same suite of environmental, burn severity and fire history, and climate variables
were included as potential predictors of shifts in tree species dominance for each species’ CART model
(Table 3).

Table 3. Environmental, climate, burn severity, and fire history variables included in the classification
and regression tree models of the dominance shifts of tree species. Unitless variables are identified
with a hyphen in the Units column.

Variable Units Mean Range

Annual Heat-Moisture Index - 20.3 16.5–23.6
Burn Severity Index - 2.38 0.54–4

Canopy Fire Severity Index - 2.5 0–6
Climatic Moisture Deficit mm 191 171–214

Electrical conductivity mS cm−1 0.73 0.05–3.53
Percentage overstory mortality % 89 6–100
Percentage sand in mineral soil % 44 0–95

pH - 6.29 3.21–8.12
Post-fire organic soil depth cm 4.7 0–10

Total nitrogen % 0.81 0.02–2.66
Time since last fire year−1 58 9–151

Time since stand origin year−1 104 9–237
Wetland - - Upland or Wetland

3. Results

A broad range of burn severity was represented in the field sites (Appendix A: Figure A2). The BSI
values of field sites ranged from 0.5 to 4, the CFSI values from 0 to 6, and percent overstory mortality
ranged from 6.25% to 100% [28]. The surface (BSI) and overstory (CFSI) burn severity were statistically
related to topoedaphic vegetation classes (ANOVA, *** p < 0.001 and * p = 0.02, respectively; Table 4),
but overstory mortality was not. Post-hoc comparisons of least-squares means with a Tukey test
confirmed some statistical differences in burn severity amongst topoedaphic vegetation classes for BSI
(* p ≤ 0.05; Appendix A: Figure A2). Surface burn severity was lowest in open wetlands and highest in
jack pine uplands. All other topoedaphic vegetation classes had BSI values that were similar to one of
these two groups. The differences in least-squares means of CFSI between topoedaphic vegetation
classes were not significant at α = 0.05 (Appendix A: Figure A2).

The richness of the understory vascular plant species sampled at the field sites ranged from three
to 20. Both understory vegetation community diversity and seedling density were statistically related
to topoedaphic vegetation classes (Table 4; Appendix A: Figure A2). Interactions between TSLF and
topoedaphic vegetation classes, and BSI and topoedaphic vegetation classes significantly explained
the variability in understory plant diversity (Type III ANOVA, * p ≤ 0.02; Table 4). The density of
seedlings was significantly explained by both topoedaphic vegetation classes and BSI (Type II ANOVA,
p < 0.04), but not by TSLF or CFSI, or by the interactions between topoedaphic vegetation classes
and these two metrics (Table 4; Appendix A: Figure A2). All sites with zero seedling establishment
were open wetlands (n = 7). Of those sites that experienced some regeneration, seedlings ha−1 ranged
from 25 to >75,000. The natural logarithm of the density of seedlings was significantly lower in open
wetlands, treed wetlands, and upland spruce, and higher in upland jack pine and upland mixedwood
topoedaphic vegetation classes (comparison of least-squares means, with a Tukey test, α = 0.05).
The post-fire seedling density was statistically greater in sites that experienced >17 years between fires
(Wilcoxon signed-rank test, * p = 0.02).
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Table 4. Multivariable linear mixed-effects models describing surface Burn Severity Index (BSI),
Canopy Fire Severity Index (CFSI), time since last fire (TSLF), topoedaphic vegetation classes (TVC),
and ecological outcomes of seedling density and Shannon Diversity Index of understory vascular plant
communities. The effect size (F) and significance (p) of terms are tested with Type II sums of squares
where there are no significant interactions, and Type III sums of squares in the presence of a significant
interaction. Significance of intendent variables is signified as follows: *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05.

Multivariable Linear
Mixed-Effects Model

ANOVA
Sums of
Squares

Degrees of
Freedom

Independent
Variable

Sums of
Squares

F p

BSI = TVC + (1|Fire Name) II 4 TVC 20.39 14.94 *** < 0.001

CFSI = TVC +
(1|Fire Name) II 4 TVC 33.40 3.36 * 0.02

Diversity = TVC × BSI +
(1|Fire Name) III

4 TVC 2.51 3.09 * 0.03
1 BSI 0.15 0.72 0.40
4 TVC × BSI 2.64 3.26 * 0.02

Diversity = TVC × TSLF +
(1|Fire Name) III

4 TVC 2.08 2.52 0.06
1 TSLF 0.00 0.01 0.91
4 TVC × TSLF 2.89 3.51 * 0.02

Density = TVC + BSI +
(1|Fire Name) II

4 TVC 18.01 3.49 * 0.02
1 BSI 5.62 4.35 * 0.04

Density = TVC + TSLF +
(1|Fire Name) II

4 TVC 43.94 7.84 *** < 0.001
1 TSLF 0.59 1.14 0.29

The two-dimensional NMDS of understory vascular plant communities had a stress of 0.20
(Figure 2). Similarity of understory species communities was primarily related to the physicochemical
properties of the soil; however, pre-fire forest structural characteristics of basal area and absolute stem
density of overstory and understory trees were also influential (Figure 2). BSI was also statistically
related to understory species community dissimilarity, and TSLF was nearly significant (p = 0.052,
999 permutations). Although soil properties were explained by topoedaphic vegetation classes;
the organic soil depth, total nitrogen, total carbon, potassium, calcium, and magnesium were also
statistically (Type II ANOVA; α = 0.05) related to BSI when controlling for the effect of topoedaphic
vegetation class. Therefore, some soil properties were affected by fire (Appendix A: Table A1).
Topoedaphic vegetation classes tended to occupy characteristic areas of ordination space, but there
was some overlap between the normal confidence ellipses of classes. Upland mixedwood and
upland jack pine groups were especially intermingled (Figure 2a), and mixedwood communities
occurred in a sub-region of the broader environmental space occupied by jack pine. Similar patterns
are identifiable in the post-fire understory indicator species of each topoedaphic vegetation class
(Table 5). All topoedaphic vegetation classes had unique significant indicator species, with the
exception of jack pine uplands, which shared all significant indicator species with the upland
mixedwood group, and some with the upland spruce group (Table 5). Potentilla palustris (L.) Scop.,
Betula glandulosa Michx., Epilobium palustre L., and Myrica gale L. were unique indicator species of open
wetlands. Treed wetlands had unique indicator species of Rubus chamaemorus L., Vaccinium caespitosum
Michx., and Vaccinium oxycoccos L. Viburnum edule (Michx.) Raf. was a unique indicator species
of upland mixedwood sites. Furthermore, upland mixedwood sites shared significant indicator
species of Cornus canadensis L., Geranium bicknellii Britt., Rosa acicularis Lindl., Linnaea borealis L., and
Elymus innovatus Beal with upland jack pine sites. Vaccinium uliginosum L. and Geocaulon lividum
(Richards.) Fern. were unique indicator species in upland spruce communities.
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Figure 2. Nonmetric multidimensional scaling (NMDS) of post-fire understory vegetation community
dissimilarities. Plot (a) shows normal confidence ellipses for topoedaphic vegetation classes (identified
by colour) and environmental vectors derived from correlations between environmental variables and
the NDMS axes, within the ordination space. Abbreviations of environmental variables are reported
in Table 1. The strength of the relationship between an environmental vector and the NMDS (R2) is
indicated by the arrow length. Plot (b) shows the individual sites within the ordination space, with
topoedaphic vegetation classes identified by point colour and shape.

Table 5. Significant (* p ≤ 0.05) indicator species identified using multi-level pattern analysis within six
topoedaphic vegetation classes. The indicator species uniquely associated with one group are indicated
with a †.

Vegetation Group

Open Wetland Treed Wetland Upland Mixedwood Upland Jack Pine Upland Spruce

Potentilla palustris (L.) Scop. † Rubus chamaemorus L. † Viburnum edule (Michx.) Raf. † Cornus canadensis L. Vaccinium uliginosum L. †

Betula glandulosa Michx. † Vaccinium caespitosum Michx. † Cornus canadensis L. Geranium bicknellii Britt. Geocaulon lividum (Richards.) Fern. †

Epilobium palustre L. † Vaccinium oxycoccos L. † Geranium bicknellii Britt. Rosa acicularis Lindl. Ledum groenlandicum Oeder
Myrica gale L. † Rubus arcticus L. Rosa acicularis Lindl. Linnaea borealis L. Equisetum scirpoides Michx.

Rubus arcticus L. Ledum groenlandicum Oeder Linnaea borealis L. Elymus innovatus Beal Arctostaphylos rubra
(Rehder & Wils.)

Carex L. spp. Equisetum scirpoides Michx. Elymus innovatus Beal Rosa acicularis Lindl.

Salix L. spp Arctostaphylos rubra
(Rehder & Wils.) Fern. Linnaea borealis L.

Carex L. spp. Elymus innovatus Beal
Salix L. spp. Carex L. spp.

Salix L. spp.

The dominance of pre-fire and post-fire tree species (represented by log-ratios of compositions of
basal area and stem density) were significantly different for jack pine, black spruce, and white spruce
(Paired t tests, Bonferroni-corrected * p ≤ 0.04). When pre-fire dominance was characterized using
total stem density (Appendix A: Figure A3), post-fire tree species compositions were significantly
different for black spruce and trembling aspen (Paired t tests, Bonferroni-corrected * p ≤ 0.02). Having
confirmed significant differences between pre-fire and post-fire tree species compositions, we examined
the rank shifts in dominance of tree species in order to capture directionality of species-specific changes.
Jack pine both increased and decreased in dominance in the post-fire cohort, but the slim majority
of sites were neutral (−0.5 to 0.5 shift in rank; 39% of sites). Furthermore, not all plots burned with
completely stand-initiating lethal wildfires (Figure 3). Of the sites that experienced declines in the
ranked dominance of jack pine, 41% had some surviving jack pine basal area post-fire (Figure 3).
Aspen dominance increased in the post-fire cohort, with 54% of sites gaining 1 or more ranks of
dominance post-fire, and no sites declining by <−0.5 of a rank (Figure 3). Both varieties of spruce
primarily demonstrated no change or declines, in the post-fire cohort (57% of sites were neutral and
37% showed a decrease for black spruce; 69% of sites were neutral and 29% showed a decrease for
white spruce). Of those sites with declines in the dominance of black spruce, only 9% (n = 2) had
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incomplete mortality of black spruce trees (Figure 3). No sites demonstrating declines in trembling
aspen or white spruce had live individuals of these species post-fire (Figure 3). Declines and increases
in tree species dominance were significantly related to topoedaphic vegetation classes. Increases in
jack pine dominance were especially associated with wetlands and spruce uplands, whereas jack
pine declines occurred in upland communities where jack pine was already established, especially
mixedwood stands where the suckering of trembling aspen was prevalent (Appendix A: Figure A4;
Tukey test of least-squares means, * p ≤ 0.05). Although increases in aspen dominance were more
pronounced in uplands (Wilcoxon signed-rank test, ** p = 0.009), there were no statistical differences in
aspen dominance shifts between topoedaphic vegetation classes (Tukey test of least-squares means;
Figure A4). Decreases in black spruce dominance were the most pronounced in upland spruce sites,
whereas black spruce dominance was largely stable in treed wetlands and other vegetation classes
(Tukey test of least-squares means, * p ≤ 0.05). There were no significant differences in post-fire changes
in white spruce dominance between topoedaphic vegetation classes (Figure A4).

When representing the variance in understory vegetation and tree species dominance shifts
explained by soils, we found that many soil properties were highly correlated. To address this, we
decomposed the correlated soil physicochemical properties using PCA, and included only the first
principal component (PC1) as an explanatory variable in the variance partitioning (Table 2). We chose
to retain percent sand and PC1, and organic soil depth and site moisture despite high correlations
(ρ = 0.8) between these two pairs, as these variables characterized important elements of the three
environmental driver groups. Post-fire soils (Soils); pre-fire forests, topoedaphic context, and climate
(Site); and burn severity and fire history (Fire) together explained 28% of the variance in understory
vegetation communities, and 33% of the variance in the dominance shifts of tree species (environmental
variables included in model reported in Table 2; Figure 4). There was a substantial shared variance
explained between Soils, Site, and Fire. Overall, Site explained the largest portion of the variance
in post-fire vegetation communities (8%) and tree species dominance shifts (13%; Figure 4). Soils
significantly explained 5% of the variance in understory vegetation but did not significantly explain
tree species dominance shifts. Conversely, Fire was of substantial importance to tree species dominance
shifts (7% of variance) but did not significantly explain post-fire vegetation communities (p = 0.08;
Figure 4).

Classification and regression trees of the dominance shifts of tree species had R2 values ranging
from 0.65 to 0.43. Jack pine dominance increased in the post-fire cohort where the total soil N was
≥0.48% and decreased in the post-fire cohort in stands that experienced partial mortality (Figure 5).
These sites were typically mixedwood stands, and often had some remaining live basal area of jack
pine trees, suggesting that these declines in the dominance of the post-fire cohort do not necessarily
indicate persistent shifts away from jack pine dominance, although aspen suckering outpaced the
establishment of pine seedlings (Appendix A: Figure A3). Trembling aspen increased in dominance in
nearly all plots, but increases were somewhat limited in lightly burned plots and plots with higher N
availability, both of which tend to be characteristic of wetlands (Figure 5). Changes in black spruce
dominance were neutral in young stands where black spruce was essentially absent pre-fire and
in wetlands (TSO < 80.5). Declines in black spruce dominance were augmented in moderate aged
(TSO < 103.5) uplands and stands experiencing severe canopy burning (CFSI ≥ 4; Figure 5). White
spruce dominance increased slightly in sites with low N availability (Total N < 0.11%) and lower
moisture deficits (CMD < 191.5). White spruce dominance declined in historically drier sites, especially
in those sites that experienced some canopy involvement in the fire (CFSI ≥ 2.65; Figure 5).
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Figure 3. Increases and decreases in the post-fire dominance of (a) jack pine; (b) trembling aspen;
(c) black spruce; and (d) white spruce, plotted against the post-fire live basal area of the same
species. Points are coloured by topoedaphic vegetation classes. Circles indicate sites where the
species experienced complete mortality or was absent pre-fire. Triangles indicate sites that had live
residual basal areas of the species of interest following a wildfire. Points are offset (“jittered”) to reduce
overlap. Dashed horizontal lines indicate no change in species dominance post-fire. Points above this
line increased in dominance post-fire, and points below are those sites that experienced a decline of the
species of interest in the post-fire cohort.

Figure 4. Venn diagrams showing the partitioning of variation in (a) post-fire understory vegetation
community dissimilarities and (b) shifts in tree species dominance, between post-fire soils (Soils);
pre-fire forests, site moisture, and climate (Site); burn severity and fire history (Fire); and unexplained
residual variance. The significance of unique portions of variance explained is indicated by asterisks
(* p = 0.05, ** p = 0.01, *** p = 0.001). The measured and interpolated environmental variables in each
explanatory partition are reported in Table 2.
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Figure 5. Regression trees of post-fire cohort dominance shifts for (a) jack pine; (b) trembling aspen,
(c) black spruce; and (d) white spruce. Regression trees were fitted requiring a minimum of five sites
per node, and a minimum within-node deviance of 0.05. Light blue terminal nodes indicate increases in
dominance post-fire, and dark blue nodes indicate substantial increases in rank dominance (≥2). Red
terminal nodes indicate decreases in dominance. Yellow nodes may be slightly negative or positive,
but do not represent strong shifts (description of dominance shift metric in Section 2.3 Analysis).
Descriptions of characteristic sites and drivers appear below each node. The environmental variables
included in the regression tree models are reported in Table 3.

4. Discussion

4.1. Post-Fire Vegetation Communities of Vascular Plants

Post-fire understory vegetation communities were primarily explained by site conditions, but
burn severity and fire history had significant secondary effects. Topoedaphic vegetation classes
occupied distinct areas of the environmental space and had characteristic indicator species, with the
exception of jack pine uplands and mixedwood stands. These indicator species were identifiable for
topoedaphic vegetation classes despite recent disturbances, underscoring the importance of non-fire
drivers to post-fire vascular vegetation. Understory vegetation communities of mixedwood forests
appear to predominantly occur in a subset of environmental conditions that are also characterized by
jack pine forests. Site moisture, climate, and pre-fire forest structure and composition, all of which
were dominant drivers of understory vegetation assemblies, are independent of fire effects. Therefore,
these communities may be somewhat robust to disturbance from fire, as they are primarily controlled
by non-fire drivers.
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Although the climate of the boreal forest is changing, changes to topography through background
rates of uplift (1.3 cm year−1) [74] and erosion (~0.005–0.0005 cm year−1) [75] reported in parts of
the biome are slow, relative to the velocity of climate change (~1 km/year−1 in the boreal forest) [76].
Hydrological feedbacks may also reinforce the persistence of some features, such as peatlands, in the
face of drying and warming [77,78]. The persistence of these topoedaphic drivers over time, in the
face of ongoing climate change, should encourage the re-establishment of understory vegetation
communities following fires. As understory vegetation communities have a substantial influence on
below-canopy light availability and nutrient cycling, this vegetation layer’s persistence may, in turn,
reinforce the similarity of post-fire communities to pre-fire conditions, with implications for seedling
establishment [79–81]. Conversely, regions of the boreal forest experiencing rapid topoedaphic changes
due to permafrost thaw and thermokarst formation may be more susceptible to shifts in vegetation
communities as these dominant drivers undergo substantial short-term changes [82].

Fire affects post-fire vegetation assemblies, both directly through surface burn severity and time
since last fire, and indirectly via fire-mediated changes to soil properties. Despite the overarching
importance of fire-independent site characteristics, burn severity and fire history were associated with
understory vegetation community dissimilarity. Additionally, these variables also had significant
effects on diversity, when controlling for topoedaphic vegetation class. Furthermore, post-fire soils
alone explained a substantial portion of the variance in understory vegetation communities and several
soil properties that were affected by wildfire, as expected in boreal soils [83]. Despite the importance
of non-fire site drivers to understory vegetation communities, changes in burn severity or fire return
intervals will likely translate to shifts in understory vegetation communities through these secondary
pathways. Increases in burn severity, in particular, may lead to lasting, directional compositional
changes in understory species assemblies [31]. Where understory vegetation communities exist at
the boundaries of their ideal environmental space (or in areas of overlap with other topoedaphic
vegetation classes), the effect of burn severity and fire history may be more apparent, and potentially
override fire-independent controls.

4.2. Post-Fire Shifts in Tree Species Dominance

Topoedaphic vegetation classes significantly explained total seedling density, but surface burn
severity significantly interacted with these conditions, likely indicating an effect of seedbed availability
on recruitment. Climate, pre-fire forest composition and structure, and site moisture were important
variables in explaining post-fire shifts in the dominance of tree species, and in which sites such shifts
occurred. Post-fire seedling density was significantly lower in wetlands and spruce-dominated sites
and highest in jack pine and mixedwood uplands. Although the post-fire recruitment was lowest in
open wetlands, some forested sites that reburned with very short intervals between stand-initiating
fires (≤16 years) also experienced near-failures in the recruitment of all tree species, including those
that increased in overall dominance post-fire, and had significantly lower seedling densities than all
other sites. Although we observed declines in the post-fire dominance of both spruce species, black
spruce maintained its dominance in treed wetlands (peatlands) and white spruce dominance was
stable in sites with a lower climatic moisture stress. Furthermore, increases in the dominance of aspen
in the post-fire cohort were least prevalent in wetlands. The drivers of species persistence and types of
sites where spruce species retained dominance, despite the broader neutral or declining trend across
sites, reflect the importance of topoedaphic and climatological drivers to post-fire tree species shifts.
Local variability in site moisture may offer refugia from climate change for both of these species, in a
landscape with limited topography [78,84].

Despite the importance of climate and pre-fire forests to seedling recruitment, burn severity and
fire history had detectable and important effects on post-fire shifts in the dominance of tree species.
Canopy fire severity was implicated in both positive and negative shifts in tree species dominance
for all conifer species. Black spruce dominance decreased in uplands where stand-initiating wildfires
occurred at a frequency of fewer than ~100 years between fires. The dominance of both spruce species
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was reduced in sites that experienced high-severity crown fire. Surface burn severity was the primary
driver of post-fire increases in dominance of trembling aspen, and likely had further indirect effects
on the post-fire dominance of white spruce, aspen, and jack pine through nutrient availability due to
organic soil combustion and heating. Increases in burn severity and combustion in sites that tended
to protect tree species that were susceptible to declines in dominance (i.e., peatlands) or in sites
where species declines were particularly pronounced (e.g., upland spruce sites) may have important
implications for future tree species compositions [85].

Jack pine and trembling aspen made substantial gains in dominance in the post-fire cohort.
These two species are shade-intolerant and require canopy openings from disturbances such as fire
to regenerate and are, therefore, successful post-fire species. Spruce species establish shortly after
a fire, but appeared to be atypically uncommon in sampled fires from this severe drought-driven
fire season, compared to previous studies of the mixedwood boreal zone [86,87] or the northern
boreal forest [23,24]. Although spruce trees can persist as suppressed individuals, if seedlings fail to
establish following fire they are unlikely to go on to become stand dominants through succession,
as the cohort of seedlings established immediately post-fire (1–20 year−1) in boreal forests goes
on to make up the future forest [25]. In light of this, jack pine and trembling aspen appear to
have gained, at the cost of longer-lived, “late-successional” spruce tree species [88,89]. Additionally,
some jack pine stems regularly remained alive post-fire, whereas this was less common for the
other three tree species—wildfires killed almost all individuals in burned patches. The successional
pathways identified here suggest that increases in burn severity and fire frequency would continue
to promote a growing component of jack pine and trembling aspen in northwestern boreal forests,
despite topoedaphic, climate, and forest structure controls on post-fire dominance shifts.

In boreal forests, tree species adaptations to wildfire tend to promote “direct regeneration”,
where post-fire stands return to pre-disturbance compositions over time. Black spruce is a
semi-serotinous species that has demonstrated stand self-replacement following fires in the northern
boreal forest [90,91]. The post-fire decreases in the ranked proportional dominance of black spruce
that we observed may suggest that increasing fire frequencies and severity may surpass the capacity
of this species to re-establish following fires at the proportions previously expected, especially in
drier uplands, if there is substantial combustion in both the overstory and understory [24,38,85].
Additionally, in the topoedaphic vegetation classes where the dominance of black spruce was stable
(wetlands), and where spruce was previously dominant (spruce uplands), the seedling density was
significantly lower than that measured in jack pine and mixedwood uplands. Declines in black spruce
dominance relative to early-successional tree species, or through deforestation following severe fires,
were observed in Alaska [92,93], the Yukon Territory [37], and in the eastern Canadian boreal forest [24],
and this research, provides additional evidence for the potential occurrence of this phenomenon in
northwestern Canadian forests.

4.3. Implications for Northwestern Boreal Forests

Wildfire is the stand-initiating disturbance with the largest extent in the northwestern Canadian
boreal forest [94]. Therefore, drivers of post-fire vegetation assemblies are an important determinant of
future forest composition in this region. The post-fire understory vegetation communities, seedling
density, and shifts in the dominance of tree species were primarily attributable to pre-fire forests,
climate, and topoedaphic context, suggesting that there is substantial capacity for forests and
understory vegetation communities to regenerate post-fire. Although some variability in post-fire
communities was attributed to burn severity, burn severity in this region is also associated with pre-fire
forest structure and composition [28], further reinforcing the importance of pre-fire drivers to observed
vegetation assemblies.

Despite this resilience, long-term shifts in tree species compositions are ongoing in parts of
the western Canadian boreal forest, with proportions of early-seral shade-intolerant species such as
jack pine and trembling aspen demonstrating increasing prevalence, driven by climate change [88].
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Simultaneously, droughts appear to have caused decreases in forest productivity, altered seedling
establishment and caused large-scale die-offs of mature trees in northern forests [95–97]. Although
strong non-fire controls on understory vegetation and seedling establishment offer some resilience to
change, the secondary direct and indirect effects of fire will likely serve to accelerate these ongoing
changes if fire size, frequency, and severity increase as projected [40,41,98].

An increasing broadleaf component in northwestern boreal forests, such as that observed in this
study, may reduce fire severity and flammability of boreal forests [28,99,100] and raise the surface
albedo [101], potentially offering a negative feedback to shifts driven by climate change and impeding
increases in fire activity [16,102]. This effect would be transient if increases of the proportion of
trembling aspen in boreal forests do not persist. Increases in the frequency and severity of droughts
may lead to a subsequent decline in this drought-sensitive species [97,103]. Drought stress would
also likely further exacerbate black spruce declines and potentially favour more drought-tolerant
upland conifers such as jack pine [104–106]. Furthermore, droughts increase the susceptibility of
fuel-limited young forests to reburning [33,107], which could yet again reinforce reductions in black
spruce dominance through the reduced availability of viable seeds. Observed post-fire seedling
density was highly variable, substantially different from pre-fire species compositions, and several
sites experienced near regeneration-failures when severely burned at short fire frequencies. This
research contributes to the growing body of literature indicating that changes to forests of this region
are ongoing, despite the overarching resistance to such shifts conferred by regeneration mechanisms
and topoedaphic controls [83,92,93].

4.4. Limitations and Future Research

Due to the opportunistic nature of this study’s sampling design, we were unable to measure
changes in the composition of the understory vegetation assemblies from pre-fire to post-fire
communities. Although we partitioned the variance in post-fire vegetation communities to identify
some role of wildfire on their determination, studies where prescribed burns are planned or existing
plots are burned over in natural fires are better positioned to measure shifts in the dominance of
understory vegetation species from pre-fire to post-fire conditions. Soils are important to post-fire
understory vegetation communities and they are also relevant to seedling recruitment through the
provision of seedbeds [108–110]. Such studies would allow researchers to measure the changes in soils
as a result of fires, including changes in the organic layer depth.

We conducted our field sampling one year and three years post-fire. Studies spanning a longer
time period can provide additional insights into post-fire vegetation recovery for both understory
plants and trees e.g., [18,26], but this was beyond the scope of this work. An assessment of whether
a forest has recovered to a state similar to pre-fire conditions would require an extensive period of
time, reflecting the growing conditions at high latitudes and local disturbance regimes (e.g., stand ages
at the time of burning ranged from 9 to 237 years in this study). Although the post-fire recruitment
pulse for some tree species may not be complete three years post-fire, there is ample evidence that
the recruitment occurring within the first few years post-fire largely determines the future species
composition and structure of the stand in boreal forests [25,108]. Just over one-third of our plots did
not have repeated measures of seedling recruitment data sampled three years post-fire; however,
the majority of these sites that were not revisited were non-forested wetlands (fens), with no trees
pre-fire. This data gap affected closer to a quarter of the forested sites. Spruce trees are slower to
establish, and this may have biased our results; however, we did observe some spruce seedling
recruitment in most plots with a pre-fire spruce presence. By converting our measurements of post-fire
seedling density to compositional log-ratio data, and calculating shifts in the ranked dominance of
species, we captured changes in post-fire tree species composition and normalized the highly skewed
seedling density data. This method does not permit us to assess structural changes that may have
occurred; for example, whether post-fire forest density increased or decreased and whether these
outcomes vary by species. Although we did characterize some variability in seedling density by
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topoedaphic vegetation communities and fire frequencies, future research could combine ranked
dominance shift data with seedling and pre-fire stem densities to directly capture regeneration failures
and structural changes, in addition to the shifts in proportional dominance measured here.

At the time of burning there was an ongoing multi-year drought in the study area, which continued
into 2015, and may have affected the post-fire recruitment of seedlings, as well as their growth [95,111].
The drought conditions may also have affected burn severity of the fires, as fire weather is significantly
related to overstory and understory combustion in boreal forests [28,112]. The identified impacts of
fire on understory vegetation and seedling recruitment may have been influenced by these pre- and
post-fire environmental conditions and therefore, the observed vegetation assemblies and ecological
outcomes may be most representative of severe fire years. Sampling in wildfires that occurred in
different years would capture a wider range of pre- and post-fire climates.

5. Conclusions

In this study, the primary determinants of post-fire outcomes for boreal forest vegetation
communities and shifts in tree species dominance were pre-fire forests, topoedaphic context and
climate. Burn severity, fire history, and post-fire soils were significant secondary drivers. Burn severity
and fire history did not significantly explain the variability in understory vegetation communities;
however, post-fire soils were related to understory vegetation community dissimilarities. Furthermore,
burn severity was significantly related to understory vascular plant diversity. Severely burned
vegetation communities tended to have lower understory species richness and diversity, as did very
wet sites, which typically burned at low levels of severity. Post-fire shifts in tree species dominance,
as characterized by differences in ranked proportional compositions, were significantly related to
fire history and burn severity, but this effect was less important than pre-fire and climatological
conditions. The overriding control of fire-independent drivers on post-fire vegetation may provide
some resilience to forests in the face of climate change, as they are less susceptible to fire-mediated
type conversions due to site moisture and pre-fire forest drivers. Despite this potential for resilience,
changes to forest vegetation community compositions due to altered climates are occurring, and burn
severity and fire history were important explanatory variables in our models of shifts in tree species
dominance. In a forest with potentially increasing frequency, size, and severity of fires, the long-term
resistance to change conferred by topoedaphic and forest controls may be overwhelmed by the direct
and indirect effects of wildfires, which offer pathways to change. Burned sites will also experience
altered post-fire climates, with potential increases in moisture stress and droughts which would exert
additional pressures on initial post-fire vegetation. Ongoing shifts in the dominance of tree species
are the result of both climate and fire. If these disturbances continue to increase, the observed shifts
towards early-seral species such as jack pine and trembling aspen could produce large-scale changes in
vegetation dominance that may lead to substantial—and perhaps unanticipated—ecological changes.
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Appendix A. Additional Analyses and Figures

 

Figure A1. Plot layouts used for field sampling: (a) 30 × 30 m square plot one year post-fire; and
(b) 35 × 2 m belt transect for re-measurement of seedlings three years post-fire. Plot layouts and
symbols are not to scale.

Figure A2. Descriptive plots of observed burn severity, fire history, and topoedaphic vegetation classes
in relation to Shannon diversity index and seedling density within sampled plots. Patterns of burn
severity within topoedaphic vegetation classes of open wetland (OW), treed wetland (TW), upland
mixedwood (MW), upland jack pine (JP), and upland black or white spruce (US) are presented in (a)
boxplots of surface burn severity index (BSI), and (b) boxplots of canopy fire severity index (CFSI).
Letters associated with boxplots indicate significant differences (α = 0.05) in a Tukey test of least-squares
means. Shannon index is shown as a function of BSI (c) and time since last fire (TSLF); (d), and the
natural logarithm of stem density of seedlings is also shown as a function of BSI (e) and TSLF (f).
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Figure A3. Pre-fire overstory (top) and post-fire (bottom) densities of trees (stems per ha−1) by species
at 51 sampled field sites. Sites are ordered from left to right by increasing pre-fire stem density.
Non-forested open wetland sites are indicated with a letter O above the pre-fire stem density. Open
wetlands and all sites indicated with a black dot below the post-fire density were sampled one year
post-fire only. All other sites represent seedling data from three years post-fire.

Figure A4. Cont.
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Figure A4. Increases and decreases in post-fire dominance of (a) jack pine, (b) trembling aspen, (c) black
spruce, and (d) white spruce, within topoedaphic vegetation classes of open wetland (OW; blue), treed
wetland (TW; green), upland mixedwood (MW; yellow), upland jack pine (JP; orange), and upland
black or white spruce (US; red). Values of 0 indicate no change in dominance, whereas values greater
than 0 indicate sites with an increase in dominance post-fire, and those sites that experienced a
decline of the species of interest in the post-fire cohort have negative values. Letters above or below
boxplots indicate significant differences in least-squares means (α = 0.05), with a post-hoc Tukey test
for multiple comparisons.

Table A1. Descriptive multivariable linear mixed-effects models explaining post-fire organic soil depth
and soil chemical properties as a function of topoedaphic vegetation classes (TVC) and observed surface
burn severity, represented by the Burn Severity Index (BSI). The statistical significance of independent
predictor variables in explaining soil properties was determined using an ANOVA considering Type II
sums of squares. Significance of independent variables to soil properties is signified as follows:
*** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05. Some interactions are nearly significant (α = 0.1).

Soil
Property

Multivariable Linear
Mixed-Effects Model

Independent
Variable

Degrees of
Freedom

Sums of
Squares

F p

Organic Soil
Depth (cm)

OSD = TVC + BSI +
(TVC × BSI)|Fire Name

TVC 4 91.50 10.10 *** < 0.001
BSI 1 30.68 13.54 *** < 0.001

TVC × BSI 4 8.80 0.97 0.43

Total
Nitrogen (%)

TN = TVC + BSI +
(TVC × BSI)|Fire Name

TVC 4 2.34 8.50 *** < 0.001
BSI 1 0.81 11.77 ** 0.001

TVC × BSI 4 0.26 0.96 0.44

pH pH = TVC + BSI +
(TVC × BSI)|Fire Name

TVC 4 0.21 0.06 0.99
BSI 1 002 0.02 0.88

TVC × BSI 4 0.85 0.25 0.91

Electrical
Conductivity

EC = TVC + BSI +
(TVC × BSI)|Fire Name

TVC 4 3.16 2.08 0.10
BSI 1 0.32 0.84 0.36

TVC × BSI 4 0.59 0.39 0.82

Total Carbon
(%)

TC = TVC + BSI +
(TVC × BSI)|Fire Name

TVC 4 1697.20 13.20 *** < 0.001
BSI 1 382.75 11.90 ** 0.001

TVC × BSI 4 91.91 0.71 0.59

Sodium
Na = TVC + BSI +

(TVC × BSI)|Fire Name

TVC 4 121,344 6.20 *** < 0.001
BSI 1 26,453 5.41 * 0.02

TVC × BSI 4 41,222 2.11 0.09

Potassium
K = TVC + BSI +

(TVC × BSI)|Fire Name

TVC 4 59,853 0.60 0.67
BSI 1 35,436 1.41 0.24

TVC × BSI 4 226,446 2.26 0.08

Calcium † Ca = TVC + BSI +
(TVC × BSI)|Fire Name

TVC 4 2,000,913,013 4.00 ** 0.007
BSI 1 672,020,248 5.37 * 0.02

TVC × BSI 4 656,747,510 1.31 0.28

Magnesium Mg = TVC + BSI +
(TVC × BSI)|Fire Name

TVC 4 23,579,801 5.54 *** 0.001
BSI 1 5,452,454 5.13 * 0.03

TVC × BSI 4 6,042,409 1.42 0.25
† Calculated using Kenward–Roger approximation of degrees of freedom, due to the mathematical failure of
Satterthwaite’s approximation.
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Abstract: The 2002 Hayman Fire burned with mixed-severity across a 400-ha dry conifer study site in
Colorado, USA, where overstory tree and surface cover attributes had been recently measured on
20 0.1-ha permanent plots. We remeasured these plots repeatedly during the first post-fire decade
to examine how the attributes changed through time and whether changes were influenced by fire
severity. We found that most attributes were temporally dynamic and that fire severity shaped
their dynamics. For example, low-severity plots experienced a modest reduction in live overstory
density due to both immediate and delayed tree mortality, and no change in live overstory basal
area through time; in contrast, high-severity plots experienced an immediate and total loss of live
overstory density and basal area. Large snag density in low-severity plots did not vary temporally
because snag recruitment balanced snag loss; however, in high-severity plots large snag density
increased markedly immediately post-fire and then declined by about half by post-fire year ten as
snags fell. Mineral soil cover increased modestly immediately post-fire in low-severity plots and
substantially immediately post-fire in high-severity plots, but changed little in ensuing years for
either severity class. By incorporating pre-fire and repeatedly-measured post-fire data for a range
of severities, our study uniquely contributes to the current understanding of wildfire effects in dry
conifer forests and should be of interest to managers, researchers, and others.

Keywords: Colorado; USA; delayed tree mortality; Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco);
Hayman Fire; ponderosa pine (Pinus ponderosa Lawson & C. Lawson); snag; surface cover

1. Introduction

Wildfires have long regulated dry conifer forests of the western USA. While wildfire activity
for these forests was diminished relative to historical levels for most of the 20th century due to fire
suppression, logging, grazing, and other land-use practices [1–3], in recent decades it has increased
markedly [4–6]. The recent increase has likewise been borne out of past land-use practices, which
allowed forests to become denser and more homogeneous [1,3,7], as well as out of a changing
climate [4–6]. The resurgence of wildfires in western dry conifer forests thus makes it important
that managers, researchers, and others thoroughly understand how forests are directly affected by fire
and how they subsequently develop through time.

For forests, the direct effect of fire on overstory trees and organic surface material is commonly
captured by the term “fire severity” [8]. Many of the recent wildfires in dry conifer forests of the west
burned with uncharacteristic high-severity crown fires across fair portions of their area, creating patches
where all or nearly all trees were killed and where most of the tree crown and surface organic material
were consumed [9–13]. Yet even the most severe recent wildfires typically burned with a mix of
severities, with low- to moderate-severity patches also comprising much of their area [9–13]. In these
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patches, where fire severity is generally more in line with historical fire severity [1–3], some or even
many of the trees survived burning and tree crown and surface organic material were at most only
partially consumed.

Overstory structure can change dramatically in the years after wildfire, with fire severity
influencing the magnitude and timing of temporal change. Few studies have quantified time- and
severity-related overstory dynamics simultaneously, however, with most focusing instead on either
the effects of time in high-severity areas or on the effects of severity for one point in time. Low- and
moderate-severity areas can experience additional declines in live tree abundance due to delayed
mortality, particularly if trees were badly fire-injured [14–16]. The abundance of dead trees, or snags,
can probably also be temporally variable, depending on the degree and timing of snag recruitment
relative to snag fall. High-severity areas, on the other hand, experience complete or nearly complete
tree mortality due to fire, so mortality in subsequent years is nominal. The transformation of all or
nearly all live trees to snags can dramatically increase snag abundance in the short-term, but snag
abundance can decline through time as they fall [17–19]. These variations in post-fire overstory
structure across space and time can in turn have important implications for tree regeneration [15,20,21]
and wildlife use [22–24], among other things.

The amount and type of organic material covering the mineral soil surface following wildfire
influences hillslope runoff and erosion [25–27], fire behavior and severity during a reburn [28–30],
and a host of other ecological properties and processes. As with post-fire overstory conditions, post-fire
surface cover conditions can vary considerably with both time since fire and fire severity, but few
holistic examinations of these factors have been conducted. Modest amounts of litter, duff, and wood
can accumulate on the ground in low- and moderate-severity areas as scorched needles and dead tree
branches and boles fall, augmenting unconsumed pre-fire material [15,31]. If light, water, and nutrient
availability were boosted enough in low- and moderate-severity areas to promote understory plant
growth, then herbs and shrubs can also modestly increase [31,32]. In contrast, in high-severity areas,
the amount of litter and duff can remain minimal in ensuing years due to a lack of foliage in the crowns
of overstory snags [15,31,33]. The amount of wood in high-severity areas, meanwhile, can increase
substantially as the numerous overstory snags break and fall [15,18,33], and herbs and shrubs can be
substantially promoted due to the greatly elevated levels of light, water, and nutrients [31–33].

Wildfires were largely excluded from dry conifer forests of the Colorado Front Range for much
of the 20th century, but they have become increasingly frequent as of late [34]. The largest recent fire,
the 2002 Hayman Fire, burned more than 52,000 ha of forest comprised predominately of ponderosa
pine (Pinus ponderosa Lawson & C. Lawson) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) [9].
The Hayman Fire also burned a 400-ha study site where overstory tree, surface cover, and other
measurements had been made a few years prior in 20 0.1-ha permanent plots [35–37]. While much of
the area within the Hayman Fire footprint burned as an uncharacteristically severe crown fire [9,38],
our study site and study plots burned more heterogeneously [32,39,40]. We took advantage of this
serendipitous opportunity by remeasuring the plots repeatedly in the first post-fire decade [32,39,40].
Here, we report on how a variety of live overstory structure, dead overstory structure, and surface
cover attributes changed through time as a result of fire, and whether fire severity influenced these
changes. By incorporating pre-fire and repeatedly-measured post-fire data for a gradient of severities,
our study contributes a unique perspective to the current understanding of wildfire effects in western
dry conifer forests, and should be of interest to the management, scientific, and other communities.

2. Materials and Methods

2.1. Study Site and Study Plots

Our 400-ha study site is approximately 60 km southwest of Denver, Colorado, on Pike National
Forest lands within the Hayman Fire perimeter (39.14◦ N, 105.24◦ W; Figure 1) [35–37]. Elevations
range from about 2300 to 2500 m. The climate is warm and dry, with average January and July
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temperatures of about 4 ◦C and 17 ◦C, respectively, and average annual precipitation of about 38 cm [41].
The poorly-developed, gravelly soils are derived from Pikes Peak granite [42]. Vegetation at the site is
characteristic of Front Range dry conifer forests. Overstories are dominated primarily by ponderosa
pine and secondarily by Douglas-fir [35]. Understories are diverse communities of graminoids, forbs,
and relatively low-statured shrubs [36,37]. The site’s disturbance history is also characteristic of Front
Range dry conifer forests. Prior to Euro-American settlement in the mid to late 1800s, the wildfire
regime was one of mixed-severity, with fire intervals for individual stands varying from very short
(<10 years) to very long (>100 years), and fire severity varying from low to high [43]. The site
experienced very few wildfires beginning in the late 1800s (that is, until the 2002 Hayman Fire), likely
due in large part to the fire suppression policy that began in the early 1900s [43]. Logging and grazing
are thought to have been rampant at the site from the late 1800s and early 1900s, and also may have
contributed to the general lack of wildfires during this period [35–37,43]. To our knowledge, logging
and grazing have not occurred since this time.

Figure 1. Location of the 400-ha study site within the Hayman Fire, Colorado, USA (left). Location and
severity of the 20 0.1-ha plots within the study site, with post-fire aerial imagery in the background (right).

In 1996–1997, 20 randomly-located, upland, 0.1 ha (20 × 50 m) permanent plots were established
at the study site (Figure 1) [35–37]. The plots subsequently burned in the Hayman Fire. This fire was
human-ignited on June 8, 2002 [9]. Low fuel moistures, heavy and continuous fuel loads, and strong
winds enabled the fire to burn approximately 24,000 ha on June 9, largely as a high-severity crown
fire. The two plots in the northwest corner of our study site are thought to have been impacted by
the fire on this day. While historical fires sometimes contained a high-severity component, the size
of the high-severity patches created by the Hayman Fire on June 9 appear to be unprecedented over
at least the last four centuries [38,43,44]. Less extreme weather conditions arrived on June 10 and
persisted for much of the next three weeks, allowing the fire to burn somewhat more heterogeneously.
The remaining 18 plots are thought to have burned early during this period. The Hayman Fire
was contained on July 2, after having impacted more than 52,000 ha. In 2003, one year post-fire,
we successfully reestablished all original plots [32,39,40]. Plot locations were precisely identified using
pre-fire data such as plot coordinates and overstory tree stem maps, as well as from finding the remains
of plot corner stakes and tree tags.

2.2. Data Collection

Overstory tree data in the 20 plots were first collected in 1996–1997 [35]. At this time, each tree
taller than breast height (1.4 m) was tagged with a numbered aluminum tag and its location was
mapped with a survey laser. Diameter at breast height (DBH), species, and live or dead status were also
recorded for each tree. In 2003, one year post-fire, we relocated all pre-fire overstory trees, retagged
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them as necessary, and noted their status as either live, dead and standing, dead and downed, or dead
and missing [32,39,40]. Dead and downed trees were those that were either uprooted or broken below
breast height. Dead and missing trees were those that could not be relocated; these were typically
trees that were dead before the fire and that were likely incinerated. Also in 2003, we assessed direct
fire effects on trees by visually estimating the percent of the pre-fire live crown volume that was
undamaged, scorched, and consumed. Status of all trees was recorded again in 2004, 2005, 2006, 2007,
and 2012. DBH was measured again in 2004 and 2012. A small number of trees, mostly quaking aspen
(Populus tremuloides Michx.), grew into the overstory of some plots during the course of this study.
These trees had high turnover and were not tracked.

Surface cover data in the 20 plots were likewise first collected in 1996–1997, as part of an understory
plant community survey [36,37]. Cover was visually estimated to the nearest percent within ten
systematically-placed 1-m2 subplots per plot, with separate estimates made for mineral soil, rock,
combined litter and duff, wood (including stumps and boles of standing dead trees), and individual
live herb and shrub species. Total cover could therefore exceed 100% due to overlap among these
elements. Measurements were repeated in 2003, 2004, 2005, 2006, 2007, and 2012 [32,39,40]. In 2003,
we also assessed direct fire effects on organic surface material by noting the degree of scorch and
consumption for pre-fire litter, duff, and wood in the subplots.

2.3. Data Calculations and Analyses

We used our overstory tree and surface cover data to produce plot-level estimates for ten attributes.
Attributes describing live overstory structure were (1) density (stems ha−1) and (2) basal area (m2 ha−1).
Because DBH measurements were only taken in 1996–1997, 2004, and 2012, we estimated the DBH of
live trees for other study years prior to calculating basal area. For trees that were alive during the entire
post-fire period, we accomplished this by determining the tree’s average annual DBH growth from
2004 to 2012 and linearly adjusting 2004 DBH values as necessary. For trees that died between 2004 and
2012, we calculated DBH assuming the average annual DBH growth rate for all trees alive during the
entire post-fire period (0.1 cm year−1). Attributes describing dead overstory structure were (3) density
(stems ha−1) and (4) persistence (percent standing) of large (>20 cm DBH) snags. We focused on large
snags (sensu [45]) because they provide the most valuable wildlife habitat [22,46,47]. For persistence
calculations, we only included trees that were alive pre-fire and dead in the first post-fire year, such that
time since fire was synonymous with time since death. Persistence was the percent of these trees
standing in each year. Surface cover attributes were percent (5) mineral soil; (6) rock; (7) litter and duff;
(8) wood; (9) herb; and (10) shrub cover. The first four attributes were calculated by averaging cover
across the ten subplots per plot. The latter two attributes were calculated by summing the cover of all
relevant species in each subplot and then averaging across subplots.

We classified each plot as burning with low-, moderate-, or high-severity by utilizing our direct
fire effects data [32,39,40]. We categorized plots where <50% of the overstory trees were killed and
where tree crown and organic surface material consumption were generally slight as burning with
low-severity (i.e., burned by light surface fire; ten plots). Moderate-severity plots experienced >50%
overstory mortality and had modest tree crown and organic surface material consumption (i.e., burned
by moderate to severe surface fire; six plots). High-severity plots experienced 100% overstory mortality
and complete or nearly complete tree crown and organic surface material consumption (i.e., burned by
severe crown fire; four plots).

We used generalized linear mixed models in SAS 9.4 (SAS Institute Inc., Cary, NC, USA) to
examine how the ten attributes changed through time, and how temporal changes were influenced by
fire severity. We modeled each against fire severity, time since fire, and fire severity × time since fire.
Fire severity had three levels (low, moderate, and high) and time since fire had seven levels (pre-fire
and one, two, three, four, five, and ten years post-fire). The appropriate distribution and link function
for the attributes were defined in the models (e.g., a negative binomial distribution with a logarithmic
link function for live overstory density and large snag density, and a beta distribution with a logit
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link function for all surface cover attributes). Models accounted for the repeated measurement of
plots through time using the spatial power covariance structure. This structure was the one best able
to account for the higher degree of correlation between measurements closer in time than between
measurements further apart in time and for the unevenly-spaced time intervals between measurements.
For models where severity or time was significant, we examined pairwise differences between
levels using least squares means and Tukey-Kramer p-value adjustments for multiple comparisons.
For models where severity × time was significant, we also examined pairwise differences using
least squares means and Tukey-Kramer adjustments, but we “sliced” the interaction term to limit
comparisons to those of levels of time within levels of severity and to those of levels of severity within
levels of time. Significance was assessed at α = 0.050. We note that a similar analysis of shrub cover
was conducted by Abella and Fornwalt [32], but it differs from ours in that they also incorporated data
from unburned plots and they employed a slightly different model structure.

3. Results

3.1. Live Overstory Structure

Live overstory density varied with fire severity, time since fire, and fire severity × time since
fire, indicating that the severity classes experienced different temporal density patterns (Figure 2).
Before the Hayman Fire, live overstory density averaged 572 stems ha−1 across all 20 plots, with no
differences among fire severity classes. Trees were generally more abundant in the smaller than the
larger size classes pre-fire, with 34% of trees in the 0–10 cm DBH class, 25% in the 10–20 cm DBH
class, 24% in the 20–30 cm DBH class, and 17% in the 30+ cm DBH class. Ponderosa pine constituted
61% of pre-fire trees and Douglas-fir constituted 36%. Live overstory density in low-severity plots
decreased 21% in post-fire year one, to an average of 371 stems ha−1. In post-fire year two, density
in low-severity plots decreased an additional 5% due to delayed tree mortality. Density continued to
decrease non-significantly thereafter, such that by post-fire year ten, it had been reduced by a total of
34%, to an average of 308 stems ha−1. Trees with the smallest DBHs experienced the greatest overall
mortality, with 60% of 0–10 cm DBH trees killed, 35% of 10–20 cm DBH trees killed, 21% of 20–30 DBH
trees killed, and 24% of 30+ cm DBH trees killed (Figure 3). Moreover, Douglas-fir experienced greater
overall mortality than ponderosa pine, with 39% of the former and 25% of the latter killed. Meanwhile,
the post-fire year one decrease in live overstory density was more substantial in moderate-severity
plots; in these plots, density dropped 68%, to an average of 260 stems ha−1. Density decreased an
additional 5% in post-fire year two and 2% in post-fire year three. By the time a decade had passed
since the Hayman Fire, mean live overstory density in moderate-severity plots averaged 177 stems
ha−1, 79% lower than pre-fire. Overall, 93% of trees in the 0–10 cm DBH class were dead, while 82% of
trees in the 10–20 cm DBH class, 63% of trees in the 20–30 cm DBH class, and 50% of the trees in the
30+ cm DBH class were dead. Overall mortality was 86% for Douglas-fir and 66% for ponderosa pine.
In high-severity plots, all pre-fire live trees were dead in the first post-fire year.
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Figure 2. Live overstory (trees > 1.4 m tall) density (top) and basal area (bottom) with respect to
fire severity and time since fire. Boxes represent 25th, 50th, and 75th percentiles, whiskers represent
10th and 90th percentiles, and dotted lines represent means. The p-values are model results for the
effects of fire severity (F), time since fire (T), and their interaction (F × T). Within fire severity classes,
letters separate means though time; NS indicates that means did not differ.

Figure 3. Mean percent incremental post-fire mortality of pre-fire live overstory (>1.4 m tall) trees,
by pre-fire diameter and fire severity (top) and by species and fire severity (bottom).

Live overstory basal area also varied with fire severity, time since fire, and their interaction
(Figure 2). Live overstory basal area prior to the fire did not differ among severity classes, averaging
17 m2 ha−1 across all plots. Basal area was reduced by fire in moderate- and high-severity plots but
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not in low-severity plots. In moderate-severity plots, basal area declined 41% immediately following
fire, to an average of 11 m2 ha−1 in post-fire year one. An additional small decline was also observed
in the third post-fire year due to delayed tree mortality. By the end of the study, basal area in
moderate-severity plots averaged 9 m2 ha−1, 53% lower than pre-fire basal area. In high-severity plots,
basal area declined to 0 m2 ha−1 in post-fire year one, where it remained.

3.2. Dead Overstory Structure

Time since fire was a strong predictor of whether large snags created by the Hayman Fire (i.e.,
trees that were alive before the fire and dead in post-fire year one) were standing (Figure 4). On average,
>90% of the large fire-created snags remained standing through post-fire year three. By post-fire year
five, an average of 76% of the large fire-created snags were standing; by post-fire year ten, 43% were
standing. Moreover, ten years post-fire, an average of 67% of the large fire-created Douglas-fir snags
remained standing, in contrast to 15% of the ponderosa pine snags.

Time since fire was also a strong predictor of large snag density, as were fire severity and
severity × time (Figure 5). Prior to the fire, large snag density averaged 15 stems ha−1, with no
differences among the severity classes. Following the fire, snag density did not deviate from pre-fire
levels in low-severity plots. In contrast, moderate- and high-severity plots saw a sustained post-fire
increase in snag density over pre-fire levels for the first five years; the magnitude of this increase was
9-fold in moderate-severity plots and 11-fold in high-severity plots. By post-fire year ten, snag density
in moderate-severity plots had returned to pre-fire levels. Snag density also declined by post-fire year
ten in high-severity plots but was still 6-fold greater than pre-fire.

Figure 4. Persistence of large (>20 cm diameter at breast height (DBH)) fire-created snags with respect
to time since fire. Boxes represent 25th, 50th, and 75th percentiles, whiskers represent 10th and 90th
percentiles, and dotted lines represent means. The p-values are model results for the effects of fire
severity (F), time since fire (T), and their interaction (F × T). Letters separate means though time.
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Figure 5. Large (>20 cm DBH) snag density with respect to fire severity and time since fire.
Boxes represent 25th, 50th, and 75th percentiles, whiskers represent 10th and 90th percentiles,
and dotted lines represent means. The p-values are model results for the effects of fire severity
(F), time since fire (T), and their interaction (F × T). Letters separate means though time within severity
classes; NS indicates that means did not differ.

3.3. Surface Cover

The Hayman Fire caused an increase in mineral soil cover, but the magnitude of the increase was
severity-dependent, and to a lesser extent, time-dependent (Figure 6). Relative to pre-fire conditions,
mineral soil cover increased 43% in low-severity plots in post-fire year one, while it increased 125% in
moderate-severity plots. Mineral soil cover in high-severity plots increased >300% in post-fire year
one, with mineral soil exposed across 86% of the ground surface on average. Mineral soil cover in low-
and moderate-severity plots did not change in ensuing years relative to post-fire year one conditions
but declined somewhat in high-severity plots.

The combined cover of litter and duff was likewise shaped by the interaction of fire severity and
time since fire (Figure 6). For all severity classes, litter and duff covered 50% or more of the ground
surface prior to the fire. Litter and duff cover were relatively unaffected by low-severity burning for
the entire post-fire decade. Moderate-severity burning caused a sustained decrease in litter and duff
cover that ranged from 34–45% through time, although interestingly this decrease did not manifest
until the second post-fire year. High-severity burning caused an immediate and sustained decrease in
litter and duff cover that ranged from 67–78% through time.

Wood cover was temporally dynamic, but these dynamics were not dependent on fire severity
(Figure 6). Burning did not have an immediate effect on wood cover; average pre-fire wood cover was
5%, on par with the average post-fire year one cover of 3%. Wood cover gradually increased during
the post-fire observation period but did not exceed pre-fire levels until the tenth post-fire year, when it
averaged nearly 10%.

Finally, herb cover varied with fire severity, time since fire, and their interaction, while shrub cover
varied solely with time (Figure 6). In low-severity plots, pre-fire herb cover was comparable to post-fire
herb cover for all post-fire years, although some differences among post-fire years were evident.
Across all years, herb cover averaged 14% in low-severity plots. In moderate- and high-severity plots,
pre-fire herb cover was comparable to post-fire herb cover for the first four post-fire years, averaging
14% in the former and 12% in the latter across these years. Herb cover in moderate-severity plots
increased over pre-fire levels in post-fire year five (to an average of 31%), while in high-severity plots
it increased over pre-fire levels in post-fire years five (to an average of 37%) and ten (to an average
of 28%). As Abella and Fornwalt [32] similarly show, shrub cover was reduced 93% immediately
following burning, from an average of 9% pre-fire to 1% in post-fire year one. Shrub cover gradually
increased in later years but always remained below pre-fire levels, peaking at 4% ten years post-fire.
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Figure 6. Mineral soil, rock, litter and duff, wood, herb, and shrub cover (top to bottom) with respect
to fire severity and time since fire. Boxes represent 25th, 50th, and 75th percentiles, whiskers represent
10th and 90th percentiles, and dotted lines represent means. The p-values are model results for the
effects of fire severity (F), time since fire (T), and their interaction (F × T). For attributes where F × T
was significant, letters separate means though time within severity classes.
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4. Discussion

Dry conifer forests of the western USA have experienced a recent increase in wildfire activity [4–6],
making it important that the direct and longer-term consequences of wildfires be thoroughly
understood. Our unique study utilized pre-fire and repeatedly-collected post-fire data to examine
how one recent wildfire, Colorado’s 2002 Hayman Fire, affected several live overstory structure,
dead overstory structure, and surface cover attributes over the first post-fire decade, and whether
temporal patterns were contingent on fire severity. We found that nearly all attributes changed through
time as a result of the fire. Moreover, we found that for the majority of attributes, the magnitude and
timing of changes depended on the severity with which the fire burned.

4.1. Live Overstory Structure

The Hayman Fire’s net effect on live overstory structure was wide-ranging at our study site.
Low-severity areas underwent little structural change. Density was reduced by about a third by the
tenth post-fire year, but because mortality was concentrated in the 0–10 cm DBH class, basal area
was not reduced at all. These patterns resembled those documented for other western dry conifer
forests experiencing low-severity wildfire [15,31], as well as for forests experiencing prescribed fire
treatments and light hand and mechanical thinning treatments [48–50]. More substantial change
occurred in moderate-severity areas, with density reduced by over 75% and basal area reduced by
over 50% by the tenth post-fire year. The vast majority of trees in both the 0–10 and the 10–20 cm
DBH classes were killed, as were the vast majority of Douglas-fir trees. The changes we observed
in moderate-severity areas were in line with those brought about elsewhere by moderate-severity
wildfire [15,31], and by aggressive hand and mechanical thinning treatments [48,50,51]. Meanwhile,
high-severity areas experienced the greatest change in live overstory structure; in these areas, burning
transformed dry conifer forests into herb-dominated openings devoid of overstory trees, just as it has
done across the west [15,18,31].

Many managers, researchers, and others are interested in examining to what extent recent wildfires
are advancing restoration goals in overly-dense, fire-excluded western dry conifer forests [31,52–55].
Restoration treatments in these forests primarily aim to increase their resilience to future burning
(sensu [56]) by creating open and heterogeneous overstory conditions that are unlikely to carry
large-scale high-severity crown fire [34,57,58]. Restoration objectives for a given area are usually
informed by the range of conditions that occurred there historically (i.e., the historical range of
variability (HRV)), as they represent the fire-resilient conditions that existed prior to post-settlement
land-use practices like fire suppression, logging, and grazing [34,57,58]. Regarding live overstory
structure, Battaglia et al. [7] estimated that historical density in dry conifer forests of the Front Range
ranged from about 62 to 214 stems ha−1 and that historical basal area ranged from about 5 to 11 m2 ha−1.
Comparing these values with our post-fire year ten values suggests that live overstory structure was
generally restored to within HRV in moderate-severity portions of our study site. In contrast, post-fire
live overstory structure in low-severity areas generally remained above HRV, while in high-severity
areas it was well below HRV. That moderate-severity burning was most effective at moving structural
attributes to within HRV has also been documented for other dry conifer forests in the west [15,31,54].

Repeatedly assessing the status of all pre-fire overstory trees in our low- and moderate-severity
plots allowed us to quantify delayed tree mortality during the first post-fire decade. Similar to
others [14–16], we detected small but significant reductions in live overstory structural attributes
due to delayed mortality in post-fire year two in low-severity areas and in post-fire years two and
three in moderate-severity areas. We suspect that this delayed mortality was primarily driven by the
degree of fire-caused crown and bole injury [16,59,60] and exacerbated overall by the below-average
annual precipitation conditions that began in 2000 and persisted for the entire post-fire sampling
period [32,61]. We do not think that insects were also a primary driver of delayed mortality, as others
have found [16,59,60], because we did not observe many signs of insect activity. While we also
observed mortality in the other post-fire years, it was not substantial enough to elicit changes in live
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overstory structure. We anticipate that mortality in future years and decades will likewise have a
negligible impact on structure in the absence of additional disturbance.

We anticipate that future live overstory structure at our study site will, however, be strongly
shaped by patterns of conifer regeneration. We did not quantify conifer regeneration, but several
authors have quantified it elsewhere in areas affected by the Hayman Fire and other Front Range
wildfires [20,62–65]. Collectively, they found that low- and moderate-severity areas generally had
some or even ample conifer regeneration, while high-severity areas generally had little or even no
regeneration, particularly where surviving conifers were distant. This is because ponderosa pine,
Douglas-fir, and most other co-occurring conifers rely on seeds from nearby surviving overstory trees to
regenerate after fire. The regeneration patterns documented by these authors suggest that live overstory
structure may ultimately come to resemble that found prior to the fire in low- and moderate-severity
portions of our site, assuming that they are not further disturbed. However, in high-severity portions
of our site, a return to pre-fire conditions is unlikely to occur naturally for centuries, if at all.

4.2. Dead Overstory Structure

Large snags provide nesting, foraging, and roosting habitat for numerous species of birds, bats,
and other wildlife, but they can be rare in undisturbed western dry conifer forests [46,47,66]. Our results
illustrate the striking influence that fire severity and time since fire can have on large snag structure,
via their influence on snag recruitment and snag persistence. Low-severity areas did not experience a
post-fire increase in large snag density. This stasis was not because such areas failed to recruit new
large snags post-fire; rather, it was because recruitment was balanced by loss through incineration
and snag fall. In contrast, large snag density increased following fire in moderate- and high-severity
areas, at least temporarily. Large snag density in these areas peaked in the first post-fire year, driven by
high rates of recruitment and low rates of loss in that year relative to others. By ten years post-fire,
large snag densities had returned to pre-fire levels in moderate-severity areas. In high-severity areas,
large snag densities were still elevated but nonetheless were in decline. We expect that densities
in high-severity areas will return to pre-fire levels in upcoming years as the bulk of the remaining
snags, most of which are Douglas-fir, fall [18,19,33]. We therefore also expect that any increased use by
wildlife species dependent on large snags will be transient in our study site [67].

4.3. Surface Cover

Litter and duff typically blanket most of the ground surface in dry conifer forests of the
west [21,51,68], and prior to the Hayman Fire, our study site was no exception. Although the Hayman
Fire consumed some of the pre-fire litter and duff in low-severity areas, it did not alter their cover
in the first post-fire year relative to pre-fire levels. This was primarily due to the rapid casting of
scorched needles, the cover of which augmented residual litter and duff cover. Cover from scorched
needle cast also augmented residual litter and duff cover in moderate-severity areas one year following
fire. A different scenario unfolded in high-severity areas. Here the Hayman Fire consumed nearly all
pre-fire litter and duff, and because it also consumed nearly all needles in the tree crowns, scorched
needle cast contributed negligible new cover in the first post-fire year. Moreover, litter and duff cover
in high-severity areas did not change in subsequent years. We think that litter and duff cover in
high-severity areas will begin to show signs of recovery soon due to the accumulation of sloughing
bark and detached herbaceous material, the most likely sources of new material [18,19,33]. However,
pre-fire levels are unlikely to be attained for decades.

Several studies have examined how fire severity and time since fire influence the amount of wood
in burned western dry conifer forests [15,18,19,31,33], although to our knowledge, only Keyser et al. [15]
also examined these factors simultaneously. These latter authors found that substantial fine wood
(<7.6 cm diameter) and coarse wood (>7.6 cm diameter) biomass accumulated in areas that burned
with moderate- and high-severity, but not in areas that burned with low-severity, in the five years
following a South Dakota wildfire. We were therefore surprised to find that temporal wood cover
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trajectories also did not vary with fire severity at our study site. Like Keyser et al., however, we did
find that wood cover increased through the post-fire period; at our site, wood cover values ten years
post-fire were approximately double what they were pre-fire and triple what they were one year
post-fire. These increases undoubtedly reflect temporal snag fall dynamics, as discussed earlier, as well
as temporal snag break-up dynamics due to the shedding of twigs, branches, and upper boles [18,19,33].
Moreover, we expect that fire severity will begin to influence temporal wood cover trajectories in the
near future as the large number of snags still standing in high-severity areas continue to break apart
and fall.

Many herb and shrub species in western dry conifer forests are considered to be fire-adapted
due to their ability to rapidly establish following fire via sprouting or germinating from seeds [69].
Our herb cover results are consistent with this generalization; herb cover in the first post-fire year was
comparable with pre-fire cover for all severity classes. Moreover, in later post-fire years herb cover
more than doubled relative to pre-fire levels in moderate- and high-severity classes, highlighting the
ability of many herb species to also rapidly expand following fire and other disturbances so long as
overstory tree mortality is sufficient [31,40,70]. Herb cover appeared to more-or-less stabilize by the
last five years of our study, suggesting it had equilibrated with the new overstory conditions. Thus,
we predict that herb cover will probably not change appreciably in upcoming years. On the other hand,
our shrub cover results indicate that shrub cover failed to reach pre-fire levels by the tenth post-fire
year, regardless of fire severity (also see [32]). This is probably because kinnikinnick (Arctostaphylos
uva-ursi (L.) Spreng.), by far the most common shrub species at our site prior to the fire, sprouts poorly
following fire and does not establish readily from seeds [71]. It will likely take several more years for
shrubs, especially kinnikinnick, to recover from burning.

The above surface cover results have a host of ecological implications. For example, the amount
of litter, duff, wood, and other organic surface material affects fire behavior and fire effects during
a reburn [72]. The amount of coarse wood is often of particular concern, as it strongly influences
fire hazard and soil heating [28]. The relatively low wood cover values that we observed ten years
post-fire, coupled with relatively low coarse wood biomass values (average of 15 Mg ha−1 and range
of 0–48 Mg ha−1; P. Fornwalt unpublished data [73]), suggests that the amount of coarse wood
currently does not surpass recommended upper thresholds from either a fire hazard or soil heating
perspective [28]. However, it may surpass them in high-severity areas in future years as snags fall.

Despite post-fire increases in wood and herbs through time in high-severity portions of our
study site, exposed mineral soil was still abundant ten years after the Hayman Fire, averaging around
60% cover. High levels of mineral soil cover can persist for several years following high-severity
burning, particularly in relatively unproductive dry conifer forests like those studied here [26,74,75].
It should be noted that Robichaud et al. [74,75] also measured mineral soil cover in high-severity
portions of the Hayman Fire, and found that it averaged approximately 30% to 45% seven years
post-fire. The discrepancy between their values and ours may be partly due to measurement technique.
Whereas Robichaud et al. estimated mineral soil cover as the amount of soil that did not have wood,
herb, shrub, or other ground cover elements overlapping it, we estimated it as the amount of soil
that was visible, irrespective of other overlapping elements. Regardless, it is clear that the amount
of mineral soil cover remains greatly elevated in areas where the Hayman Fire burned most severely.
This in turn suggests that post-fire sediment production, which increases as mineral soil cover increases,
may also be greatly elevated in such areas [25–27]. Indeed, Rhoades et al. [76] found that drainage
basins experiencing extensive high-severity burning in the Hayman Fire had considerably more
streamwater-suspended sediment than unburned basins even into the fifth post-fire year, the last year
of their study; likewise, Robichaud et al. [74] reported that high-severity hillslopes in the Hayman
Fire were producing considerably more sediment than unburned hillslopes even into the seventh
post-fire year.
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4.4. Study Design Considerations

Our study design had some inescapable limitations owing to its opportunistic nature. Primary
among them is that sampling was restricted to one study site within the very large Hayman Fire,
constraining our ability to make inferences about the effects of fire severity and time since fire to
elsewhere in this wildfire or to other wildfires. Another limitation is that our sample sizes were low,
most notably for the high-severity class. This may have affected our ability to accurately characterize
overstory and surface cover attributes with respect to fire severity and time since fire, and to detect
changes in them due to these factors.

Yet our study design also allowed us to overcome some of the limitations inherent to many
wildfire studies. First, we were able to utilize pre-fire data to assess change due to wildfire. Wildfires
are unplanned events and pre-fire data are usually not available; thus, studies evaluating their effects
tend to collect data in both unburned and burned sites and assume that these sites were comparable
prior to burning [15,21,31]. Second, we were able to utilize repeatedly-measured data to investigate
a decade of post-fire temporal dynamics. Such dynamics are more commonly evaluated using a
chronosequence approach [18,19,33], which substitutes space for time and requires an assumption that
differences due to site are small relative to differences due to the passage of time.

5. Conclusions and Recommendations

Our results highlight the considerable variability that can result from recent wildfires in western
dry conifer forests due to gradients of both fire severity and time. We therefore suggest that
management actions, if undertaken for our Hayman Fire study site or for similar post-fire sites,
factor in how and when burning occurred. We also suggest that management actions aim to promote
ecologically-appropriate conditions that will be resilient to future wildfires and other disturbances,
such as the conditions found historically. Low-severity burning caused the least amount of change.
Areas burned in this manner experienced a small reduction in live overstory density, but not a
concurrent reduction in live overstory basal area. They also experienced no change in large snag
density and little to no change in surface cover attributes like mineral soil cover, litter and duff cover,
and herb cover. As in unburned areas, thinning or prescribed fire treatments could be implemented in
low-severity areas in the first few post-fire years or decades to move live overstory structure closer to
HRV [48,50,51]. Such treatments could also promote large snag and herb abundance. Moderate-severity
burning caused significant reductions in live stand density and basal area, generally moving areas
to within HRV; it also reduced the abundance of litter and duff and increased the abundance of
herbs. Prescribed fire could be utilized in moderate-severity areas in future decades to maintain these
ecological benefits [77]. Prescribed fire could also be used to create new large snags, as we found that
elevated post-fire snag levels in moderate-severity areas were relatively short-lived. High-severity
burning clearly caused the greatest ecological transformation. Notably, areas experiencing high-severity
burning underwent an immediate, total, and likely long-lived [15,20,21] reduction in live overstory
density and basal area. Tree planting could be conducted to hasten the return of a forested condition.
In high-severity areas, we observed a marked increase in large snag density immediately post-fire,
but it declined toward pre-fire levels by post-fire year ten due to snag fall. The bulk of the remaining
snags will probably fall in upcoming years [18,19,33], potentially creating undesirable coarse wood
loads [28]. Prescribed fire conducted during cool weather conditions could potentially be used before
this point is reached to remove some of the coarse wood while minimizing adverse effects [28]. Finally,
we also suggest that additional research be conducted in recently-burned western dry conifer forests so
that the direct and longer-term implications of wildfires, and their relationship to fire severity, can be
further clarified. Such research should help improve management practices for burned forests as they
become ever more prevalent across the west.
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Abstract: The influence of humans on the boreal forest has altered the temporal and spatial patterns of
wildfire activity through modification of the physical environment and through fire management for
the protection of human and economic values. Wildfires are actively suppressed in areas with higher
human influence, but, paradoxically, these areas have more numerous ignitions than low-impact
ones because of the high rates of human-ignited fires, especially during the springtime. The aim
of this study is to evaluate how humans have altered the temporal patterns of wildfire activity
in the Canadian boreal forest by comparing two adjacent areas of low and high human influence,
respectively: Wood Buffalo National Park (WBNP) and the Lower Athabasca Plains (LAP). We carried
out Singular Spectrum Analysis to identify trends and cycles in wildfires from 1970 to 2015 for the
two areas and examined their association with climate conditions. We found human influence to be
reflected in wildfire activity in multiple ways: (1) by dampening (i.e., for area burned)—and even
reversing (i.e., for the number of fires)—the increasing trends of fire activity usually associated with
drier and warmer conditions; (2) by shifting the peak of fire activity from the summer to the spring;
(3) by altering the fire-climate association; and (4) by exhibiting more recurrent (<8 year periodicities)
cyclical patterns of fire activity than WBNP (>9 years).

Keywords: Wildfire; Wildland fire; forest fire; boreal forest; fire management; human
influence; climate

1. Introduction

Wildfire is a critical phenomenon maintaining the ecological processes and integrity of the
Canadian boreal forest [1]. Although most fire regimes in Canada are characterized by infrequent,
high-intensity, extensive fires occurring mostly between May and August, there is great variability
in the components of the fire regime across spatial and temporal scales [2]. Understanding the
spatio-temporal patterns of fire occurrence and area burned is thus of foremost interest in Canada
in ecological, social, and economic terms. Wildland fires burn on average between 1 to 3 million ha
annually in Canada, affecting biological diversity [3,4], ecological services [5,6], and forest resources [7],
and require costly fire management strategies for infrastructure and community protection [8,9].

Fire activity, which is usually measured as the number of fires and the total area burned, is
driven by weather, climate [10,11], vegetation type [12,13], topography, human activities [8,14,15], and
complex interactions among these factors. Globally, wildfire dynamics have been altered by human
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activities for millennia through people setting (accidental or deliberate) ignitions that add to the ones
caused naturally by lightning, and by modifying the landscape through their activities, increasing
access to wildlands, and by altering the arrangement, continuity, amount, structure, and distribution
of fuels (i.e., flammable biomass). These changes, combined with climate change, have modified
the components of the fire regime: severity, likelihood, seasonality, size, frequency, and intensity of
fires [13,16–20].

Evidence suggests that fire suppression practices also have an important effect on the fire–weather
relationship, potentially undermining the reliability of weather-based predictions. Current ignition
rates in France, for example, are not as high as they were during the pre-suppression period, even under
similar weather conditions [21]. Fire regimes in Catalonia, Spain, cannot be efficiently predicted unless
fire suppression activities, in addition to climatic variables, are taken into account [22]. In the U.S.
Rocky Mountains, alternating periods of fire–climate relationship strength were reported for the past
century, suggesting that the interaction of climatic and non-climatic factors, such as fire suppression, is
highly complex and needs to be assessed to improve our understanding of fire activity [23].

Over the last century, fire management activities in the Canadian boreal forest have shaped fire
activity through aggressive suppression efforts and preventive measures. However, fire management
has not been uniform over space and time because deploying resources to prevent and attack fires
involves balancing potential economic, social, and ecological impacts, which can sometimes be
conflicting [24–27]. To better reflect regional priorities, most of Alberta’s forested land surface has been
divided into ten Wildfire Management Areas [28] that are managed by the provincial government.
Fire management in Alberta has increased the containment (i.e., extinguishment before they reach
2 ha in size) of fires from 75% in 1998 to 93% in 2015 [29]. Regardless of technological advances
and preventive measures, large fire events still occur in Alberta. Such is the case of the Horse River
fire in Fort McMurray, Alberta (spring 2016; 580,633 ha burned), which caused the evacuation of
80,000 people and was the costliest natural disaster in Canada, with an estimated damage worth of
CAN$10.9 billion [30,31]. In contrast, National Parks within Alberta are not included in the provincial
Wildfire Management Areas because the administration falls under federal jurisdiction. In these parks,
unlike the rest of forested Alberta, the ecological role of fires is favored and wildfires are only supressed
when they pose a risk to surrounding inhabited areas and areas containing rare natural resources [32].

Although it is well recognized that human influence can alter fire activity in the boreal forest, the
magnitude and direction of recent changes remain largely undocumented. The main goal of this study
is to assess how human influence has affected the fire regime of two contrasting areas in the Canadian
boreal forest over the past few decades. To achieve this goal, we analyzed the changes in the number
of fires and area burned (fire activity) over time and their relationships with climate in two contiguous
regions of Alberta with contrasting human influence (fire management and human land use). First,
to establish whether fire activity has changed in each region, we analyzed annual trends of the number
of fires and area burned, from 1970 to 2015, and compared them while distinguishing natural from
anthropogenic fires. Secondly, to determine if the fire–climate relationships remain coherent despite
the dissimilar human influence, we compared these relationships between regions. Finally, to better
understand the correlations between fire activity and climate, we characterized the cyclical patterns of
the number of fires, area burned, and climate, and compared them between regions in terms of the
duration of their periodicities.

2. Materials and Methods

2.1. Study Areas

We chose two adjacent study regions located in the northeastern corner of the province of Alberta
and a southern portion of Northwest Territories, Canada, that differ in their level of human influence,
including wildfire management (Figure 1): Wood Buffalo National Park (WBNP, 4.3 Mha) and the
Lower Athabasca Plains (LAP, 7.9 Mha). Both regions are located within the Boreal Forest Natural
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Region (BFNR), which covers approximately 58% of Alberta. The topography is mostly flat to gently
hilly, and the vegetation is represented by four dominant types: upland deciduous, coniferous, mixed
forests, and wetlands. The most common tree species found are black spruce (Picea mariana (Mill.)
B.S.P.), white spruce (P. glauca (Moench) Voss), jack pine (Pinus banksiana Lamb.), trembling aspen
(Populus tremuloides (Michx.)), balsam poplar (P. balsamifera L.), and eastern larch (Larix laricina (Du Roi)
K. Koch) [33].

Figure 1. Maps showing (a) the location of the areas of interest (53.63◦ N, 110◦ W, 60.70◦ N, 115.60◦ W):
Wood Buffalo National Park, which occupies a portion of Alberta (AB) and Northwest Territories
(NT), and Lower Athabasca Plains, which borders with the province of Saskatchewan (SK), (b) Human
infrastructure cover (30-metre-resolution, Landsat; [34]), (c) Area burned from 1970–2015 (one-kilometer
resolution), (d) Land cover (Global Land Cover Characterization Project, one-kilometer resolution,
AVHRR; [35]), (e) Elevation, (f) Mean annual temperature, (g) Mean annual precipitation, and (h)
Mean climate moisture index (precipitation minus potential evapotranspiration, mm, 1◦ latitude by 1◦

longitude resolution; [36]).

Although WBNP and LAP are very similar in terms of topography and vegetation composition,
they are subjected to contrasting levels of human influence. Established in 1922, WBNP is a UNESCO
(United Nations Educational, Scientific and Cultural Organization) world heritage site where the
human influence is remarkably low; less than one percent of its area has been modified by human
activities, which mainly consist of two roads (Table 1, Figure 1b). In contrast, LAP has almost
10 percent of its area destined to agriculture, tree harvesting, oil-and-gas exploration, and other rural
and industrial activities. Comparatively, LAP also possesses a more extensive road network and more
human settlements (Table 1, Figure 1b) [33,34]. Despite belonging to the same land management unit,
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we excluded the portion of LAP located on the north side of Lake Athabasca, because it is located in
the Canadian Shield, which represents a topo-edaphic setting that differs substantially from the rest of
the study area and WBNP, both located in the Boreal Plain.

Table 1. Area occupied or modified by the leading human activities in Wood Buffalo National Park
(WBNP) and Lower Athabasca Plains (LAP).

Region WBNP Area kha (%) LAP Area kha (%)

Total 4266 (100) 7932 (100)
Cultivation 0 134.80 (3.16)

Harvested (cut blocks) 0 111.33 (2.61)
Mining 0 32.42 (0.76)

Seismic lines 0 29.86 (0.70)
Industrial-rural 0 23.90 (0.56)

Roads and vegetated margins 0.85 (0.02) 15.36 (0.36)
Urban 0 2.58 (0.06)

Total human-modified area 0.85 (0.02) 350.25 (8.21)

Fire management also differs between these regions. Fires in WBNP are not actively suppressed
unless they pose an imminent threat to infrastructure within the park or neighbouring communities,
leaving wildfires to fulfill their “natural” role. In contrast, LAP includes the community of Fort
McMurray and most of the Lac La Biche Alberta Wildfire Management areas, where there is a strict
policy to suppress and prevent fires. On average, during the period 1970–2015, lightning-caused fires
in WBNP are larger than the ones in LAP (Table A1), whereas anthropogenic ones are larger in LAP.
Human contribution to area burned is so prominent in LAP that the area burned by human-caused
fires exceeds the area burned by lightning-caused fires in this region (Table A1). Summer is the season
with the highest fire activity (number of fires and area burned; Figure 2) in both regions, but the human
contribution to fires is considerably higher during the spring in LAP than in WBNP.

Figure 2. Number of fires and area burned in Wood Buffalo National Park and Lower Athabasca Plains
by season (spring, summer, and fall) and cause of ignition (lightning or human). Information based on
fires ≥10 ha from 1970–2015.
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2.2. Fire Variables

We obtained the historical fire records from the Canadian National Fire Database [37] from which
we derived the number of fires and area burned (ha) during the fire season (1 March to 31 October) [38]
for the period 1970–2015. Although the database extends earlier than 1970, the analysis was limited
to this time period because the data recording and methods of detection during the contemporary
era were more reliable and consistent than those of the earlier period [24,27,39]. In addition, we only
included fires ≥10 ha because they are less likely to go undetected or unreported than fires <10 ha.
The fires were stratified by area (WBNP or LAP) and by cause (human or lightning) and summarized
into annual time series using the total number of fires and total area burned (log transformed) during
the fire season.

2.3. Fire-Climate Variables

In order to uncover possible relationships with the fire activity variables (area burned and number
of fires), we built mean annual time series of climate and fire danger indexes from the Canadian Fire
Weather Index System (FWIS) [40] (Table 2). We used the records from 67 weather stations located in
WBNP and LAP for the period 1970–2015 [41]. Climate variables include annual means of temperature
(°C), relative humidity (%), wind speed (km/h), and 24-h precipitation (mm), as well as codes and
indices from the FWIS [40]: Fine Fuel Moisture Code (FFMC), Duff Moisture Content (DMC), Drought
Code (DC), Initial Spread Index (ISI), Buildup Index (BUI), Fire Weather Index (FWI), and Daily
Severity Rating (DSR). Indices and codes are calculated based on weather measurements taken at noon
local standard time (LST) and the FWIS moisture codes from the previous day (Table 2).

Table 2. Climate variables and Fire Weather Index System codes and indices used (Modified from
Van Wagner [40]).

Acronym Name Units Description

TEMP Temperature °C A measure of heat present in the air

PRECIP Precipitation mm
A form of water, such as rain, snow etc. that
condenses from the atmosphere and fall to
the Earth

RH Relative Humidity % Amount of water vapor present in air

WINS Wind Speed km/h Velocity of air flow

FFMC Fine Fuel Moisture Code unitless Moisture contained in the upper soil layer
(litter and fine fuels)

DMC Duff Moisture Code unitless Moisture for the loose organic layers of the
soil, including medium-sized woody debris

DC Drought Code unitless Moisture in deep compacted organic layer
and large woody debris

ISI Initial Spread Index unitless The expected rate of spread based on FFMC
and wind speed

BUI Buildup Index unitless Proxy for the fuel load available for
combustion. Based on DMC and DC

FWI Fire Weather Index unitless Reflects fire intensity and fire danger in
forested areas. Based on ISI and BUI

DSR Daily Severity Rating unitless Exponential transformation of FWI
indicating severe conditions when DSR >2

2.4. Statistical Analysis

We searched for linear trends in the time series to identify overall changes in the number of
fires and area burned during the 1970–2015 period. By decomposing the time series, we were able to
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separate them into their additive components: non-linear trend, oscillations (cyclical), and white noise.
The non-linear trend was subtracted from the original time series as a “pre-whitening” step, which
reduces the occlusion of the remaining components; in this way, we were able to identify oscillation
frequencies and calculate their periodicities (years between peaks). Finally, we ran correlation tests
between the fire-climate and fire activity time series in order to identify potential relationships between
them. If a relationship was identified, we described its nature (positive, negative), strength, and
periodicity (through their regular oscillations). All analyses were performed using R [42].

2.4.1. Linear Trend Detection

We tested the time series for autocorrelation processes, after which we ran a phase-randomized
version of the Mann-Kendall trend test (slope different from 0: p ≤ 0.05, H0: β1 = β2, Ha: β1 �= β2)
to find a significant linear trend. The Theil-Sen slope method was employed to calculate the slope
value (β).

Some time series showed autocorrelation processes (aka. “red noise”), for which the
magnitude and order were calculated. This was achieved by means of the autocorrelation
and partial autocorrelation functions using the Acf function of the “forecast” R package [43]
(Figures A1 and A2). We found autocorrelation processes in the number of fires and area burned
for both lightning-caused fires (first order autoregressive model, AR1 = 0.34) and human-caused fires
(autoregressive-moving-average model, ARMA (3, 0), p = 0.42) in WBNP. In LAP, only area burned
by human-caused fires and the total (L + H) showed autocorrelation ARMA (6, 0). To account for the
serial correlation, we employed a phase-randomization method for the hypothesis testing of the trend,
which is suitable for non-normal, autocorrelated data, and is robust against outliers (i.e., influential or
extreme data). This method consists of the creation of surrogate time series (randomized versions of
the original) to create a distribution which is then compared to the original time series to determine
its significance. By doing so, we avoided spurious regressions due to the lack of error independence
and unequal variances [44–46] and obtained a robust estimate of parameters of the regression by
bootstrapping [47]. We employed the MKcorr.test function contained in the “MKCorr R” package [48].

2.4.2. Time Series Decomposition

Next, we separated the time series (number of fires, area burned, climate and FWIS indices)
into their additive components: non-linear trend, oscillations (regular cycles), and white noise
(random signal; see example in the appendix) by using an iterative Singular Spectrum Analysis
(SSA, [49]) included in the “Rssa” package [50] in R. SSA is an adaptive non-parametric method ideal
for short, noisy time series. This method does not require a priori knowledge of the model to be fitted
(e.g., linearity, normality, and stationarity of the residuals, or the number and value of the contained
periodicities), making it an advantageous technique to explore and analyze data when the parameters
are unknown.

The separation of the components was achieved by running the decomposition process twice
(hence the term “iterative”): first, we ran the analysis to extract the non-linear trend and, second,
we subtracted this trend (detrending) from the original time series and ran the decomposition process
again to extract the oscillatory (cyclical) components. This step also reduces the red noise significantly,
so that the oscillations detected are unlikely to be autocorrelation processes [51]. Each iteration requires
“windows” (adjacent values) of different lengths (number of values) to establish the resolution and
minimum periodicity to detect. We used a small window (L = 12) to extract the non-linear trend,
and a larger window (L = 24) on the detrended time series to extract the cyclical components [49].
We calculated the periodicities of the cyclical components originating from the eigenvectors that
explained most variance (>20%) according to the SSA. This was achieved through the Estimation of
Signal Parameters via Rotational Invariance Techniques (ESPRIT; [52]) using the function parestimate in
the “Rssa” package and confirmed with the spectrum (mvspec function, “astsa” package [53]). As a
result, we obtained a new set of time series produced for the two study areas (WBNP and LAP), the

203



Forests 2018, 9, 159

three ignition causes (lightning, human, lightning + human), the two fire variables (number of fires and
area burned), the eleven fire-climate variables, and the two SSA derived outputs (one non-linear-trend
and one detrended time series). Non-linear trends, unlike linear ones, may show changes over time
according to different rates that might not be detected with the Mann-Kendall test, but they may still
represent a relevant pattern in the time series.

2.4.3. Cross-Correlations of Time Series

In order to evaluate the correlations of fire activity time series between areas and fire activity
series with fire-climate variables, we calculated the Kendall rank correlation coefficients and their
significance from the detrended time series. We carried out correlations for two different time lags
(zero and one year) to test for current and delayed effects of climate on fire, respectively.

We used a non-parametric “randomized-phase surrogate” technique for significance testing to
reduce type-1 errors. This test employs the Fourier transform to generate a large number of random
time series (called surrogates) with the same spectral properties as one of original (and thus, the same
autocorrelation, if present) but with random phases. Then, the correlation between the two original
time series is compared to a distribution of correlations produced by the surrogate series to obtain the
statistical significance [54,55]. This analysis was performed using the surrogateCor function contained
in the package “astrochron” [56] in R with 2000 random surrogate series.

3. Results

Fire activity from 1970 to 2015 has increased in WBNP in both the number of fires (β = 0.30,
p < 0.01, Figure 3a) and area burned (β = 0.14, p < 0.01, Figure 3c), while in LAP, there is a statistically
significant decrease in the number of fires (β = −0.21, p = 0.01, Figure 3b), and no overall change in area
burned (β = 0.02, p > 0.05; Figure 3d). Lightning-caused fires were responsible for raising the number
of fires in WBNP (β = 0.28, p < 0.05), whereas anthropogenic fires remained low (β = 0, p > 0.05) and
their area burned unchanged (β = 0, p > 0.05; Figure 3a,c). Fire activity in WBNP exhibited nonlinear
trends, indicating that the increase was faster during the second half of the time period than the first
half. Although the non-linear trends suggest a decline in the number of fires caused by lightning or
humans in LAP, neither of them were statistically significant (β = 0, p > 0.05 and β = −0.9, p > 0.05
respectively), but their sum (L + H) was (Figure 3b).

In general, a warming and drying climate trend was found over the 46 years studied in both
WBNP and LAP, with faster changes in WBNP (Table 3). Most of the fire-climate time series showed
some change (linear trend) over the same period that would lead to an increased wildfire activity, but
this is only observed in WBNP. In general, for both WBNP and LAP, we found a declining trend in
PRECIP, RH, and WINS, and an increasing trend for FFMC, DMC, DC, and BUI. Only ISI did not
change overall in any of the areas. Although we did not find a linear trend for temperature in LAP, the
non-linear trend extracted by SSA does show an increase (Figure A3), as well as for FWI and DSR in
WBNP. The most drastic increase in both areas was observed in the Drought Code, which indicates
moisture deficits in the deeper soil levels (Table 3).
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Figure 3. Time series representing the number of fires (a,b) and area burned (c,d) for the period
1970–2015 in Wood Buffalo National Park (a,c) and Lower Athabasca Plains (b,d). Thin solid lines
and shaded background indicate raw time series, dotted lines show the non-linear trend extracted by
Singular Spectrum Analysis, and solid straight lines display the significant linear trends obtained by
the Mann-Kendall trend test. Different colors indicate the cause of ignition. Theil-Sen’s slopes (β) and
trend significance by Mann-Kendall are shown.

Table 3. Theil-Sen slope values (β) and significance by a random-phase Mann-Kendall trend test
(* ≤0.05, ** ≤0.005) for the fire-climate variables in Wood Buffalo National Park (WBNP) and Lower
Athabasca Plains (LAP). Values were calculated from annual time series.

Acronym Name WBNP LAP

TEMP Temperature 0.03 ** 0.01
PRECIP Precipitation <−0.01 * −0.01 **

RH Relative Humidity −0.15 ** −0.06 **
WINS Wind Speed −0.10 ** −0.03 *
FFMC Fine Fuel Moisture Code 0.07 * 0.07 **
DMC Duff Moisture Code 0.30 ** 0.23 **
DC Drought Code 2.83 ** 3.23 **
ISI Initial Spread Index 0 0

BUI Buildup Index 0.44 ** 0.42 **
FWI Fire Weather Index 0.04 0.06 **
DSR Daily Severity Rating 0.02 0.02 *

Cross-correlations of detrended time series between regions indicated a similar pattern of fire
activity regardless of the differences in human influence. Lightning-caused fire time series correlations
(for both number of fires and area burned) showed the highest coefficients, whereas human-caused
fires showed the lowest (Table 4).
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Table 4. Correlation coefficient table for the number of fires (upper-right) and area burned (lower left,
shaded) of the fire activity time series in Wood Buffalo National Park (WBNP) and Lower Athabasca
Plains (LAP). Significance was calculated by a random-phase test (* ≤0.05, ** ≤0.005). Letters following
area name indicate ignition cause: Lightning (L) and human (H).

Region   WBNP   LAP  
Cause L + H L H L + H L H

WBNP 
L + H 1 0.96 ** 0.17 * 0.31 ** 0.36 ** 0.08 

L 0.94 ** 1 0.13 0.30 ** 0.35 ** 0.09 
H 0.09 0.04 1 0.18 0.24 * 0.07 

LAP 
L + H 0.26 * 0.25 * 0.10 1 0.68 ** 0.37 ** 

L 0.33 ** 0.32 ** 0.09 0.76 ** 1 0.06 
H 0.01 0.01 0 0.29 * 0.09 1 

Although the association of fire activity with fire climate was similar in both regions (we observed
significant correlations with similar coefficient values for both the number of fires and area burned
time series; Table 5), we noted that: (1) mean annual temperature was only correlated with
lightning-caused fires in WBNP and human-caused fires and area burned in LAP, (2) mean annual
precipitation was associated with lightning-caused fire activity but not human-caused fires in both
areas, (3) human-caused fires in WBNP do not have any association with fire-climate, and (4)
lightning-caused fires only correlated with temperature and relative humidity in WBNP. We only
found three one-year lagged correlations: between the number of human-caused fires in LAP with
wind speed (τ = −0.30, p < 0.005), and area burned by lightning ignitions with precipitation in WBNP
(τ = −0.26, p < 0.05) and temperature in LAP (τ = 0.29, p < 0.005).

Table 5. Kendall-correlation coefficient table for the relationship between the number of fires and area
burned with fire-climate time series at lag 0 (i.e., current year) in Wood Buffalo National Park (WBNP)
and Lower Athabasca Plains (LAP). Significance was calculated using a random-phase test (* ≤0.05,
** ≤0.005).

Number of Fires Area Burned

Region WBNP LAP WBNP LAP

Ignition cause L + H L H L + H L H L + H L H L + H L H

Temperature 0.20 * 0.19 * 0.17 0.20 0.12 0.23 * 0.07 0.07 0.1 0.10 0.09 0.17 *
Precipitation −0.29 * −0.27 * −0.02 −0.22 * −0.21 * −0.14 −0.23 * −0.25 * 0.07 −0.20 * −0.21 * −0.14

Relative
humidity

−0.24 * −0.23 * −0.05 −0.20 −0.13 −0.18 * −0.21 −0.22 * −0.03 −0.27 * −0.24 * -0.22 *

Wind speed −0.14 −0.15 −0.05 −0.18 −0.07 −0.2 * −0.27 −0.23 −0.09 −0.02 −0.01 −0.12
FFMC 0.26 * 0.24 * 0.1 0.23 * 0.22 * 0.15 0.20 0.20 * 0.05 0.29 * 0.27 * 0.19 *
DMC 0.33 * 0.32 ** −0.01 0.27 * 0.03 * 0.21 * 0.37 ** 0.40 ** −0.06 0.40 ** 0.34 ** 0.30 **
DC 0.34 0.34 ** 0.04 0.23 * 0.25 * 0.18 * 0.36 * 0.40 ** −0.02 0.24 * 0.26 ** 0.27 *
BUI 0.20 * 0.35 ** 0 0.30 * 0.26 * 0.2 * 0.37 ** 0.40 ** −0.03 0.40 ** 0.35 ** 0.30 *
ISI 0.21 * 0.20 * 0.10 0.28 * 0.30 * 0.1 0.23 * 0.26 * 0.07 0.40 ** 0.32 ** 0.21 *

FWI 0.30 * 0.30 * 0.06 0.31 * 0.30 * 0.16 0.36 ** 0.40 ** 0.01 0.44 ** 0.36 ** 0.30 **
DSR 0.28 * 0.26 * 0.01 0.34 ** 0.30 ** 0.20 0.37 ** 0.40 ** 0.02 0.44 ** 0.35 ** 0.31 **

Fire activity in WBNP was characterized by longer and more acute periodicities than the ones
found in LAP. We observed that the number of fires and area burned by lightning in WBNP showed
strong activity peaks every ~12 years, whereas in LAP, weaker oscillations (i.e., under eight years)
were most frequent. Anthropogenic ignitions in both areas mostly displayed high frequency (short
periods) oscillations (~3–6 years); however, area burned by humans also showed strong oscillations
every ~11 years (Figure 4).
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Figure 4. Periodicities (i.e., duration of oscillations) of the fire activity and fire-climate variables,
calculated for the cyclical components found in the time series. Size and color of the points indicate the
variance explained by the eigenvectors from which the oscillations were extracted during SSA. Shading
corresponds to the “typical” climatic teleconnection domains: Quasi-Biennial Oscillation (2–2.5 years,
dark grey), El Niño Southern Oscillation (2.5–8 years, moderate grey), and a quasi-decadal oscillation
(9–13 years, light grey).

Fire-climate oscillations were very similar between regions, with the strongest periodicities
(i.e., higher variance explained) falling under the ENSO domain (2.5–8 years) and aligning with
many of the periodicities of fire activity (between 3–6 years). Most of the strongest fire-climate
periodicities were found at around four years. With the exception of DC (an index of drought involving
precipitation and temperature) and BUI (calculated through DC and DMC), we did not detect strong
long periodicities (over nine years) from the fire-climate time series (Figure 4).

4. Discussion

Human activities have been continuously altering the dynamics of the boreal forest in Alberta
over the past few decades, and have generated recognizable spatial and temporal patterns of wildfire
activity. In the 1970–2015 period, we found increasing fire-conducive climatic trends in both study
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areas that were reflected in occurrence and area burned increases only in the region with the lowest
human interference (WBNP), which agrees with findings reported across Canada [57–59]. In contrast,
we observed a dampening effect of fire activity in the region with the most human impact (LAP),
resulting in a decline in the number of fires and no overall change (no trend) in the area burned.
Previous studies also suggest that although area burned has increased due to the changing climate in
the boreal forest, this is not necessarily the case in areas of higher human influence [60,61].

The main causes limiting the potential area burned under high human influence are: (1) the
strong prevention and fire suppression policies, (2) improved accessibility, (3) the location of the
human ignitions (i.e., closer to human infrastructures), and (4) land-use change. The first cause is a
consequence of two of the objectives of fire suppression in Alberta: reducing the spread of fires before
10 AM of the following day and preventing them from attaining 2 ha in size [28], which results in fewer
escaped fires (i.e., defined here as fires ≥10 ha). In addition, the widespread road network facilitates
access for fire-management activities to take place. Although human ignitions might increase over
time, they also have a tendency to cluster in the wildland-urban interface (WUI; [61,62]), where fire
detection and initial attack are more efficient, impeding their further growth in spite of fire-prone
weather conditions. Finally, conversion of forested areas to agricultural, urban, and petrochemical
mining land uses has altered the vegetation’s structure and composition. These changes, in turn,
have impacted the burn rates and ignition likelihood, and the increased fragmentation has reduced
vegetation continuity, countering potential area burned [15,62–67].

Wildfire suppression practices, in conjunction with other human-induced changes, have the
potential to not just slow down, but also to reverse trends in fire activity; hence, non-climatic factors
have the potential to alter fire-climate relationships. Such cases have been reported in France, where
recent fire activity stopped tracking climatic trends and decreased along with major changes in fire
suppression policy [21,68], and in South Africa, where land-use changes mediated the relationship
between climate and area burned [69].

Unlike trends, overall annual fluctuation patterns of wildfire activity exhibited some similarities
between regions, regardless of the level of human influence. This is because climate and lightning
still persist as dominant factors regulating the totality of fire activity in the boreal forest [70–72]. We
further support this observation, given that wildfire activity was similarly related to climate in both
regions. In general, peaks of fire activity tracked a drier and warmer climate in both areas. We also
found that temperature and relative humidity did not correlate to the number of lightning-caused
fires in LAP, whereas they did in WBNP, suggesting that non-climatic factors (i.e., fire management,
land-use change, road density) might have interfered with those relationships [21,73].

Anthropogenic fire activity is associated with the same climatic variables as lightning-caused
fire activity, with only very few exceptions. Most notably, we observed a lack of association between
anthropogenic fires and precipitation that might indicate that more of these fires may occur in years
with higher soil moisture conditions than lightning-caused fires. This observation has also been
reported before in the U.S. [74], where the authors concluded that anthropogenic ignitions can occur in
a broader range of moisture environments than lightning-caused fires, thereby resulting in a wider
wildfire “niche”. In addition, the shift of the peak of anthropogenic fire activity from the summer to
the spring, accompanied by a longer fire season length [20,74–76], might have caused anthropogenic
and lightning fires associated with different climatic conditions within the year. This means that
even if precipitation was higher overall during the year, the actual precipitation events might have
been clustered to only the season where they could limit lightning-caused fires (summer), but not
anthropogenic fires (spring).

We found periodicities that suggest a match with different teleconnections’ oscillatory patterns.
Large-scale climatic patterns (teleconnections) and their interactions influence weather and local
climate, and consequently, fire activity in Canada [77,78]. Wildfire cycles under higher human
influence (LAP), as well as most fire-climate periodicities, were predominantly characterized by
shorter periods (<8 years) compared to longer periods under low human influence (WBNP; >9 years).
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The short periodicities of fire activity under high human influence suggest a higher susceptibility to
Quasi-biennial and el Niño Southern Oscillations (QBO and ENSO, 2–2.5 and 2.5–8 years), whereas
under lower human influence (WBNP), they seem to respond to ENSO and a quasi-decadal oscillation
(Pacific Decadal Oscillation + sunspot cycle, 9–13 years) [79]. We also found traces of larger oscillations
in WBNP (<15 years, not shown) that are usually associated with the PDO and IPO (Pacific Decadal and
Pacific Interdecadal Oscillations), but due to the short time series we used, the signals were weak and
possibly spurious. The absence of long fire-climate periodicities explaining area burned by humans in
LAP at 10–12 years, might be a result of coinciding peaks of short oscillations of different periodicity
that may create longer, stronger oscillations. These kinds of interactions have been documented for
longer-term climatic patterns, when negative phases of ENSO and PDO concur with positive AMO
phase, increasing the occurrence of fires in Colorado [80], or when positive ENSO and PDO phases
coincide in the Rocky Mountains [81] in the U.S. In order to support these partial observations, future
research with longer, seasonal time series are required.

The creation of Wood Buffalo National Park almost a century ago gave us the opportunity to
compare this area of very low human impact with the adjacent area under a strong anthropogenic
transformation in the same ecological region, avoiding the conflation of human influence with other
factors. Furthermore, we used a temporal and spatial extent that allowed us to distinguish more
directly the effect of human influence on fire activity in the short term (years to decades) [57,62,70],
which generates useful information for land managers. Understanding the temporal patterns of fire
activity helps fire management agencies assign and efficiently distribute material and human resources
to fight and prevent fires. For example, in the province of Alberta, increasing attention is being given
to the earliest part of the fire season (i.e., spring), when numerous human ignitions often coincide with
the early onset of warm weather due to a lengthening of the fire season that has resulted in large and
destructive wildfires (e.g., the Fort McMurray fire of 2016) [82].

5. Conclusions

Over the 46-year period studied (1970–2015), we observed how wildfire activity patterns in
the boreal forest have been shaped by the continuously increasing influence of humans, potentially
creating a novel fire regime through the modification of the seasonality, size, and frequency of fires.
In our area of study, under high human influence, fire activity (area burned and number of fires) peaks
in the spring instead of the summer, burning rates are lower, on average, and fewer fires over 10 ha
occur than in the more natural area. Analyses used mostly non-parametric statistical techniques that
are suitable for the highly variable and stochastic nature of the data. We showed how human influence
affects fire activity by changing its trends and cyclical patterns, and how anthropogenic wildfire
activity generates temporal patterns and associations with climate distinctive (albeit similar) from
those associated with lightning wildfire activity. In general, although northern Alberta is subjected to
drier and warmer climatic conditions, in areas of a high anthropogenic footprint, human influence
appears to dampen and reverse the expected fire activity trends and affect the cyclical nature of fire
occurrence. These rapid changes pose a new set of challenges for managers and researchers who try to
understand and predict the impact of altered fire regimes on the diversity, structure, and future fire
activity of a boreal forest. Our results further emphasize the importance of explicitly incorporating the
multi-faceted human impact to improve our understanding of fire activity, how it is affecting the fire
regime at different spatial and temporal scales, and to produce more accurate predictive models of
fire activity.
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Appendix

 

Figure A1. Autocorrelation plots for the number of fires and area burned (log transformed) time series
in Wood Buffalo National Park and Lower Athabasca Plains.
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Figure A2. Autocorrelation plots for the fire-climate (climate and Fire Weather Index System) time
series in Wood Buffalo National Park and Lower Athabasca Plains.

Table A1. Fire statistics in Wood Buffalo National Park (WBNP) and Lower Athabasca Plains (LAP)
from 1970 to 2015. Letters L and H indicate lightning and human-caused fires, respectively.

Region WBNP LAP

Cause L + H L H L + H L H

Number of fires 541 (100%) 518 (95.75%) 23 (4.25%) 1146 (100%) 614 (53.60%) 532 (46.40%)

Proportional number of
fires (fires per 100 kha) 12.70 12.14 0.54 14.44 7.74 6.70

Area burned (ha × 104)
355.08
(100%)

339.87
(95.70%)

15.21
(4.30%)

422.39 *
(100%)

199.56
(47.25%)

222.83
(52.75%)

Mean fire size (ha) 7332.51 6978.90 353.60 7384.40 4411.42 2972.98

Note: Information shown here is for fires ≥10 ha. Based on the National Fire Database [37]. * The Horse River fire
(Fort McMurray) in 2016, increased this value by 13% in just one year.
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Figure A3. Example of decomposition by Singular Spectrum Analysis for temperature time series in
Lower Athabasca Plains, showing its additive components: trend, cycles (oscillations), and residuals
(white noise, random). In this case, the trend is upward non-monotonic and each cycle has a distinctive
periodicity of 5.8, 3.7, and 9.5 years, respectively.
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Abstract: Many dry conifer forests in the southwestern USA and elsewhere historically (prior to the
late 1800’s) experienced fairly frequent surface fire at intervals ranging from roughly five to 30 years.
Due to more than 100 years of successful fire exclusion, however, many of these forests are now denser
and more homogenous, and therefore they have a greater probability of experiencing stand-replacing
fire compared to prior centuries. Consequently, there is keen interest in restoring such forests to
conditions that are conducive to low-severity fire. Yet, there have been no regional assessments
in the southwestern USA that have specifically evaluated those factors that promote low-severity
fire. Here, we defined low-severity fire using satellite imagery and evaluated the influence of
several variables that potentially drive such fire; these variables characterize live fuel, topography,
climate (30-year normals), and inter-annual climate variation. We found that live fuel and climate
variation (i.e., year-of-fire climate) were the main factors driving low-severity fire; fuel was ~2.4 times
more influential than climate variation. Low-severity fire was more likely in settings with lower
levels of fuel and in years that were wetter and cooler than average. Surprisingly, the influence of
topography and climatic normals was negligible. Our findings elucidate those conditions conducive
to low-severity fire and provide valuable information to land managers tasked with restoring forest
structures and processes in the southwestern USA and other regions dominated by dry forest types.

Keywords: fire severity; burn severity; wildland fire; forests; fire regime; fire refugia

1. Introduction

Wildland fire is an integral component of most dry conifer forest ecosystems in the southwestern
USA and elsewhere [1]. Analyses of fire scarred trees indicate that most dry conifer forests in the
southwest USA historically (i.e., prior to the late 19th century) experienced frequent surface fire and
less frequent mixed-severity fire at intervals ranging from roughly five to thirty years [2–4]. However,
as a result of fire exclusion policies that reduced fire frequency and area burned after the late 19th
century [5,6], many dry conifer forests in the southwestern USA are denser and more homogenous
compared to the pre-settlement era [7,8]. Consequently, there is growing concern that some dry forests
are at risk of burning at higher severities (i.e., stand-replacing) than occurred in past centuries [9,10].
Recent research suggests this is indeed the case [11–13].

Stand-replacing fire in dry conifer forests has caused substantial concern about enduring
conversions to non-forest. It is evident, for example, that the regeneration of dry conifer species
(e.g., ponderosa pine) becomes more limited with increasing fire severity, increasing distance to seed
source, and at sites with drier biophysical characteristics [14–16]. Short-interval high-severity fire
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(i.e., reburning at high-severity) in some dry forests also leads to post-fire successional trajectories
that substantially differ from the pre-fire conditions, raising additional concern about altered
successional trajectories and conversion to non-forest [17–19]. Although the drivers and consequences
of high-severity fire are being increasingly studied, little to no research has been conducted that
specifically focuses on the factors that promote low-severity fire, particularly in regions dominated
by dry conifer forest that historically experienced frequent surface fire. A better understanding of
those factors promoting low-severity fire could assist managers interested in reintroducing such fire
to dry conifer forests in the southwest USA and elsewhere. Furthermore, identifying factors that
promote low-severity fire could help identify biophysical settings in need of restoration treatments
(e.g., prescribed fire and mechanical thinning) that will increase the likelihood of surface fire, thereby
lowering the likelihood of stand-replacing fire and potential fire-facilitated conversions to non-forest.

Indeed, many dry conifer forests in the southwestern USA are in need of restoration in order to
increase their resilience (i.e., reduce the probability of stand-replacing fire and associated transition to
non-forest) [20,21]. Restoration treatments usually refer to mechanical thinning and prescribed fire [22],
but it has been pointed out that the pace and scale of such treatments are inadequate in addressing the
large area in need of restoration due to logistical, legal, and physical (i.e., topography) constraints [23].
However paradoxical it may seem, wildland fire itself has also been espoused as an effective method
for increasing the resilience of dry conifer forests [24,25]. Reintroducing stand-replacing fire is
obviously counterproductive for dry conifer forests, and consequently, Allen et al. [26] recommend,
among other restoration treatments, the reintroduction of low-severity fire in such forests. This said,
uncertainty about the biophysical settings in which low-severity fire is probable, and under what
weather conditions, likely precludes the reintroduction of such fire in most cases (cf. [27]). This is
a substantial knowledge gap given that low-severity fire was common in such forests prior to European
settlement and the growing interest in restoring surface fire to dry conifer forests. Excluding studies
involving fire refugia, which focus on unburned or low-severity patches within a matrix of moderate-
to high-severity fire [28,29], little-to-no research has been conducted that specifically focuses on the
drivers of low-severity fire in dry conifer forests such as those found in the southwestern USA.

The overarching goal of our study was to identify the most important factors driving low-severity
fire in the southwestern USA. We measured fire severity using a satellite-inferred metric of fire-induced
change, the relativized burn ratio [30]. We evaluated the relative influence of several factors driving
low-severity fire including live fuel, topography, climate (30-year normals), and inter-annual climate
variation (i.e., year-of-fire climate). We were also interested in functional relationships between
important variables and low-severity fire, thereby providing managers with information pertaining
to the biophysical and year-of-fire climatic conditions that promote low-severity fire. Consequently,
our results will be highly relevant and timely to land managers interested in restoring fire regimes in
the southwestern USA and other regions dominated by dry conifer forest.

2. Materials and Methods

2.1. Study Area

We conducted our study in the southwestern USA because of the high prevalence of dry conifer
forest and the historical dominance of frequent, low-severity fire [31]. Specifically, we focused on
the Arizona—New Mexico ecoregion (plus a 10-km buffer; 150,747 km2) as defined by The Nature
Conservancy [32] (Figure 1). Elevation ranges from 1053 to 3756 m (mean across ecoregion = 1986 m).
The ecoregion is climatically diverse; mean annual temperature ranges from 0.5 to 17.2 ◦C
(mean = 11.1 ◦C) and mean annual precipitation from 16.7 to 121.1 cm/year (mean = 40.6 cm/year) [33].
Almost half (48%) of the precipitation occurs in the summer (July–September) due to monsoonal
storms [34]. The vegetation is also diverse; dominant forest types include pinyon-juniper woodland
(22.4% of study area) and ponderosa pine woodland and savannah (12.7%) [31]. Other forest
types such as mixed conifer, spruce-fir, and conifer-oak represent a fairly small proportion of the
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study area. Our study does not include non-forested vegetation (see below) and is therefore not
described here. The proportional coverage of vegetation communities within the burned areas can
be characterized as follows: ponderosa pine = 52%, pine-oak types = 20% (includes Arizona pine,
alligator juniper, and Emory oak), mixed-conifer types = 15% (includes Douglas fir and white fir),
subalpine types = 5% (includes Engelmann spruce and subalpine fir), riparian = 5% (includes black
cottonwood), and pinyon-juniper = 4% [31]. The fire season runs from early May through late-August
(USDA Forest Service 2013), although fires are less likely after early July due to rains associated with
monsoonal storms from the Gulf of Mexico [35,36]. Fires in this region were generally characterized as
occurring frequently and at a low-severity prior to European settlement, although it is recognized that
fire severity varies with elevation and topography [5,37]. Extensive cattle and sheep grazing began in
the 1880s, which substantially reduced fine fuel amount and continuity and caused a decrease in fire
frequency [38]. Continued fire exclusion via direct fire suppression has contributed to increases in tree
density and shade-tolerant species, thereby heightening concern about uncharacteristically severe fire
and altered post-fire successional trajectories [20,39,40].

Figure 1. Study area map shows the distribution of forest, non-forest, and fire in our study area
(the Arizona-New Mexico Mountains ecoregion). Inset shows this ecoregion’s location in the context of
the contiguous USA.

2.2. Data

Fire severity was measured using the relativized burn ratio (RBR), an index (resolution: 30-m)
that quantifies the difference between pre- and post-fire Landsat thematic mapper (TM), enhanced
thematic mapper plus (ETM+), and operational land imager (OLI) satellite data. The RBR has
a high correspondence to field-based measures of severity such as the composite burn index
(CBI; r2 = 0.71) [30]. We classified the RBR data into binary categories representing low-severity
(RBR ≤ 116) and other severity (RBR > 116) (Figure 2b). The RBR = 116 value corresponds to the
average threshold between low and moderate severity for the nine fires analyzed in the southwestern
USA by Parks et al. [30]; a similar thresholding approach was used by Dillon et al. [41] in their analysis
involving high-severity fire. Satellite imagery used to generate RBR was obtained from the Monitoring
Trends in Burn Severity program (MTBS) [42], which distributes fire and satellite data for fires ≥400 ha
for the years 1984–2015. RBR was calculated using the ‘dNBR offset’, which accounts for differences
due to phenology or precipitation between the pre- and post-fire imagery by subtracting the average
delta normalized burn ratio (dNBR) of pixels outside the burn perimeter [43]; this can be important
when comparing severity among fires [30].
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We evaluated 13 explanatory variables in describing low-severity fire that can be categorized into
four groups characterizing live fuel, topography, climate (30-year normals), and inter-annual climate
variation (i.e., year-of-fire climate) (Table 1). The fuel group is comprised of three vegetation indices
derived from satellite data: NDVI, NDMI, and EVI (Table 1) (resolution = 30-m). These indices were
generated using pre-fire imagery distributed by MTBS. NDVI is an index of vegetation productivity and
biomass [44]. NDMI is a measure of vegetation moisture and is frequently used in drought monitoring,
and because of its sensitivity, it is also key in assessing wildfire potential and severity [45,46]. EVI is
an alternative index of vegetation productivity, but, whereas NDVI is chlorophyll sensitive, EVI is
more responsive to canopy structural variations (i.e., leaf area index, canopy type, plant physiognomy,
and canopy architecture) [47] (Figure 2).

Table 1. Variables evaluated as predictors in modeling the probability of low-severity fire in forests of
the southwestern USA.

Group Variable Name Description Source

Live fuel

NDVI

Normalized differenced vegetation index.
Calculated using pre-fire imagery distributed
by the Monitoring Trends in Burn Severity
(MTBS) program [41].

Pettorelli et al. [44]

NDMI
Normalized differenced moisture index.
Calculated using pre-fire imagery distributed
by MTBS [41].

McDonald et al. [46]

EVI Enhanced vegetation index. Calculated using
pre-fire imagery distributed by MTBS [41]. Huete [47]

Topography

DISS Dissection index with a 450 m radius. DISS is
a measure of topographic complexity. Evans [48]

TPI

Topographic position index. TPI is a measure
of valley bottom vs. ridge top and measures
the elevational difference (meters) between
each pixel and an annulus with
a 2000-m radius.

NA

SRAD Potential solar radiation, as calculated using
the SOLPET6 model. Flint et al. [49]

Slope Slope angle NA

Climate

CMD Climatic moisture deficit [49]. Mean over the
1981–2010 time period.

Wang et al. [50];
https://adaptwest.
databasin.org/

ET Evapotranspiration (i.e., Eref-CMD).
Mean over the 1981–2010 time period.

MAT Mean annual temperature. Mean over the
1981–2010 time period.

Inter-annual climate
variation

Temp.z Mean June temperature for the year in which
the fire occurred. Converted to a z-score.

ClimateNA software
package; Wang et al. [50]

ET.z
Mean June evapotranspiration for the year in
which the fire occurred. Converted to
a z-score.

CMD.z
Mean June climatic moisture deficit for the
year in which the fire occurred. Converted to
a z-score.
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Figure 2. Example shows one of the >400 fires evaluated. Location of the 2011 Miller fire within the
study area (a). Fire severity for the 2011 Miller Fire (b). Examples of the variables we used to represent
pre-fire fuel (c,d), topography (e,f), and climate (g,h) for the 2011 Miller Fire. Inter-annual climate
variation is not shown here because such variables are more indicative of temporal variability as
opposed to spatial variability for individual fires. EVI: enhanced vegetation index; NDMI: normalized
differenced moisture index; TPI: topographic position index; SRAD: solar radiation; CMD: climatic
moisture deficit; MAT: mean annual temperature.

Climate is represented by three variables (resolution = 1-km): climatic moisture deficit (CMD),
reference evapotranspiration minus CMD, hereafter referred to as evapotranspiration (ET), and mean
annual temperature (MAT) [50] (Table 1; Figure 2). These variables characterize spatial variability and
represent climate normals over the 1981–2010 time period (they do not vary annually) and have been
identified as predictors of wildland fire in several studies [51–53].

Inter-annual climate variation is represented by three ‘year-of-fire’ variables: Temp.z, CMD.z,
and ET.z (Table 1). These variables represent the z-scores for the month of June in the year in which
each fire burned; June experiences the highest fire activity on average in the southwestern USA [54].
As such, Temp.z represents mean temperature for the month of June in the year in which the fire
burned. CMD.z represents climatic moisture deficit and ET.z represents evapotranspiration for the
month of June in the year in which the fire burned. These variables (resolution = 1-km) were generated
using the ClimateNA software package (version 5.10) [50]. Recent studies have used similar variables
representing climate variation in evaluations of fire severity [55,56]. All variables representing climate
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variation were converted to z-scores using the per-pixel mean and standard deviation for the month of
June over a 30-year time period (1986–2015). Z-scores therefore represent the value in the month of
June in terms of standard deviations away from the June mean.

2.3. Sampling Design and Statistical Model

We sampled fires that occurred from 1984–2015. We only sampled pixels identified as forest
(i.e., forest, woodland, and savanna), as defined by a combination of landscape level vegetation
products that include Landfire’s [31] Existing Vegetation Cover (EVC), Environmental Site Potential
(ESP), and the Landsat Time Series Stacks–Vegetation Change Tracker (LTSS-VCT) [57]. From the
full set of burned forested pixels, we generated an initial 5% random sample, but then removed all
pixels <100 m from the fire perimeter to reduce edge effects common at fire boundaries [58]. Although
predictor variables ranged in resolution from 30-m to 1-km, all extractions were conducted using the
native resolution of the response variable (30-m).

We produced a logistic regression model (family = binomial) describing low-severity fire (binary
response) as a function of the 13 variables representing live fuel, topography, climate, and inter-annual
climate variation (Table 1). We used a five-fold cross-validated procedure in which 80% of the fires
(not the samples/pixels) were used to build a model and the remaining 20% of the fires were used
to test the model; this ensures our cross-validation was spatially and temporally structured and that
our model validation and inferences are not a result of autocorrelation common in satellite-inferred
severity data [58–60]. For each of the five folds, we calculated the area under curve (AUC) statistic
derived from the receiver operating characteristic curve of the full model (includes all 13 explanatory
variables). We then compared this AUC to the AUC of additional models in which each variable was
excluded. The AUC using the test data was averaged over the five folds. If the cross-validated AUC
increased when a variable was removed, it was an indication that the variable did not provide unique
information that improved model fit. As such, we removed the variable that resulted in the largest
AUC increase when it was removed from the model. We then repeated this procedure until all variables
resulted in a decrease in the cross-validated AUC when they were individually removed from the
model. All statistical analyses were conducted using the R statistical program [61]. The cross-validation
and stepwise variable selection procedures follow that of Parks et al. [62].

The cross-validated stepwise procedure we employed has some advantages compared to
approaches that do not hold out independent data. For example, this procedure reduces the possibility
of model overfitting and avoids falsely inflating our model skill (i.e., AUC statistic). Because our test
data are independent—data from fires used to build the model (i.e., training data) were not used for
model validation and variable selection (i.e., testing data)—our models are spatially and temporally
transferable. Variables are retained based solely on whether or not they improve model fit; even if
retained variables are correlated, they still possess unique information that improves the model.

Once the final set of variables was identified using the procedure described above, we calculated
the relative influence of each variable group (fuel, topography, climate, and climate variation). This was
achieved using a five-fold cross validation while excluding each group of variables. Specifically,
we compared the five-fold cross validated AUC of the final model to models that excluded variables
characterizing fuel, topography, climate, and inter-annual climate variation. Small decreases in AUC
(compared to the final model) for any particular variable group are interpreted as having little influence,
whereas sizeable decreases in AUC are interpreted as having large influence. The specific equation is
as follows:

Relative in f luencei =
AUC. f ull − AUC.no.vari

∑i=4
i=1 (AUC. f ull − AUC.no.vari)

× 100

where AUC.full is the AUC of the full model, AUC.no.vari is the AUC of the model excluding any
particular variable group, and i represents one of the variable groups.
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We produced response curves describing the probability of low-severity fire as a function of
all variables retained in the final model. To do so, we built individual logistic regression models
(family = binomial) for each variable and plotted the response curves.

3. Results

We included data from over 400 fires that burned over 12,000 km2 of forest to inform our model
describing the probability of low-severity fire. The spatially and temporally cross-validated AUC was
0.701. Live fuel was the most influential factor driving low-severity fire (relative influence = 70.0%).
This was followed by inter-annual climate variation (relative influence = 28.6%). The influence of
topography and climate was negligible (0.9% and 0.5%, respectively). Our final model included eight
variables that remained after the cross-validated stepwise procedure: EVI, NDMI, TPI, SRAD, ET,
TEMP.z, ET.z, and CMD.z.

The response curves show a negative relationship between low-severity fire and both measures of
fuel; that is, the probability of low-severity fire decreases with increasing fuel (Figure 3). Low-severity
fire has a negative relationship with both Temp.z and CMD.z, so low-severity fire is more likely in years
in which the June temperature and climatic moisture deficit are lower than average (i.e., z-scores < 0)
compared to higher than average (z-score > 0). Finally, the relationship between low-severity fire and
ET.z is positive, meaning the probability of low-severity fire increased with June evapotranspiration.
We do not show the functional relationships with SRAD, TPI, and ET because the relative influence of
these variables is less than 1% each.

Figure 3. Functional relationships depict the probability of low-severity fire as a function of live fuels
and inter-annual climate variation. Each of these was produced with a logistic regression with only the
variable of interest. EVI: enhanced vegetation index; NDMI: normalized differenced moisture index;
Temp.z: temperature z-score; ET.z: evapotranspiration z-score; CMD.z: climatic moisture deficit z-score.
Functional relationships for TPI, SRAD, and ET are not shown since the relative influence of these
variables is less than 1%.

4. Discussion

Our study pertains to those factors responsible for low-severity fire, thereby providing a different
lens with which to view fire compared to the numerous studies that focus on the drivers and
distribution of high-severity fire [37,41,56,62–64]. Specifically, because our study identifies the drivers
of, and their relationship to, low-severity fire, we fill a critical information gap for dry forested regions
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in which prescribed fire and wildland fire managed for resource benefit are often espoused as forest
restoration strategies [26,65,66]. This contrasts from those evaluations of high-severity fire, which often
underscore the legitimate negative ecological and social impacts of such fire including the potential for
altered successional trajectories and conversion to non-forest, particularly in dry forested ecosystems
such as those found in the southwestern USA and elsewhere [17,39,67].

It is not entirely clear whether the factors that control low-severity fire can be inferred from
studies of high-severity fire. Consequently, we suggest that our explicit attention to low-severity
fire avoids ambiguity and potential misinterpretations that could arise from making inferences from
high-severity fire studies. This is particularly important given that we focused on forests of the
southwestern USA that historically experienced frequent surface fire prior to the late 19th century [4,5].
Moreover, our evaluation included four main drivers of low-severity fire (live fuel, topography, climate,
and inter-annual climate variation), whereas most fire severity studies to date have included only
one to three of these factors (e.g., [41,51,68]) (but see Parks et al. [62]). Lastly, many evaluations of
high-severity fire included a limited number of fires (e.g., [51,69,70]), which potentially prevents
generalizing their findings over broader regions; in contrast, our study included data from over
400 fires.

Live fuel was by far the most important variable group promoting low-severity fire (relative
influence = 70.0%); Parks et al. [62] also found that fuel was most important in their evaluation of
high-severity fire in the western USA. Other studies that used proxies for fuel (e.g., vegetation type
or canopy cover) have also highlighted the influence of this factor in driving fire severity [71,72].
Moreover, we show that the probability of low-severity fire increased with decreasing levels of live
fuel, as represented by EVI and NDMI (Figure 3). This result supports the findings of numerous
studies based on field data [40,73], fire simulation modelling [74,75], and satellite-inferred severity
metrics [59,76,77] that showed a reduction in fuel resulted in lower severity fire.

Year-of-fire climate (i.e., inter-annual climate variation) was the second most important variable
group driving low-severity fire (relative influence = 28.6%). Keyser and Westerling [56], in their
evaluation of high-severity fire, also highlighted the importance of climate variation. Importantly,
our finding that the probability of low-severity fire increased with decreasing year-of-fire temperature
and climatic moisture deficit is consistent with the findings of Abatzoglou et al. [55], who found
a positive correlation between fire severity and year-of-fire fuel aridity. We find it notable that the
climate metrics we used (departures from the mean value for the month of June, which are at a fairly
coarse temporal resolution) exhibited a rather high relative influence. This suggests that near-term
wildland fire forecasts, which currently address only area burned or number of large fires based on
expected weather and other factors [78,79], could potentially forecast fire severity, thereby providing
fire managers and others with a more complete prediction of the upcoming fire season.

Surprisingly, topography and climate (30-year normals representing spatial variability) had
a negligible influence on the prevalence of low-severity fire (relative influence = 0.9% and 0.5%,
respectively). This contrasts with a multitude of studies that showed topography is moderately to
highly important in controlling fire severity (e.g., [41,51,68,72,80]). Likewise, recent studies conducted
at scales ranging from individual fires to numerous fires across large regions have concluded that
climate is related to fire severity [51,52,81]. We posit here, similar to Parks et al. [62], that topography
and climate are indirect measures of fuel, and because we explicitly include fuel in our model,
topography and climate are regarded as inconsequential. Indeed, Dillon et al. [41] acknowledged that
topography was likely serving as a proxy for variation in fuel and other factors that were not accounted
for in their study. Regardless, it is worth noting that Parks et al. [62], who evaluated high-severity fire,
found substantial ecoregional variation in terms of the relative influence of topography and climate,
suggesting that the findings presented here might not be generalizable to other regions.

The results of our study can be considered in relation to the growing body of literature pertaining
to fire refugia [82–85]. Most fire refugia studies involve the study of unburned or low-severity
remnants within a matrix of high-severity effects (e.g., [86]) or are focused on regions that are inherently
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characterized by mixed-severity and stand-replacing fire regimes (e.g., [87]). For the most part, these
studies have not investigated those factors that create or promote the creation of fire refugia, but have
instead focused on characterizing their prevalence and spatial patterns. This said, a limited number of
studies have evaluated the factors promoting the creation of fire refugia; they found that topography
and fire weather were important drivers [28,29]. Nevertheless, we suggest more research is needed
to gain a better understanding of the factors that promote the creation of fire refugia and promote
low-severity fire in general.

Producing statistical models of low-severity fire (or any severity fire) is challenging for several
reasons. Remotely sensed metrics of fire severity are imperfect estimates of complex processes [88].
Nonetheless, such metrics are arguably the most consistent and appropriate for describing and
analyzing fire severity over large landscapes and across multi-decadal timeframes. Furthermore,
we used satellite indices to characterize fuel, but this approach generally describes live overstory
vegetation and does not account for sub-canopy live and dead surface fuels that influence fire
severity [89]. However, adequately characterizing live and dead sub-canopy fuel over large landscapes
is difficult, if not impossible. Also, we used climate departures from the month with the highest
average fire activity (June) to broadly characterize weather conditions conducive to fire. Fire severity,
however, is known to vary with daily to hourly fluctuations in weather conditions [62,69]. Future
investigations of low-severity fire could employ satellite fire detection data to infer the day that
each pixel burned [90,91] and incorporate daily fire weather into their models (cf. [28,92]). Lastly,
all else being equal, fire behavior and effects are different depending on the direction of fire spread
(e.g., heading vs. flanking fire) [93], and at this time, we cannot capture this directional effect in
our models.

5. Conclusions

Our study elucidates those conditions conducive to low-severity fire. Fuel and inter-annual
climate variation (i.e., year-of-fire climate) were the dominant factors controlling the prevalence of
low-severity fire, although the relative influence of fuel was ~2.4 times greater than that of climate
variation. The probability of low-severity fire increased at lower levels of fuels and in years that were
cooler and wetter than average. The influence of topography and climate (30-year normals representing
a spatial gradient) was negligible. These findings support the notion that fuel treatments will likely
increase the probability of low-severity fire [40,73,94]. Nevertheless, the influence inter-annual climate
variation should not be discounted. Low-severity fire was more prevalent in cooler and wetter fire
seasons (than average), which provides rationale for allowing more fires to burn (i.e., less aggressive
fire suppression) in non-extreme years. These wildland fires are efficient means to reduce fuel
loads, which has important consequences given that fuels are the prominent driver of high-severity
fire [62]. Put another way, promoting low-severity fire in non-extreme years will reduce fuel loads and
potentially decrease the probability of high-severity in fire extreme years.

It is recognized that low-severity fire consumes ladder and surface fuels [95,96] and reduces
the prevalence of shade-tolerant trees in many cases [97]. These changes to fuels and the structure
and composition of vegetation have important implications in terms of the behavior and effects of
subsequent fires [17,19]. For example, a recent study concluded that sites with a restored fire regime
were more likely to retain conifer trees and less likely to convert to non-forest during a subsequent
extreme fire event [40]. Moreover, low-severity fire often reinforces a pattern of low-severity fire
in subsequent fire events [18,59,98]. Other beneficial aspects of low-severity fire are also evident.
For example, low-severity fire increases the ability of trees to defend against bark beetle attacks [99].
These examples illustrate that low-severity fire increases resilience to subsequent abiotic and biotic
disturbance events and that managers could consider taking active measures to promote low-severity
fire in regions dominated by dry conifer forest. Our findings provide land managers with general
principles for promoting low-severity fire. As such, our study is both timely and relevant given the
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increasing desire to allow fire to burn to achieve restoration objectives [25,26,66] and the desire to
avoid stand-replacing fire in dry forests in the southwestern USA [39,100].
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Abstract: Climate changes and associated shifts in ecosystems and fire regimes present enormous
challenges for the management of landscapes in the Southwestern US. A central question is whether
management strategies can maintain or promote desired ecological conditions under projected future
climates. We modeled wildfire and forest responses to climate changes and management activities
using two ecosystem process models: FireBGCv2, simulated for the Jemez Mountains, New Mexico,
and LANDIS-II, simulated for the Kaibab Plateau, Arizona. We modeled contemporary and two future
climates—“Warm-Dry” (CCSM4 RCP 4.5) and “Hot-Arid” (HadGEM2ES RCP 8.5)—and four levels
of management including fire suppression alone, a current treatment strategy, and two intensified
treatment strategies. We found that Hot-Arid future climate resulted in a fundamental, persistent
reorganization of ecosystems in both study areas, including biomass reduction, compositional shifts,
and altered forest structure. Climate changes increased the potential for high-severity fire in the Jemez
study area, but did not impact fire regime characteristics in the Kaibab. Intensified management
treatments somewhat reduced wildfire frequency and severity; however, management strategies did
not prevent the reorganization of forest ecosystems in either landscape. Our results suggest that
novel approaches may be required to manage future forests for desired conditions.

Keywords: wildfire; climate change; management; resilience; modeling; southwest

1. Introduction

Gradual changes in landscape composition and structure are predicted with shifting climate
patterns [1–5]. However, climate changes occur in the context of increased landscape disturbance
that can catalyze abrupt changes in ecosystems [6–8]. In particular, global ecosystems are highly
influenced by fire disturbance [9–12]. In fire-adapted, fire-prone systems, landscape patterns and
vegetation distributions are determined primarily by reciprocal interactions with fire [13,14] and then by
fine-scale interactions within and among species (e.g., competition and dispersal) and their surrounding
environment (e.g., climate and edaphic conditions) [15].

In the southwestern US, fire regimes have been altered by land management and climate changes.
A hundred-plus years of livestock grazing, logging, and fire exclusion have altered pre-European era
fire frequencies, creating increased surface fuel loads, dense, fuel-rich forests, and reduced structural
and spatial heterogeneity of vegetation, especially in dry conifer forests with frequent-fire regimes
(typically, those with fire return intervals <35 years) [16–18]. Fires in these forests are likely to be more
intense with larger patches of high-severity fire than occurred historically [19–23], reducing biodiversity,
ecological function, and resilience [12,17]. Observed 20th and 21st century anthropogenic climate changes
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of warming temperatures and an earlier onset of snowmelt have increased the length of fire seasons
and lowered fuel moistures, making large portions of the landscape flammable for longer periods of
time [21,24], and widespread, regional fire years have been associated with prolonged droughts [13,25,26].

Understanding how to manage changing fire regimes and fuel conditions will be a central challenge
for decades to come, as warmer and drier climates cause more frequent, more severe, and larger fires
than occurred historically [9,10,27,28]. Wildfires that are large and severe, that overlap in space or
time, or that are at or beyond the bounds of historical range of variability can abruptly reorganize
ecosystems [11,29,30]. In the Southwest, this reorganization may represent a tipping point in which
changing climate and disturbance processes create novel fuelscapes, thus setting the stage for future fire
regimes that are significantly different from those that have existed in the past. These regime changes
pose serious threats to ecosystem integrity and resilience [31].

Several recent papers have addressed the appropriateness and effectiveness of fire management and
forest restoration activities under changing climates [32–35]. A common finding is the limited ability of
current strategies to ameliorate undesired wildfire impacts in many ecological systems, particularly given
the potentiating effects of warmer, drier climates on fire frequency and severity. Littell et al. 2009 [32],
in an analysis of the relationship of climate and wildfire area burned in the western US, concluded
that fuel treatments may mitigate wildfire vulnerability in fuel-limited systems, but that treatments
may be less effective in systems where future fire patterns are influenced more by climate than by
fuels. Stephens et al. 2013 [36] suggested that new strategies to mitigate and adapt to increased fire
are needed to sustain forest landscapes (e.g., promote resilience), including the restoration of historical
stand conditions in high frequency, low-to-moderate severity fire regimes, while allowing for shifts
away from historical forest structure and composition in forests with low-frequency, high-severity fire
regimes. Facilitating the adaptation of forests to changing climate and fire regimes may ultimately create
more resilient systems as vegetation communities come into equilibrium with climate [35]. For example,
Schoennagel et al. 2017 [33] indicated the importance of adaptive management approaches that include
increased use of prescribed fire, much reduced fire suppression, and recognition of the limited ability of
fuel treatments to alter regional fire patterns.

The need for a better understanding of the potential impacts of climate changes on ecosystems
is reaching new levels of urgency. To guide management strategies, current, scientifically credible
information on how landscapes will respond to the synergistic interactions of climate and disturbance
processes is required [37]. Research is ongoing, but projections of future conditions are somewhat
uncertain and rarely produce the level of accuracy and precision needed by resource managers [38].
A core question central to fire and ecosystem management in fire-prone ecosystems is whether fuels and
fire management strategies can be designed to maintain or promote desired ecological conditions under
projected future climate and fire regimes [33]. As part of a Joint Fire Science Program project funded
to improve understanding of future ecosystem and fire regime dynamics and management impacts,
we modeled a range of climate and land management scenarios using two spatially explicit, mechanistic
ecosystem-fire models, FireBGCv2 and LANDIS-II. Our simulation landscapes are the Jemez Mountains
in northern New Mexico, modeled with FireBGCv2 (hereafter FireBGCv2-Jemez), and the Kaibab Plateau
in Arizona, modeled with LANDIS-II (hereafter LANDIS-II-Kaibab) (Figure 1). Models were previously
parameterized for respective study areas, providing an opportunity to compare outcomes and evaluate the
interactions of climate, fire, and management under a common set of climate and management scenarios.
Modeled management strategies were collaboratively developed by southwestern US researchers and
managers as plausible responses to changing forests and fire regimes. We used our models to address
three related topics for ponderosa pine and dry mixed conifer forests in each simulation landscape: (1) Will
future climate cause fundamental changes in forests and fire regimes? (2) Will current management
approaches be effective in preventing fundamental changes in forests and fires under future climates?
(3) Could shifting climate regimes require new management approaches, or can fundamental ecological
characteristics of southwestern forests be preserved through an intensification of current strategies?
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Figure 1. (a) Jemez, NM (FireBGCv2-Jemez) and Kaibab, AZ (LANDIS-II-Kaibab) study areas. Green
shading denotes distribution of forests that historically experienced high frequency (≤35 Year Fire
Return Interval) low- to mixed-severity fires (Fire Regime Group 1, LANDFIRE Program, Rollins
2009 [39]; (b) FireBGCv2-Jemez ecological setting and surface elevation; (c) LANDIS-II-Kaibab
ecological setting and surface elevation.

2. Materials and Methods

2.1. Study Areas

The ~180,000 ha FireBGCv2-Jemez study area (Figure 1a,c) is a mainly forested, fire-adapted
landscape of mesas and canyons (elevation range 1500–3500 meters above sea level (masl)).
Landscape vegetation is strongly influenced by elevation and aspect, which are highly correlated with
plant-available moisture [40]. Upper elevation (~2900 to 3500 masl), mesic forests contain Engelmann
spruce (Picea engelmanii), corkbark fir (Abies lasiocarpa var. arizonica), and blue spruce (P. pungens);
upper-middle elevation (~2300 to 2900 masl), dry mixed conifer forests consist of ponderosa pine
(Pinus ponderosa var. scopulorum), Douglas-fir (Pseudotsuga menziesii var. glauca), white fir (Abies concolor),
limber pine (Pinus flexilis), and southwestern white pine (Pinus strobiformis), with intermixed stands of
aspen (Populus tremuloides); lower-middle elevations (~2100 to 2600 masl) are comprised of pure or nearly
pure stands of ponderosa pine with Gambel oak (Quercus gambelii) understory; and dry woodlands
of piñon pine (Pinus edulis) and juniper (primarily Juniperus monosperma) occur at lower elevations of
1500 to 2100 masl [40–42]. Regional climate is semi-arid with a bimodal precipitation pattern with peaks
in winter (December–January) and summer (July–August; summer monsoon) [41]. Prior to persistent
and substantial European settlement in the mid-1800s, much of the Jemez landscape was dominated by
frequent, low-intensity surface fires with low overstory tree mortality, high understory tree mortality,
and the regular consumption of surface fuels [41,43–45]. Large wildfires that have burned across the
Jemez Mountains in the past five decades have included larger components of high-severity fire than
occurred in the past, causing high levels of tree mortality, delayed forest regeneration, and erosion and
other geomorphological changes [46,47].

The Kaibab Plateau (Figure 1a,b) is a broad, high elevation limestone plateau located in northern
Arizona, encompassing 335,000 ha in Grand Canyon National Park (GCNP) and the North Kaibab
Ranger District (NKRD) of the Kaibab National Forest. Elevation within the study landscape ranges from
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1439 to 2830 masl, supporting a range of forest types that are distributed along a gradient of increasing
moisture availability and decreasing temperature with increasing elevation. Forest types are similar
to the Jemez landscape with low elevation piñon-juniper (primarily J. osteosperma), and Gambel oak,
and mid elevation ponderosa pine. At mid to high elevations, dry mixed conifer and wet mixed conifer
forests intermix and are composed of ponderosa pine, Douglas fir, white fir, blue spruce, Engelmann
spruce, subalpine fir (Abies lasiocarpa), and aspen. Forests at the highest elevations are composed of
Engelmann spruce, subalpine fir, and aspen [48,49]. Climate is similar to the Jemez landscape, with
winter precipitation peaking slightly later (January–February) and lightning ignitions occurring most
frequently in July [50,51]. Historically, frequent surface fires burned at intervals of about six to nine years
in ponderosa pine and about seven to 31 years in dry mixed conifer forests [52,53]. Higher elevation
forests experience less frequent, mixed- to high-severity fires [54,55]. The Kaibab Plateau has experienced
large, high-severity fires in recent years [56].

2.2. Ecological Modeling

2.2.1. Firebgcv2-Jemez

FireBGCv2 (Fire BioGeoChemical model Version 2) is a spatially explicit, mechanistic ecosystem
process model developed to evaluate interactions of climate, disturbance, and vegetation over long
time scales [57–60]. Model details are described in Keane et al. 2011 [61] and in Supplement 1.
Required model inputs are ecological site and stand maps, daily weather for ecological sites, fire regime
and vegetation parameters, and initializing stand (plot) vegetation and fuels data. Ecological sites
(ponderosa pine, 61,451 ha; wet mixed conifer, 60,795 ha; piñon-juniper, 41,009 ha; dry mixed conifer,
16,039 ha; and riparian, 1824 ha; Figure 1c) were mapped from the LANDFIRE environmental site potential
(ESP) data layer [39], resampled to 90m, and generalized based on nearest neighbors to reduce fine-scale
heterogeneity. Initial stand boundaries were defined using the LANDFIRE biophysical settings layer,
and plot data from 84 plots collected across the Jemez landscape in 2012-2013 (for detailed field methods
see [57,59]) or obtained from the Forest Inventory and Analysis Program (http://www.fia.fs.fed.us/) were
assigned to stands based on similarities of dominant species, elevation, slope, and aspect. Weather data
were obtained from the Jemez Springs National Climatic Data Center cooperative weather station
(CO-OP ID 294369-2) (NCDC 2011) and were extrapolated across sites [62,63]. Historical fire frequency
and size distributions were derived from fire history studies for southwestern ecosystems [18,64–72],
including local studies [41,44,73]. Vegetation species parameters were gleaned from literature, previous
FireBGCv2 projects [57–59,66,74], and field data. We adjusted fire size and frequency parameters until
the model simulated landscape fire return intervals that were consistent with available fire history
records [18,64–68,70–72,75]. We adjusted biological tree species parameters (e.g., shade tolerance, growing
degree days, cone crop probability, bark thickness) until modeled spatial distributions and individual
species basal area characteristics matched published estimates for southwest vegetation communities
under non-managed conditions (e.g., without suppression, logging, or other activities) [69,76–78].

2.2.2. LANDIS-II-Kaibab

LANDIS-II is a spatially interactive, process-based landscape simulation model well suited for
large spatial and temporal scales [79]. Specifics of the model structure, inputs, and validation for
the Kaibab Plateau study landscape are described in Flatley and Fulé 2016 [80] and in Supplement 1.
We used the Biomass Succession extension for LANDIS-II to model forest growth, competition, succession,
and individual species response to climate change [81]. Inputs for the Biomass Succession extension,
including species growth parameters across the varying environmental site conditions, climate scenarios,
and time steps, were estimated using the Climate-Forest Vegetation Simulator [82]. The Dynamic Fire and
Fuels (DFF) extension (v2.0) [83] simulated wildfire occurrence and spread according to site specific inputs
of daily fire weather, ignition rates, and fire duration distributions. Daily fire weather data (ca. 1995–2013)
was obtained from seven Remote Automated Weather Stations located within or adjacent to the study
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landscape (http://www.raws.dri.edu). The DFF extension simulated individual fires according to daily
fire weather (for more detail see Supplement 1), then burned areas were aggregated within each 5-yr
time step. Management actions were implemented with the Biomass Harvest extension (v2.1) [84], which
reduces the biomass of cohorts according to species and age ranges specified in management prescriptions
and alters fuel characteristics. We created initial forest conditions by preceding each model run with
a 600-year spinup under contemporary climate conditions and historical fire frequencies, followed by
120 years of fire suppression and then biomass removal to simulate 20th century logging on forest service
lands. We used a 1-ha cell resolution and each extension operated at a five-year time step.

2.3. Modeling Scenarios

We modeled 20 replicates of 100-year simulations for 12 factorial scenarios of climate
(contemporary and two climate change factors, Figure 2) and management (wildfire suppression only,
current management, and two intensified strategies). Contemporary climate in FireBGCv2 was a
repeating loop of daily instrumental weather (1987–2006) from the Jemez NCDC station, extrapolated
across sites [62,63]. For LANDIS-II-Kaibab, contemporary climate used to model forest growth and
regeneration was based on downscaled climate normals from 1961–1990 [82]. Climate change factors
spanned gradients of temperature and aridity projected for the southwestern US from Warm-Dry
(based on the CCSM4 CMIP5 climate model [85] for the moderate emissions scenario RCP 4.5 [86,87]) to
Hot-Arid (from the HadGEM2-ES CMIP5 climate model [88] for the high emissions scenario RCP 8.5).
In FireBGCv2 data for both climate factors were acquired from the NASA Earth Exchange [89] for
an 800-meter grid-cell coincident with the Jemez Springs weather station, then delta-downscaled for
the period 2006-2009 by applying offsets derived from the slopes of linear regressions for individual
seasons per weather year to the longest available Jemez station daily weather stream, 1954–2006.
The delta method is a straightforward downscaling method that has a high level of climate realism
desirable in future impact studies [90,91]. Future weather streams were then extrapolated to individual
ecological sites as above. For LANDIS-II-Kaibab, climate change factors for vegetation dynamics
were incorporated into C-FVS simulations. Site-specific growth and regeneration parameters for
individual species were produced via downscaled climate surfaces available from the C-FVS webpage
(http://charcoal.cnre.vt.edu/climate/customData/). Climate change factors for fire dynamics were
incorporated into the daily fire weather data through the delta method. Adjusted fire weather data
was then used to estimate fuel moisture inputs for fire modeling. Climate projections used for both the
vegetation dynamics and fire dynamics were available at 30 year intervals, but we estimated intermediate
values at 10 year intervals using linear interpolation (for more detail see Supplement 1).

Figure 2. Annual precipitation (cm) and maximum July temperature (◦C) for Contemporary (solid black
lines), Warm-Dry (CMIP5/CCSM4, RCP 4.5, dashed blue lines), and Hot-Arid (CMIP5/ HadGEM2-ES,
RCP 8.5, dashed red lines) climate factors for FireBGCv2-Jemez and LANDIS-II-Kaibab simulation models.
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Management factors (Table S1) were derived from available prescriptions and burn plans for
the study areas [16,92] refined with input from southwestern managers. All management factors
included wildfire suppression at a level consistent with current policy and implementation, simulated
as a randomly extinguished 90% of annual ignitions in FireBGCv2-Jemez or modeled as a function
of the modern fire size distribution in LANDIS-II-Kaibab. We modeled treatments of Suppression
Only, Business as Usual (BAU), representing current treatments in ponderosa pine and dry mixed
conifer forests of the study regions, a three-fold annual increase over BAU treatment area (3xBAU),
and a six-fold annual increase over BAU (6xBAU). The BAU treatment was applied to 1.5% of the
areal extent of the ponderosa pine site and 1.5% of the dry mixed conifer site annually, with a
combination of thinning followed by prescribed fire (0.75%) and prescribed fire only (0.75%) in each
site, corresponding to a 67-year landscape treatment rotation. Treatment rotations for 3xBAU and
6x BAU were 22 years and 11 years, respectively, corresponding to larger annual treatment areas
(Figures 3 and 4). Treatments were applied each year to stands that met specified criteria (Table S1),
regardless of whether they were treated in previous years.

Figure 3. FireBGCv2-Jemez cumulative treated area and number of treatments per stand for the
100-year simulation period in managed forests of ponderosa pine and dry mixed conifer. All treatments
are thinning followed by prescribed fire or prescribed fire only for business as usual (BAU) scenarios
(1.5% treated annually, 76-year treatment rotation), three-fold increase in BAU (3xBAU, 22-year
treatment rotation) scenarios, and six-fold increase in BAU (6xBAU, 11-year treatment rotation)
scenarios for contemporary climate and two climate change factors.
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Figure 4. LANDIS-II-Kaibab cumulative treated area and number of treatments per stand for the
100-year simulation period for LANDIS-II-Kaibab in managed forests of ponderosa pine and mixed
conifer. All treatments are thinning followed by prescribed fire or prescribed fire only for business as
usual (BAU) scenarios (1.5% treated annually, 76-year treatment rotation), three-fold increase in BAU
(3xBAU, 22-year treatment rotation) scenarios, and six-fold increase in BAU (6xBAU, 11-year treatment
rotation) scenarios for contemporary climate and two climate change factors.

2.4. Model Responses and Analysis

We used a suite of fire regime and ecosystem metrics to evaluate the impacts of climate and
management (Table 1), focusing our analysis on the combined 77,489 ha (FireBGCv2-Jemez) or
155,439 ha (LANDIS-II-Kaibab) area of ponderosa pine and mixed conifer sites in which management
treatments were implemented. Variables were produced at annual time steps (FireBGCv2) or every
five years (LANDIS-II), and were summarized across scenario replicates for each time step.

High-severity wildfires were identified as those for which tree mortality was greater than
70% of the pre-fire canopy (FireBGCv2-Jemez) [93] or as wildfires for which greater than 50% of
the crown burned (LANDIS-II-Kaibab). For wildfire area burned (total wildfire area burned or
high-severity wildfire area burned), we produced boxplots as measures of the central value (median)
and variability (25th and 75th percentiles), calculated for the pool of all replicates and all years for
each scenario (FireBGCv2) or all replicates (LANDIS-II). Maps of fire return intervals (FRI) show
the mean point FRI across replicates, where FRI for each replicate is the number of simulation
years/total number of simulated fires calculated for each pixel. Prescribed fires were not included
in analyses. Ecosystem metrics, computed for individual stands within ecological sites, included
biomass, vegetation composition calculated as dominant species by biomass, and species structural
stage (FireBGCv2) or age class (LANDIS-II). We plotted proportional species composition, structural
stage, and age class as mean occupancy per species, structural stage and age class across replicates,
and basal area (BA, m2/ha) or biomass (g/m2) as time series plots of the replicate median and 25th
and 75th percentiles of BA summed for all trees.

237



Forests 2018, 9, 192

Table 1. Fire regime and ecosystem metrics tracked for FireBGCv2-Jemez and LANDIS-II-Kaibab
models. Metrics are similar between models, but note differences in calculations of forest biomass,
forest structure, and high-severity wildfire area burned that reflect differences in model mechanics.

FireBGCv2-Jemez LANDIS-II-Kaibab

FIRE REGIME METRICS

Point fire return interval No. of simulation years/total number of
wildfires per pixel

No. of simulation years/total number of
wildfires per pixel

Area burned Area of all wildfires (ha) Area of all wildfires (ha)

High severity area burned Area of all wildfires with tree mortality
>70% (ha)

Area of all fires with >50% crown
fraction burned (ha)

ECOSYSTEM METRICS

Vegetation composition Proportional species biomass (%) Proportional species biomass (%)

Forest structure Proportional species structural stage a (%) Proportional species age class b (%)

Forest production Basal area by species (m2/ha−1) Biomass by species, g/m−2

a FireBGCv2-Jemez structural stages correspond to the following diameter classes (cm): 2 ≤ saplings ≤ 10, 10 < pole
≤ 23, 23 < mature ≤ 50, 50 < large ≤ 100, very large > 100; b LANDIS-II-Kaibab age classes correspond to the
following: young 0 to 49 years, mid 50 to 99 years, and old > 100 years.

3. Results

3.1. Fire Regime Metrics

3.1.1. Fire Return Interval

FireBGCv2-Jemez fire return intervals decreased (wildfire frequency increased) for Warm-Dry and
Hot-Arid climates relative to Contemporary climate for each management scenario (i.e., comparing
climate impacts across all Suppression Only scenarios) (Figure 5). Fires were more frequent under
progressively more severe drought conditions that increased the probability of ignition and fuel
flammability, especially at lower elevations where fire return intervals were several decades shorter
than for more moderate climates. As others have reported, fire suppression resulted in a fire deficit
relative to historical reference conditions for dry southwestern forests [94,95], in which all simulated
fire return intervals were substantially longer than reconstructed intervals of five to 12 years in
ponderosa pine-dominated sites and 10 to 14 years in dry mixed conifer sites [41,43–45]. Management
treatments had little effect on fire frequency for Contemporary climate (i.e., little difference between the
Suppression Only scenario and BAU, 3xBAU, or 6xBAU) (Figure 5). Under Hot-Arid climate, fires were
less frequent for 3xBAU and 6xBAU than for Suppression Only or BAU as the result of cumulative
impacts of treatments and severe drought conditions on fuel availability, reducing fuel biomass to
below the 0.05 kg/m2 threshold required for successful fire ignition and spread in FireBGCv2.

LANDIS-II-Kaibab fire return intervals showed little to no change in response to climate, while
management had a clear influence on fire frequency (Figure 6). Fires were most frequent for the
Suppression Only management scenarios, with the shortest fire intervals of 30–40 years concentrated
in large areas of contiguous low elevation ponderosa pine forest on the northern half of the plateau.
Fuel treatments lengthened fire return intervals. The 3xBAU and 6xBAU treatments increased fire
return intervals beyond 90 years for much of the study landscape. Due to the influence of fire
suppression, fire return intervals under all scenarios (35–313 years) were longer than historical fire
return intervals of six to nine years in ponderosa pine forests and seven to 31 years in mixed conifer
forests [53,96].
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Figure 5. FireBGCv2-Jemez point fire return intervals (wildfires only; prescribed fires excluded). Scenarios are
factorial combinations of management (Suppression Only; BAU, 76-year treatment rotation; 3xBAU, 22-year
treatment rotation; 6xBAU, 11-year treatment rotation) and climate (Contemporary; Warm-Dry; Hot-Arid).

Figure 6. LANDIS-II-Kaibab fire return intervals (wildfires only; prescribed fires excluded). Scenarios are
factorial combinations of management (Suppression Only; BAU, 76-year treatment rotation; 3xBAU, 22-year
treatment rotation; 6xBAU, 11-year treatment rotation) and climate (Contemporary; Warm-Dry; Hot-Arid).
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3.1.2. Wildfire Area Burned

FireBGCv2-Jemez annual area burned increased with Warm-Dry and Hot-Arid climates relative
to Contemporary climate (Figure 7a, Table S2). Median annual area burned was a small portion of
the total area of dry managed forest, ranging from less than 1000 ha (<1.5% of dry managed forest
area) under Contemporary climate to over 2000 ha (>2.5%) for Hot-Arid climate, but among some
replicate-years, about 3000 to 5000 ha (five to ten percent, Contemporary climate) or about 6000 to
15,000 ha (seven to 19 percent, Warm-Dry and Hot-Arid climates) of dry forested area burned annually,
with outlier years in which much or all of the entire ~80,000 ha dry forested area burned (Table S2,
Figure 7a). This outcome is consistent with projections of climate-driven increases in area burned in
the western US, particularly those in which a small fraction of fires (“megafires”) become very large
despite fire suppression efforts [21,32,97,98]. Management impacts on annual area burned varied with
climate (Figure 7a). For Contemporary and Warm-dry climates, treatments increased annual area
burned proportionally to management intensity (Suppression Only, BAU, 3xBAU) because thinning
and prescribed fire treatments produced fuels that easily carry fire; i.e., were a positive feedback
to fire (but 6xBAU treatments were sufficiently frequent and extensive to limit burnable fuels and
reduce area burned). For Hot-Arid climates, annual area burned decreased with management intensity
(Suppression Only, BAU, 3xBAU, 6xBAU), because treatments in combination with altered climate
suppressed fuel production.

LANDIS-II-Kaibab area burned did not differ between the Contemporary climate scenario and
the Warm-Dry or Hot-Arid climates (Figure 8a, Table S3). The consistency in area burned for all climate
factors within Suppression Only scenarios indicates that climate had minimal influence. As discussed
above, wildfire was most prevalent in the Suppression Only scenarios, where median area burned
ranged from 3600 to 4400 ha (2.3 to 2.9% of dry managed forests). The BAU treatments only slightly
reduced area burned (2600 ha to 3200 ha) compared to Suppression Only. The enhanced treatment
rates 3xBAU and 6xBAU notably reduced the average annual area burned (700 to 1200 ha and 500 to
700, respectively). The benefits of doubling the treatment rate from 3x to 6xBAU were limited, except
for a reduction in the number of outlier years under the Hot-Arid scenario. However, exceptionally
large fire years (outliers) may have outsized impacts on ecosystem function and recovery, justifying
higher treatment rates.

3.1.3. High-Severity Wildfire Area Burned

FireBGCv2-Jemez median annual high-severity area burned (fires that resulted in >70% tree
mortality in stands) was small (less than 300 ha, or less than one percent of the total area of dry
managed forest), but in some replicate-years, as much as 1700 ha (about two percent, Contemporary
climate) or 5000 ha (about seven percent, Hot-Arid climate) of dry forested area burned annually at
high severity (Figure 7b, Table S2). Outlier years under Hot-Arid climates burned more than 75% of
the dry forested area (60,000 ha) at high severity (Figure 7b), high-severity mega-fires that were much
larger than those of the pre-European reference period [99]. There was no clear impact of management
on median high-severity annual area burned; however, increasing treatment intensity reduced the
upper range of high-severity burned area under Hot-Arid climate (Figure 7b). Management treatments
had no effect on the extreme high-severity fire (outlier) years in the Hot-Arid climate scenarios.

Consistent with the previous results for the LANDIS-II-Kaibab simulations, management,
not climate, was the primary influence on high-severity area burned. The area of high-severity
fire declined considerably under the enhanced treatments (Figure 8b, Table S3). For the Hot-Arid
climate and Suppression Only scenario, the high-severity fire rotation was 128 years for managed forest.
The BAU, 3xBAU, and 6xBAU reduced this to 184, 526, and 3337 years, respectively. The rotation for
the 3xBAU most closely aligns with a historical high-severity fire rotation of 528 years reconstructed
in mixed conifer forests on the Kaibab Plateau [55]. Reductions in the area of high-severity fire
could be particularly important in a changing climate, as forest turnover can be a catalyst for type
changes [100,101].
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Figure 7. FireBGCv2-Jemez wildfire area burned annually (ha) in ponderosa pine and dry mixed
conifer sites in (a) wildfires of all types and (b) high-severity wildfires (tree mortality >70%) for factorial
combinations of management (Suppression Only; BAU, 76-year treatment rotation; 3xBAU, 22-year
treatment rotation; 6xBAU, 11-year treatment rotation) and climate (contemporary; Warm-Dry;
Hot-Arid). Boxplots show median, 25th, and 75th percentile wildfire area burned and outliers calculated
for the pool of all replicates and all years for each scenario. The combined area of ponderosa pine and
dry mixed conifer sites is 77,489 ha.
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Figure 8. LANDIS-II-Kaibab wildfire area burned annually (ha) in ponderosa pine and dry mixed
conifer sites for (a) wildfires of all types and (b) high-severity wildfires (>50% of crown burned)
for factorial combinations of management (Suppression Only; BAU, 76-year treatment rotation; 3xBAU,
22-year treatment rotation; 6xBAU, 11-year treatment rotation) and climate (Contemporary; Warm-Dry;
Hot-Arid). Boxplots show median area burned, 25th and 75th percentiles, and outliers among replicates
and fire years for each scenario. The combined area of ponderosa pine and dry mixed conifer sites is
155,439 ha.

3.2. Ecosystem Responses

3.2.1. Forest Composition

For FireBGCv2-Jemez, Hot-Arid climate triggered a conversion of ponderosa pine forests to
shrublands and woodlands dominated by Gambel oak, piñon pine, and juniper (Figure 9a). Conversion
occurred ca AD 2075, corresponding to the hottest and driest period of future climate simulated
in FireBGCv2-Jemez (Figure 2). Woodland expansion (but not shrub expansion) was somewhat
mediated by management treatments: 3xBAU and 6xBAU reduced the proportion of piñon pine
and juniper via thinning treatments that targeted smaller bole diameters characteristic of the species,
and prescribed fire-caused tree mortality. In the dry mixed conifer site, where Gambel oak is not a
significant component of the understory, aspen occupied an increasing proportion of the landscape
as wildfires and area treated with prescribed fire increased (Figure 9b). This is consistent with aspen
field studies documenting vigorous post-fire sprouting [41,102]; however, regeneration failed under
Hot-Arid climate and co-occurring increased high severity burned area and more frequent fires.
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Coniferous species composition was relatively stable in the dry mixed conifer site over time and among
climate-management scenarios (Figure 9b) as compared with the ponderosa pine site (Figure 9a).
More frequent prescribed fire rotations and larger treatment areas of 3xBAU and 6xBAU scenarios
slightly decreased the amount of forest dominated by Douglas-fir in middle elevations in favor of
ponderosa pine (Figure 9a), somewhat mitigating 20th century trends of infill by shade tolerant
Douglas-fir facilitated by anthropogenic fire exclusion [19,77,103]. Treatments increased the amount of
aspen in the dry mixed conifer site for contemporary and Warm-Dry climates (Figure 9b), especially
by the mid-21st century, when intensified 22-year (3xBAU) or 11-year (6xBAU) rotations frequently
retreated previously managed stands (Figure 3). Rapid (within five years) post-fire regeneration of
aspen has been documented in southwestern conifer forests [104]; however, prescribed fires that
stimulated aspen growth also reduced piñon pines, a fire-sensitive species that is usually killed by
fire [105].

LANDIS-II-Kaibab compositional changes were minimal during the 21st century. Throughout the
simulation period, ponderosa pine was the dominant species on sites initially classified as ponderosa
pine forest, regardless of climate or management scenario (Figure 10a). Gambel oak was most common
in ponderosa pine forests under the Suppression Only scenario, likely due to the prevalence of
high-severity fire in the absence of treatments, while oak declined in response to the BAU and enhanced
BAU treatments that reduced high-severity area burned. In contrast to the Jemez results, Gambel oak
did not increase under climate change scenarios, actually decreasing in response to Hot-Arid climate
conditions. Dry mixed conifer forests generally shifted towards dominance of ponderosa pine in the
Suppression Only management scenario (more high-severity fire) or the climate change scenarios
(Figure 10b). Ponderosa pine is the most fire tolerant and drought tolerant of the tree species in the dry
mixed conifer forests on the Kaibab Plateau [54,106]. Ponderosa pine increased in dominance at the
expense of white fir, aspen, and to a lesser extent, Douglas-fir, which is also relatively tolerant to fire
and drought. Under the Hot-Arid climate, white fir declined initially but began to recover later in the
century with the application of fuel treatments. This recovery is likely due to increased precipitation
during the last decades of the century under the Hot-Arid climate scenario. Although, as modeled,
LANDIS-II-Kaibab compositional changes were limited, they will likely be substantial over longer time
periods, indicated by the declining regeneration probability of initial overstory species that occurred
in all forest types. For example, piñon pine and juniper were much more viable than ponderosa pine
in the ponderosa pine forest type by the end of the century under the Hot-Arid scenario. This suggests
that, given time (more than a 100-year simulation period), the model would show the replacement of
ponderosa pine with piñon-juniper vegetation, as in FireBGCv2-Jemez.
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Figure 9. FireBGCv2-Jemez dominant vegetation by biomass for the ponderosa pine site (a) and
dry mixed conifer site (b), represented as the proportional area within each site. Scenarios are
factorial combinations of management (Suppression Only; BAU, 76-year treatment rotation; 3xBAU,
22-year treatment rotation; 6xBAU, 11-year treatment rotation) and climate (contemporary; Warm-Dry;
Hot-Arid). The x-axes are simulation years and y-axes are proportional site area occupied by each
species or life form.
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Figure 10. LANDIS-II-Kaibab dominant vegetation by biomass for the ponderosa pine site (a) and dry
mixed conifer site (b), represented as the proportional area within each site. Scenarios are factorial
combinations of management (Suppression Only; BAU, 76-year treatment rotation; 3xBAU, 22-year
treatment rotation; 6xBAU, 11-year treatment rotation) and climate (Contemporary; Warm-Dry; Hot-Arid).
The x-axes are simulation years and y-axes are proportional site area occupied by each species or life form.

3.2.2. Forest Structure

For FireBGCv2-Jemez, Hot-Arid climate triggered a transition of the ponderosa pine site to stands
dominated by immature, sapling stage trees (2 to 10 cm DBH) ca AD 2075 (Figure 11a), corresponding to
the hottest and driest period of future climate simulated in FireBGCv2-Jemez (Figure 2). We attribute the
disappearance of larger-sized trees to drought- and heat-induced tree mortality, with some additional losses
due to high-severity fire. Such impacts of climate change on tree mortality have been well-documented
at regional to global scales [107–110]. Although early-successional forests occupy a large proportion
of the landscape, they are a relatively minor biomass component when compared with Gambel oak
(Figure 11a). For Contemporary and Warm-Dry climates, the distribution of structural stages in the
ponderosa pine site was stable through the 100-year simulation period and consistent with reference
conditions for uneven-aged forests with a mix of small to large size classes [16]. Trees were predominantly
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of a mature stage (23 to 50 cm DBH), with smaller proportions of saplings (2 to 10 cm DBH), pole-sized
(10 to 23 cm DBH), and large (50 to 100 cm DBH) trees (Figure 11a). Saplings increased in the dry mixed
conifer site under Warm-Dry and Hot-Arid climates ca. AD 2025 (Figure 11b), reflecting the increasing
proportion of aspen (typically small in diameter [111]) and mortality and/or removal of trees that occurred
with wildland fire and prescribed fires and fuels treatments.

LANDIS-II-Kaibab forest structure was impacted by declines in the regeneration of overstory species
under the two climate change scenarios. Climate change driven regeneration failure was apparent from
the age structure diagrams (Figure 12a,b), as proportional biomass shifted towards older cohorts during
the middle of the century, when climate moved away from the regeneration niches of overstory species.
Total biomass did not increase in older cohorts, but older trees gradually dominated the overall proportion
of biomass due to a lack of regeneration moving new trees into younger age classes. The shift in age
structure was less complete in the Warm-Dry scenario (Figure 12a,b) and in the dry mixed conifer stands
for the Hot-Arid scenario (Figure 12b), where cooler and wetter conditions enabled some ponderosa
pine regeneration.

Figure 11. FireBGCv2-Jemez structural stage for the ponderosa pine site (a) and dry mixed conifer site (b).
Scenarios are factorial combinations of management (Suppression Only; BAU, 76-year treatment rotation;
3xBAU, 22-year treatment rotation; 6xBAU, 11-year treatment rotation) and climate (Contemporary;
Warm-Dry; Hot-Arid). Structural stages correspond to the following diameter classes (cm): 2 ≤ saplings
≤ 10, 10 < pole ≤ 23, 23 < mature ≤ 50, 50 < large ≤ 100, very large > 100. The x-axes are simulation years
and y-axes are proportional site area occupied by each structural stage.
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Figure 12. LANDIS-II-Kaibab proportion of biomass by age class for (a) ponderosa pine and (b) dry
mixed conifer sites for factorial combinations of management (Suppression Only; BAU, 76-year
treatment rotation; 3xBAU, 22-year treatment rotation; 6xBAU, 11-year treatment rotation) and climate
(Contemporary; Warm-Dry; Hot-Arid). The x-axes are simulation years and y-axes are proportion of
biomass in each age class. Age classes are young (0-49 years), mid (50-99 years), and old (100 plus years).

3.2.3. Forest Production

FireBGCv2-Jemez basal area (BA, sum of individual trees’ cross-sectional area at 1.37m above ground)
for ponderosa pine and dry mixed conifer sites was initially similar to measurements of contemporary,
fire-excluded southwestern dry conifer forests [77] (Figure 13), around 20 m2/ha. Climate changes and
management treatments decreased forest biomass relative to initial conditions. Warm-Dry climate and
any of the four management factors maintained basal area well above pre-Euroamerican era estimates
of around 13 m2/ha [16,77], although 3xBAU and 6xBAU treatments decreased basal area as compared
with Suppression Only or BAU. Hot-Arid climate basal area decreased substantially, beginning early
in the simulation period ca. AD 2025, with a further abrupt step change ca. AD 2075. By AD 2100,
basal area was about 10 percent of its initial value, well below pre-settlement estimates. Loss of basal area
occurred from a complex of ecological processes—tree mortality, regeneration failure, and compositional
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and structural shifts to shrublands or early successional forests—caused by climate stress, wildfires,
management treatments, and changes in the distribution of bioclimatic space suitable for plant growth.

Biomass declines clearly illustrated the impact of climate on vegetation in the LANDIS-II-Kaibab
landscape. Tree biomass decreased drastically under the Hot-Arid climate scenario (Figure 14). By the end
of the century, average biomass in managed forests under the Hot-Arid scenario (3881 g/m2) was well
below historical estimates of pre-fire suppression biomass for ponderosa pine (9850 g/m2) and dry mixed
conifer (7460 g/m2) on the Kaibab Plateau [52,112], indicating an overall forest decline and likely type
change from forest to woodland or grassland. Biomass declines were driven by the failure of overstory
species to regenerate under warmer and drier future climate conditions, as illustrated in the age structure
shift to older cohorts. The absence of viable lower elevation species capable of replacing the declining
overstory species delays biomass recovery and is also responsible for delays in compositional change.
However, the drastic decline of forest biomass demonstrates that, despite the relatively static species
composition, these forests are fundamentally altered by the Hot-Arid climate. Biomass declined slightly
under the Warm-Dry scenario (7467 g/m2) compared to Contemporary climate (9798 g/m2), but remained
within the historical pre-fire suppression estimates of biomass for ponderosa pine and dry mixed conifer
forests referenced above. The enhanced treatment scenarios (3xBAU and 6xBAU) slightly increased the
rate of biomass declines, suggesting that high rates of thinning and burning may accelerate forest decline
under drastic climate shifts [113].

Figure 13. FireBGCv2-Jemez basal area (m2/ha) of ponderosa pine and dry mixed conifer sites. Scenarios
are factorial combinations of management (Suppression Only; BAU, 76-year treatment rotation; 3xBAU,
22-year treatment rotation; 6xBAU, 11-year treatment rotation) and climate (Contemporary; Warm-Dry;
Hot-Arid). Envelopes show median (darker line) and 25th and 75th percentiles (lighter shading) among
replicates for each scenario.

Figure 14. LANDIS-II-Kaibab average tree species biomass (g/m2) for ponderosa pine and dry mixed
conifer sites. Scenarios are factorial combinations of management (Suppression Only; BAU, 76-year
treatment rotation; 3xBAU, 22-year treatment rotation; 6xBAU, 11-year treatment rotation) and climate
(Contemporary; Warm-Dry; Hot-Arid). Envelopes show median (darker line) and 25th and 75th percentiles
(lighter shading) among replicates for each scenario.
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4. Discussion

4.1. Will Climate Changes Cause Fundamental Changes in Southwestern Fire Regimes and Forests?

Models did not produce consistent impacts of climate on fire regimes. For FireBGCv2-Jemez,
wildfires were more frequent under Warm-Dry and Hot-Arid climates, and the Hot-Arid scenario
resulted in an increase in median high-severity wildfire burned area and in episodic, high-severity
“mega-fire” events. In contrast, climate had little impact on fire outcomes in LANDIS-II-Kaibab.
Varying responses reflect fundamental differences in model mechanics (see below).

Our models were consistent in projecting a fundamental reorganization of ecosystem properties
under the Hot-Arid climate scenario, and to a lesser extent, the Warm-Dry climate scenario.
As modeled, the more extreme Hot-Arid climate is a “tipping point,” driving biomass declines,
shifts in forest structure, and compositional changes. Tipping points are critical thresholds at which
even small perturbations radically and persistently reorganize system patterns or processes [114,115].
This fundamental reorganization of ecosystems aligns with previous modeling that incorporates
climate change, fire, and vegetation interactions in temperate forests [57,116], as well as conceptual
models that identify shrublands as an alternative, stable state in dry conifer-shrub ecosystems catalyzed
by interacting anthropogenic stressors (e.g., climate changes and altered fire regimes) that push systems
past a tipping point [117,118]. Modeled forest to shrubland transformations are aligned with field
studies; for example, a recent study in the Jemez Mountains attributes the presence of Gambel oak
shrubfields to high-severity wildfire disturbances [118]. Oak shrubfields, once established, can be
highly resilient to subsequent high-severity fire events [45,117]. Ecotonal shifts between ponderosa
pine forests and piñon-juniper woodlands have also been documented in the southwest, in response
to a severe drought in the 1950s [119] and more recent drought conditions [120]. From our results,
we infer that dry forests of the Jemez, NM and Kaibab, AZ ecosystems—and, by extension, other
dry forest ecosystems in the southwestern US—may be vulnerable to a type change from forest to
shrubland or grassland. Persistent changes in these systems may be driven by (1) shifts in fire regimes
due to changes in climate and fuel availability, type, and structure; and (2) climate-driven regeneration
failure as ecosystems depart from optimal conditions for overstory tree species.

Ponderosa pine forests of the Jemez Mountains were more substantially altered by climate and
wildfire than dry mixed conifer forests, which contain species of varying drought resistance and
physiological tolerance and therefore exhibited a more stable response to changing climate conditions.
This outcome provides support for the hypothesis that species diversity promotes functional resilience
to climate perturbations [121,122]. This conclusion is further supported by comparing responses
between the two landscapes. In the Jemez Mountains, the ponderosa pine (Figure 9a) and dry mixed
conifer (Figure 9b) sites both contain a significant component of lower-elevation piñon and juniper
species, with mature individuals providing propagules as soon as climate conditions shift to favor
these species. In contrast, piñon and juniper species are largely missing from ponderosa pine and dry
mixed conifer sites on the Kaibab Plateau (Figure 10a,b); therefore, these species must encroach from
lower elevations. This recruitment mechanism is also apparent in compositional shifts and biomass
recovery that occurred more rapidly in the wet mixed conifer and spruce-fir forests as compared to
ponderosa pine forests on the Kaibab Plateau (data not shown). Contemporary wet mixed conifer and
spruce fir forests include ponderosa pine, which remains viable at these sites throughout the climate
changes of the next century. In forests, types where none of the current overstory species remain viable,
delayed uphill movement of lower elevation species will likely exacerbate and lengthen biomass
declines and increase the potential for persistent type changes where shrub or cheatgrass communities
establish and resist future invasion by tree species [118,123]. Because our models did not include insect
disturbance, which has been a significant cause of recent tree mortality in the southwestern US and
particularly in piñon pines in the southwest [124], the role of piñon pine in maintaining tree cover and
initiating forest recovery could be unrealistic. We hypothesize that if insect disturbance were included
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in the models, differential piñon mortality would shift woodland dominance to juniper species, which
may or may not play a similar ecological role in woodland systems [119,125].

4.2. Will Current Management Approaches be Effective in Preventing Departures under Future Climates?

Management treatments had little effect on ecosystem responses to climate change in
FireBGCv2-Jemez and LANDIS-II-Kaibab. For both landscapes, the current management strategy
(BAU scenarios) was consistently ineffective in preventing changes under future climate. Thinning
and prescribed burning treatments at current application rates had little appreciable influence on area
burned or high-severity area burned. At the stand scale, fuel treatments have been shown to be highly
effective at reducing potential fire severity [126,127]. However, our modeling indicates that the current
rate of application has little impact on wildfire outcomes at the landscape scale. The BAU scenarios
were also ineffective in preventing biomass declines, shifts in age structure, and compositional changes
under future climate. Targeted treatments may temporarily achieve objectives and protect high
value landscape components. However, the central role of climate in driving forest changes through
either mortality or regeneration failure suggests that the benefits of current treatments will likely
be temporary.

4.3. Do Shifting Climate and Fire Regimes Require Novel Management Approaches?

Management strategies did not maintain current biomass, composition, or structure with changing
climate. Although 3xBAU and 6xBAU treatments impacted wildfire regimes on the Kaibab landscape,
they were ineffective at buffering or delaying the reorganization of forest ecosystems on either
landscape. Intensified treatment scenarios (3xBAU and 6xBAU) slightly increased the rate of biomass
declines, suggesting that high rates of thinning and burning may accelerate forest decline under drastic
climate shifts [113]. The 6xBAU treatment strategy achieved treatment rotations of eleven years, the
approximate historic fire rotation for ponderosa pine and dry mixed conifer forests, but increased
areal extent and frequency of treatments alone was not an effective tool for preventing fundamental
ecological shifts, especially under Hot-Arid climate. This result suggests that novel management
approaches may be required to sustain forest landscapes or facilitate the adaptation of forests to
changing climate and fire regimes [33,35,36]. For example, the planting of lower elevation species,
adapted to warmer and drier conditions, could facilitate species migration, accelerating ecosystem
recovery and reducing the depth of biomass declines [128,129].

4.4. Model Influences on Outcomes

Outcomes can differ across ecological models as the result of different model structures, initializing
conditions, parameterization, and data inputs. Complex models are sensitive to a large number
of factors (e.g., climate, weather, terrain) because they explicitly simulate the relevant underlying
mechanistic processes. FireBGCv2 and LANDIS-II are highly complex models that mechanistically link
climate, weather, and fuel patterns to fire frequency and area burned [83,130]. In FireBGCv2, fire regime
characteristics are emergent model properties, determined by iterative climate and fire influences
on fuel properties (type, amount, moisture) and live vegetation characteristics (e.g., bark thickness,
canopy base height, DBH, vigor). Climate can serve as either a positive feedback to fire (e.g., warming
temperatures increase landscape burnability by decreasing fuel moisture) or a negative feedback
(e.g., drought conditions decrease burnabilty via reduction in biomass). In this study, the combination
of larger areal extent of thinning and prescribed fire treatments, increased high-severity wildfire area
burned, climate conditions unfavorable for tree recruitment and regeneration, and understory biomass
production modeled for the Hot-Arid, 3xBAU and 6xBAU scenarios served as a negative feedback
to fire frequency via reductions in fuel availability and connectivity [94,103,131]. In the LANDIS-II
DFF extension, climate influences on area burned are partially restricted by the input of a user defined
fire size or fire duration distribution. We used a fire duration distribution, which enables individual
fires to increase in size in response to climate influences on fuel moisture and consequent fire spread
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rates. Therefore, individual fires should increase in size in response to a warmer and drier climate and
potentially increase area burned. Yet, this model dynamic does not account for additional large fires
that might be expected to escape suppression under a hotter and drier future. LANDIS-II simulations,
in contrast to the FireBGCv2 simulations, also did not incorporate the direct influence of climate
changes on the number of ignitions (e.g., fuel moisture influences on the likelihood of ignitions).
However, the model does incorporate the indirect influence of climate-driven vegetation changes and
subsequent changes in fuel conditions on the number of ignitions. Still, the missing link between direct
impacts of climate on the number of ignitions represents an important limitation in the assessment of
climate influences on future fire regimes in the LANDIS-II DFF extension as it is configured in this
particular study, and it may explain the reduced sensitivity of the fire regime to climate. Ultimately,
we did not produce consistent projections of future fire regimes, due to differences in model mechanics.
However, despite their differences, models did produce consistent projections of substantially altered
forest composition, structure, and biomass, suggesting a level of biotic reorganization that will affect
management goals and strategies for southwestern landscapes.

Sources of uncertainty in model results come from input climate model data, which are inherently
uncertain because climate change and the severity of its impacts depend on future emissions and
mitigation measures. Additionally, global climate models (GCMs) may not accurately represent climate
and weather at the regional and local scales, particularly concerning precipitation trends and climate
oscillations that influence fire patterns [132–134]. The delta method used to locally downscale climate
model inputs only accounts for changes to the mean climate signal, and not to shifts in synoptic-scale
climate patterns outside of observed weather [90,135]. Finally, neither of our models included insects
as a disturbance agent, although insect outbreaks are predicted to increase with warmer and drier
climates [136,137]. Significant insect-caused tree mortality has already occurred in piñon pines in the
Southwest [124], and insect disturbance, if modeled, could influence forest dynamics.

5. Conclusions

Although this study was not designed as a factorial model comparison (i.e., in which both models
are developed for each landscape), similarities in the model results suggest common, regional-scale
ecological inferences useful for understanding current and future climate, fire, and vegetation dynamics
across southwestern forested ecosystems. Both models projected persistent compositional and
structural changes in present-day dry conifer forests caused by climate changes and shifting fire
patterns, particularly in ponderosa pine forests. We found resilience traits in dry mixed conifer
forests in both model landscapes, and indications that ecotonal zones—for example, piñon-juniper
ponderosa pine ecotone in the Jemez Mountains—can facilitate relatively rapid upslope movement
of drought-adapted species into areas that have become too arid to support more mesic forests.
Models produced dissimilar outcomes related to management and climate impacts on fire regimes,
the result of inherent differences in model mechanics. However, both models captured cumulative,
reciprocal interactions of climate, fires, and vegetation that highlight the complexity of fire-prone
ecological systems in which key driving processes (e.g., climate) have both direct and indirect and
short- and long-term influence on landscape patterns and processes.

Our results are compatible with recent papers that have identified the need for new strategies
to promote the resilience of fire-prone forested ecosystems. Current and intensified management
treatments simulated for FireBGCv2-Jemez and LANDIS-II-Kaibab did not prevent fundamental
reorganization of the study landscapes under changing climates, suggesting that historical or
present-day forest and fire regime characteristics may not be achievable management targets in the
future. The design of novel management approaches will present two important challenges. First, it
requires managers to reach a consensus on achievable objectives under future climate conditions, not
based on historic reference conditions. Potential objectives could include the maintenance of functional
types or ecosystem services, biomass conservation, carbon sequestration, the maintenance of key
habitat types, or the conservation of species and genetic diversity [138]. Second, managers would need
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to begin implementing and experimenting with untested approaches that could produce unintended
consequences. Modeling studies will be an important component of this process, helping to inform
the selection of promising treatments and anticipate risks. However, ultimately, these approaches
will require testing in actual landscapes, perhaps initially at smaller scales. This approach poses a
difficult but critical path forward, requiring a dynamic, experimental land management framework
that anticipates change, acknowledges that current systems have transformed or will transform away
from historical references, and allows dynamic ecological processes to occur [139].

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/9/4/192/s1,
Supplement 1: Methods: The FireBGCv2 and LANDIS-II models, Table S1: Treatment parameters for
FireBGCv2-Jemez and LANDIS-II-Kaibab modeling simulations. Results: Table S2: FireBGCv2-Jemez wildfire
area burned, Table S3: LANDIS-II-Kaibab wildfire area burned.
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Abstract: Changes to the frequency of fire due to management decisions and climate change have the
potential to affect the flammability of vegetation, with long-term effects on the vegetation structure
and composition. Frequent fire in some vegetation types can lead to transformational change beyond
which the vegetation type is radically altered. Such feedbacks limit our ability to project fuel loads
under future climatic conditions or to consider the ecological tradeoffs associated with management
burns. We present a “pathway modelling” approach to consider multiple transitional pathways
that may occur under different fire frequencies. The model combines spatial layers representing
current and future fire danger, biomass, flammability, and sensitivity to fire to assess potential
future fire activity. The layers are derived from a dynamically downscaled regional climate model,
attributes from a regional vegetation map, and information about fuel characteristics. Fire frequency is
demonstrated to be an important factor influencing flammability and availability to burn and therefore
an important determinant of future fire activity. Regional shifts in vegetation type occur in response to
frequent fire, as the rate of change differs across vegetation type. Fire-sensitive vegetation types move
towards drier, more fire-adapted vegetation quickly, as they may be irreversibly impacted by even
a single fire, and require very long recovery times. Understanding the interaction between climate
change and fire is important to identify appropriate management regimes to sustain fire-sensitive
communities and maintain the distribution of broad vegetation types across the landscape.

Keywords: climate change; prescribed burning; vegetation change; climate adaptation

1. Introduction

One of the key determinants of fire activity is the available fuel load. The fuel load is influenced at
the landscape scale by community structure and composition (e.g., grassland vs. forest), and at more
local scales by fuel age, structure, and composition; rates of decomposition, and vegetation growth
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rates. Attempts to project future fire danger must therefore account for changes in vegetation growth
and fuel dynamics under future climatic conditions. The challenges associated with quantifying these
processes have been identified as a significant gap that limits our ability to project future fire danger [1].

Projecting future fire danger is further complicated by the interactions and feedbacks that exist
between the fire regime, vegetation, climate, and human intervention [1]. The frequency of fire
is an important aspect of the fire regime and is projected to increase under the warmer and drier
climate conditions expected with ongoing climate change. In addition, prescribed burning (also
referred to as management burning) is a major component of the fire regime in many parts of the
world. Prescribed burning regimes are likely to change in the future, for several reasons. In the
warmer and drier conditions that are projected under ongoing climate change, there may be reduced
opportunities available for prescribed burning, as fire danger increases and the fire season starts earlier
in the year [2–6]. At the same time, community attitudes may shift to demand more extensive and/or
frequent prescribed burning to protect lives and property following destructive wildfires. Alternatively,
support for prescribed burning may decline due to concerns about the health effects of smoke [7,8].

Changes to the frequency of fire due to such management decisions and climate change have the
potential to affect the flammability of the vegetation, with long-term effects on the vegetation structure
and composition. Frequent fire in some vegetation types can lead to transformational change when a
threshold is crossed, beyond which the vegetation type is radically altered, and this is not always a
gradual process. For example, in forests dominated by obligate seeders, increased frequency of intense
fire can cause a state change from woodland to grassland [9]. In Tasmania, Australia, changes to
anthropogenic burning have caused rainforest to shift to moorland and vice versa [10–12]. An increase
in the frequency of prescribed burning may also increase flammability in some vegetation types [13,14].
In subalpine and alpine forests of southeastern Australia, for example, Zylstra [15] demonstrated that
frequent burning (up to a 14-year cycle) led to changes in forest structure that more than doubled the
average size of fires, which spread faster and were more difficult to suppress.

It is therefore of interest to explore future potential fire activity under different scenarios of
fire frequency. While there are major impediments to projecting fuel loads under future climatic
conditions, it is possible to project several important factors determining fire activity into the future.
Values for future climate conditions, including fire weather, Soil Dryness Index, and productivity can
be calculated from projections of future climate, available at increasingly fine resolution. For other
ecological factors, the general trends expected under climate change, such as growth rates and time to
maturity, can be estimated. This enables potential pathways of change to be identified, starting with
the current flammability and sensitivity to fire of broad vegetation types.

We present an approach to identify the main drivers of change to potential fire activity under
future climate change and explore potential pathways of change to broad vegetation types affecting
flammability across the landscape. We illustrate the approach using data from Tasmania, Australia,
but the method could be applied anywhere in the world. We use a “pathway modelling” approach to
consider multiple transitional pathways that may occur under different fire frequencies. We do not
include changes to the distribution of vegetation in response to changing climate suitability because we
expect that such change will occur slowly over long timeframes for the main forest types in Tasmania.
Since the dominant forest species that make up the bulk of the fuel load are long-lived and adapted
to a broad range of climate conditions (as shown by their current broad geographical distributions),
they are likely to persist, even if stressed, for much of the 100-year timeframe covered by the model.

While the model involves a considerable simplification of the real world of vegetation and fire at
the landscape scale, the approach enables a range of plausible futures to be explored and provides
a framework for considering the vegetation responses and feedbacks that may occur between fuel
loads and fire weather in the future. It is not intended as a predictive model of vegetation flammability
or spread under future conditions. Rather, it is a tool to explore the range of plausible futures
arising from changing fire weather over time in combination with changes to the fire regime due to
management decisions.
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This article expands on research presented at the International Congress on Modelling and
Simulation (MODSIM), December 2017, Hobart, Australia, and published in The Modelling and
Simulation Society of Australia and New Zealand (MSSANZ) conference proceedings. A more detailed
methodology is presented here, to enable the tool to be developed and applied elsewhere. Ways in
which the tool could be applied to communicate and illustrate the potential consequences of changes
of fire frequency and climate change are also more fully developed.

2. Materials and Methods

2.1. Representing the Response to Fire of Tasmanian Vegetation Communities

A regional vegetation map, TASVEG version 3.0 [16], was used to provide information about the
existing composition, structure, flammability, and fire sensitivity of broad vegetation groups across the
region. This provided the baseline for the potential response of the vegetation to changing fire weather,
productivity (biomass), and fire frequency. TASVEG 3.0 provides a map of the Tasmanian vegetation
at a resolution of 1:25,000, comprising 158 mapping units, most of which represent distinct vegetation
communities. Associated with each mapping unit is detailed information about the composition,
structure, and floristics of the unit [17], from which flammability and fire sensitivity categories have
been derived based on the attributes of the common plant species [18]. We focus on the dominant
plants because they are often the “fuel species” [19] that provide most of the biomass and determine
the structure of the vegetation community. Changes to the distribution, abundance, or dominance of
fuel species under altered fire regimes have the potential to set up positive or negative feedbacks.

The response of a community to fire is related to the flammability and sensitivity of the present
vegetation type to fire. The fire attributes categories (24 categories) are groups of communities
in the TASVEG vegetation map that have similar fire sensitivity and flammability characteristics.
There are five fire sensitivity categories (low, moderate, high, very high, and extreme) which reflect
the potential ecological impact of a single fire on a stand of vegetation (Table 1). Sensitivity to fire
will determine the response of the vegetation to fire or, alternatively, its resilience to frequent burning.
Sensitivity is influenced by the reproductive strategy of the dominant species (e.g., obligate seeders vs.
resprouters, time to maturity) [20], which has been widely used to represent response to changing fire
intervals, e.g., [21]. The four flammability categories (low, moderate, high, and very high) are based on
knowledge of the dynamics of fuel dryness for each vegetation type, which affects how many days per
year the vegetation type will burn (Table 1). The distribution of vegetation across Tasmania belonging
to the flammability categories in TASVEG 3.0 is shown in Supplementary Material Figure S2.1.

We use a broad functional type approach to understand the effect of altered fire regimes across
the landscape because it is independent of taxonomic identity and therefore focusses on process [22].
Different species assemblages are likely to have very similar fuel properties because fuel is strongly
influenced by vegetation structure and spatial distribution [23].

Table 1. Fire sensitivity and flammability categories from Pyrke and Marsden-Smedley (2005) [18].

Fire Sensitivity Categories

Extreme Any fire will cause irreversible or very-long-term (>500 years) damage

Very high A single fire will cause significant change to community structure for 50–100 years
and will increase the probability of subsequent fires

High At least 30 years between fires is required to maintain the defining species. Fire
intervals greater than 80 years are required to reach mature stand structure
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Table 1. Cont.

Moderate At least 15 years between fires is required to maintain the defining species

Low A single fire will generally not affect the vegetation, but repeated short intervals (i.e.,
<10 years) may cause long-term changes

Flammability Categories

Very high Will burn readily throughout the year even under mild weather conditions, except
after recent rain (i.e., less than 2–7 days ago)

High Will burn readily when fuels are dry enough (from late spring to early autumn) but
will be too moist to burn for lengthy periods, particularly in winter

Moderate Will only burn after extended periods without rain (i.e., 2 weeks or more), and in
moderate or stronger wind conditions

Low Will burn only after extended drought (i.e., 4 weeks or more without rain) and/or
under severe fire weather conditions (i.e., Forest Fire Danger Index > 40)

2.2. Vegetation Pathways through Time

The model starts with broad vegetation type to determine the general transition pathway, but the
rate at which change occurs is based on the attributes of the underlying mapping units. Transitional
gradients, from wet forest types through to dry forests, woodlands, and grasslands, are followed,
dependent on the fire frequency and the changing fire weather over time.

Eucalyptus forests, Non-eucalyptus forests (e.g., Melaleuca L., Leptospermum J.R. Forst. & G. Forst.,
Acacia Mill)., and Rainforests (e.g., Athrotaxis D. Don., Nothofagus Blume) follow different pathways,
represented by a gradient of moisture and fire frequency. Figure 1 shows the general pathways followed
in the model. The detailed steps for all vegetation types are shown in Supplementary Material Table
S2.2. Subalpine and Alpine types are treated separately to reflect their higher sensitivities to fire.
The pathways can be reversed under fire suppression scenarios except where site factors determine
the present vegetation type. For example, grassland can move towards forest if fire is suppressed,
and non-eucalypt wet forest may become drier in the future and with increased fire frequency. However,
dry non-eucalypt forests cannot become wet forests because the current composition reflects the
moisture of the site (e.g., Allocasuarina L.A.S. Johnson occurs on dry sites, Acacia on wet sites).

Different understorey types within the broad vegetation types reflect the fertility of the site,
moisture, and fire history. We assigned broad understorey types to enable this to be incorporated
into the transition pathway and influence the rate of change. We started all communities with the
understorey it would have if it had been unburnt for long periods. We did not attempt to recreate
the state of the vegetation in its current state, although this could be incorporated with further
model development.

Fire sensitivity was changed at each time step to reflect any changes to vegetation type, based
on the assumption that the vegetation community will shift in the direction of lower fire sensitivity
(i.e., more fire adapted) if the fire interval is shorter than the interval that the original community
requires to maintain the defining species. For example, a vegetation type in the Extreme category
moves one step to the Very High category if the fire interval is less than 500 years, because any fire will
cause either irreversible or very-long-term (>500 years) damage [18]. A fire-adapted community with
Moderate fire sensitivity will move one step to the Low category if the fire interval is less than 15 years,
and remain at Moderate if the fire interval is greater than 15 years, because vegetation communities
in this category require at least 15 years between fires to maintain the defining species. Conversely,
a grassland with Low fire sensitivity can move in the other direction if fire is excluded for more than
100 years, as the community shifts towards a more mesic vegetation type. Flammability was also
updated at each time step to reflect any changes to vegetation type.
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Figure 1. The vegetation pathways followed in the model. Detailed steps with the associated TASVEG
3.0 vegetation codes representing the original vegetation types used to develop the pathway are shown
in Supplementary Material Table S2.2.

2.3. Modelling Potential Fire Activity

The vegetation pathway model is based on the four-switch model [24], which describes fire activity
in terms of four factors that must be fulfilled simultaneously (switched “on”) for fire to occur. There
must be fuel available (biomass); it must be dry enough to burn (availability to burn); weather conditions
must be conducive to fire spread (fire weather); and there must be an ignition source (ignition).

Modelling “Potential Fire Activity” (PFA), the level of fire activity possible if an ignition source
were present, is a two-step process. First, the broad vegetation type is determined for each cell for a
particular time and fire interval. Then, the PFA is calculated at each grid cell (10 km) across Tasmania,
Australia, using the appropriate attributes for that type, following the equation

Potential Fire Activity (PFA) = Biomass + Availability to Burn + Fire Weather (1)

where Biomass = (productivity × fuel load at time since fire); Availability to Burn = flammability of
vegetation type at current Soil Dryness Index (SDI) × slope factor; and Fire Weather = Fire Danger
Index (FFDI or MFDI, depending on vegetation type). Each term is described in detail below.

Potential Fire Activity was calculated for seven time periods (1961–1980, 1981–2000, 2001–2020,
2021–2040, 2041–2060, 2061–2080, 2081–2100) under a range of fire frequency scenarios. Mean values
for each term were calculated for current and future time periods using a combination of climate
layers (Productivity, SDI, Forest Fire Danger and Moorland Forest Danger Indices (FFDI and MFDI),
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attributes from TASVEG 3.0 [16], and information on fuel characteristics from the scientific literature.
Climate indices used in the equation reflect the appropriate time period, so if the model is 50 years
from 2000, then the climate layer at that time step is 2040–2060. The layers used to calculate each term
and their relationship to each other are summarized in Figure 2.

Figure 2. The components of the vegetation pathway model. Blue boxes are inputs. Light-blue boxes
are derived products. Orange components represent the different vegetation pathways followed over
time. Purple boxes represent the “switches” calculated. Green boxes are outputs reflecting changes to
vegetation over time. ‘Broad Vegetation Type per timestep’ is used to define the vegetation conditions
and estimate the Potential Fire Activity at each timestep. Numbers in brackets refer to the section
within the text within which the term is described in detail.

All climate-driven layers were calculated from the output of a dynamically downscaled regional
climate model (The Commonwealth Scientific and Industrial Research Organisation’s Conformal
Cubic Atmospheric Model (CCAM)), at a resolution of ~10 km. Downscaling of six global climate
models from the Climate Model Intercomparison Project 3 (CMIP3) was carried out by the Climate
Futures for Tasmania (CFT) project. Details of the climate modelling can be found in Corney et al. [25].
All projections and layers are available through the Tasmanian Partnership for Advanced Computing
(TPAC) portal (http://portal.sf.utas.edu.au/thredds/catalog.html).

2.3.1. Biomass

There are two components to the Biomass term: (i) productivity and (ii) the fuel load.

(i) Productivity

The GROCLIM submodel from the ANUCLIM model [26] was used to generate an index of
relative potential plant growth, based on plant growth response to light, temperature, and water
regimes under current and future climate conditions. The growth index does not represent actual
biomass production, but describes plant production potential across the landscape.

Annual mean growth indices were computed for three thermal types using a parabolic thermal
response curve, which is most appropriate for the C3 photosynthetic pathway, and the following
optimum temperature and thermal ranges. The C3-Mesotherm plant type has a relatively broad range
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of growing temperatures (3–36 ◦C) with an optimum temperature of 19 ◦C, and is most applicable to
temperate species. The C3-Microtherm plant type has a range of growing temperatures from 0 to 20 ◦C
with an optimum temperature of 10 ◦C, so is most applicable to conifers and cool to cold temperate
climate plants. An additional GROCLIM index was customized to represent forest growth based on the
known thermal requirements of a Eucalyptus L'Hér. species (E. globulus: Minimum temperature (Tmin)
8 ◦C, Maximum temperature (Tmax) 40 ◦C, Optimum temperature (Topt) 16 ◦C) [27]. The growth index
is a dimensionless index with a scale of zero to one, where plant growth is minimal or nonexistent
below a growth index value of 0.2. This was scaled (by multiplying by 1.6), so that productivity could
increase or decrease under future conditions of temperature and rainfall.

A composite GROCLIM layer was calculated for each time period, with the appropriate GROCLIM
thermal types applied to each broad vegetation type, as follows. The C3-Microtherm index was used
for all areas with alpine and subalpine vegetation types; Buttongrass because it generally occurs
at altitudes greater than 600 m in colder regions; and Rainforest with conifers or deciduous beech,
because of the presence of conifers. The index based on the Eucalyptus thermal type was applied to
all areas with Eucalypt forest types, and the C3-Mesotherm index was applied to all other regions to
incorporate the broad thermal range of temperate plants in general.

(ii) Fuel Load

The fuel load (tonnes per hectare) was calculated for each broad vegetation type at each time step,
using Olson’s model of fuel accumulation [28]:

Biomass (of fuel) = L × (1 − exp(−k × A)) (2)

where L represents the carrying capacity (or maximum fuel load), k is the growth rate (or decomposition
rate) and A is age (or time since fire).

Values for carrying capacity and growth rate in Tasmanian vegetation types were decided upon
after consultation with the literature and fire ecologists (Jon Marsden-Smedley, Dave Taylor, personal
communication), and resulted in the accumulation curves shown in Supplementary Material Figure
S2.3. The value for the TASVEG type that made up the greatest area of each Broad Vegetation Type
was used.

2.3.2. Availability to Burn

This term of the Potential Fire Activity equation incorporates (i) the Flammability of the vegetation
type and (ii) a measure of fuel dryness, the Soil Dryness Index (SDI).

(i) Flammability

The four flammability categories (low, moderate, high, and very high) are based on knowledge
of the dynamics of fuel dryness for each vegetation type, which affects how many days per year the
vegetation type will burn. The categories are defined in Table 1. As with fire sensitivity, the flammability
category was changed at each time step to reflect any changes to vegetation type.

(ii) Soil Dryness Index (SDI)

The Soil Dryness Index (SDI) [29] is a measure of soil moisture which is used as an index of
fuel moisture and relative flammability of different vegetation types (values from [30]) (Table S2.4,
Supplementary Material). An overview of the SDI and its strengths and weaknesses can be found in
Marsden-Smedley (2009) [30]. The mean SDI from the CFT projections was calculated at each time
period, and determined the flammability of each vegetation type at that time.

In addition, a slope correction factor was applied to each pixel to capture the effect of slope on
fuel preheating and wind speed. Slopes of >30% were weighted by 10; slopes of 21–30% by 5; slopes
of 16–20% by 3; and slopes of 0–10% were weighted by 1. This follows the BRAM–Bushfire Risk
Assessment Model (Parks and Wildlife Service) which is used operationally in Tasmania.
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2.3.3. Fire Weather (FFDI, MFDI)

Two different fire danger indices were used to indicate fire weather at each time period.
Both indices incorporate surface air temperature, relative humidity, and wind speed, combined with an
estimate of fuel dryness (Drought Factor, based on Soil Dryness Index and recent precipitation) to give
an index of daily fire danger. The Moorland Fire Danger Index (MFDI) [31] was used for areas with
Buttongrass Moorland, Sphagnum, and Sedgeland vegetation. This index is better suited to moorlands
and other types where soil dryness has less of an influence on fire behavior. The annual cumulative
MacArthur’s Forest Fire Danger Index (FFDI) [32] was applied for all other vegetation types.

2.4. Fire Frequency

We explored the effect of different fire frequencies on the potential fire activity and flammability
of vegetation across Tasmania. The climate-driven layers (productivity, SDI, and fire weather) were
updated to reflect the changing climate over time, and the vegetation type shifted along the appropriate
pathway when the fire frequency was above the threshold for each type. Values for the time between
fires, or fire interval, required for recovery were based on available literature (e.g., Table 2).

Table 2. Fire sensitivity categories used in the vegetation model [18].

Frequency of Fire above Which
Community Does Not Survive

(No. of Fires per 100 Years)

Time between Fires below
Which Community Does Not
Survive (Stand Replacement)

Time between Fires below
Which Community Will

Change Gradually

Extreme (E) 1 300 500
Very High (VH) 1 50 100

High (H) 3 30 80
Moderate (M) 6 - 15

Low (L) - 2–5 10

3. Results

3.1. Impact of Fire Frequency on Vegetation Type

Very frequent fire, with only 4 years between fires, results in a shift towards drier vegetation types
across the state (Figure 3). Regions with fire-sensitive vegetation are highlighted, as the vegetation
shifts quickly at high fire frequency. For example, the wet sclerophyll forests with rainforest or
broadleaved understoreys in southern Tasmania (shown in orange) quickly move towards dry forest
types. In contrast, at very long fire intervals (or low fire frequency), which would occur if fire were
actively suppressed, some vegetation types could potentially transition towards different vegetation
types (Figure 4). For instance, if fire were suppressed in native grasslands, there would be a shift
towards woodland vegetation as trees establish in the absence of frequent fire. Buttongrass moorland
transitions to a woody vegetation type (mauve to pink) if fire is suppressed and the fire interval is
longer than 30 years.

Such changes have the potential to affect the statewide distribution of structural types (Figure 5).
If fires were to occur every two years for a period of 15 years, only grasslands and dry forests would
remain, and many areas, such as alpine areas and sphagnum, would become bare ground (a category
used to indicate when the limits of adaptability have been exceeded and no vegetation is able to
establish). As the fire interval increases (e.g., to 7 years), there is less of an impact on the fire-adapted
vegetation types such as grasslands and woodlands, but there is still an increase in their area as the
more mesic vegetation types transition towards grassland and woodland. The area of forest appears
stable at these fire frequencies, but there is a shift towards dry forest, away from wet eucalypt and
non-eucalypt forests. The current area of woodlands can be sustained into the future at fire intervals
above 16 years. At longer intervals, the area increases, as grasslands transition into woodlands when
fire is suppressed. The dry eucalypt forests and woodland types in which prescribed burning is

267



Forests 2018, 9, 210

currently carried out are sustained at a 10-year fire interval (Figure 6). The transitions are seen as a
series of steps in the output, reflecting the threshold values used in the model.

Figure 3. Impact of frequent fire (every 4 years) on vegetation type across Tasmania, incorporating
annual layers from the Climate Futures for Tasmania projections. The numbers above each map refer
to the number of years from 2000. Colors represent different vegetation types, as follows: Light blues,
Subalpine vegetation; Dark blue, Alpine vegetation; Purple, Buttongrass; Oranges, Wet sclerophyll;
Dark Orange to Brown, Dry sclerophyll; Greys, Woodland; Reds, Non-eucalypt wet forests; Dark
Purple, Non-eucalypt dry forests, Light to Dark Greens, Rainforest.

Figure 4. Impact of infrequent fire (every 35 years) on vegetation type across Tasmania. The numbers
above each map refer to the number of years from 2000. Colors represent different vegetation types,
as follows: Light blues, Subalpine vegetation; Dark blue, Alpine vegetation; Purple, Buttongrass;
Oranges, Wet sclerophyll; Dark Orange to Brown, Dry sclerophyll; Greys, Woodland; Reds,
Non-eucalypt wet forests; Dark Purple, Non-eucalypt dry forests, Light to Dark Greens, Rainforest.

268



Forests 2018, 9, 210

Figure 5. The change in the area of Tasmania covered by broad vegetation structural types after 100
years of burns at a range of fire intervals. The area at fire interval 0 corresponds to the distribution of
vegetation types in the year 2000.

Figure 6. The impact of a ten-year fire interval on vegetation types across Tasmania over a period of
100 years, beginning in 2000. Transitions were constrained along vegetation pathways, indicated by
different colors, with each type having different tolerances to fire frequency.

3.2. Impact of Fire Frequency on Future Potential Fire Activity

Fire frequency has a greater impact on future Potential Fire Activity (PFA) than climate change
over the coming decades. With very high fire frequency (fire interval of 1–2 years), the future Potential
Fire Activity is very low because all vegetation is pushed towards the bare ground state in the model
over time (Figure 7). Beyond three-yearly intervals, the more frequent the fire, the lower the distribution
and the peak of the state-wide PFA. The highest PFA values are all fire intervals greater than 30 years,
reflecting the contribution of fuel accumulation and carrying capacity to fire activity.

269



Forests 2018, 9, 210

Figure 7. Impact of fire interval on future Potential Fire Activity across Tasmania.

3.3. Impact of Fire Frequency on Treatability

Vegetation that requires fire management to fulfil operational requirements is referred to as
“treatable”. At fire intervals of between 15 and 50 years, there is little change in the percentage
treatability across Tasmania from the baseline to the end of the century (Figure 8). Intervals of less
than 5 years maintain the highest proportion of vegetation requiring fuel management. The drop in
treatability at very high frequencies reflects the shift to the bare ground state of fire-sensitive vegetation
types over time. At very long fire intervals, the percentage of treatable vegetation drops over time
because in the absence of fire, vegetation transitions to wetter forest types.

Figure 8. The impact of fire interval on the area of the state requiring fuel management.
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4. Discussion

Future fire danger is projected to increase substantially under ongoing climate change [2,33].
More frequent bushfires can therefore be expected, leading to a greater need for prescribed burning to
reduce bushfire risks. However, trade-offs will occur between fuel reduction and vegetation transitions
in response to more frequent fire. The vegetation pathway model is a tool to illustrate the potential
impacts of a dryer and warmer future climate in combination with management decisions about the
frequency of prescribed burning. Within the model, ecological theory is translated into visualizations
and summaries of potential landscape-scale change, to consider the impact of fire frequency on
vegetation type, potential future fire activity, and the consequences of such changes for the proportion
of a region that will require fuel management.

Currently, prescribed burning is applied in Tasmania for fuel reduction, ecological management,
and weed control purposes [30]. Each of these objectives requires different intensities and frequencies
of burning, which also vary in different vegetation types. In asset protection zones, fires of sufficient
intensity are required to reduce the fuel load while ensuring that safety standards are not compromised
and fires can be contained. Except in cases where the asset is a fire-sensitive species or community,
there is a trade-off in these zones between fire risk reduction and ecological impacts. Broad-scale
fuel management is then applied in strategic management zones to increase the potential to suppress
bushfires and reduce wildfire size, whilst aiming to minimize adverse impacts on other values.
In ecological management zones, fires may be suppressed, or prescribed burning applied at a range
of intensities and frequencies appropriate for the target species or community, so that a mosaic of
burnt and unburnt areas is maintained. The aim in these zones is that no vegetation transition should
occur as a result of fire management. The Tasmanian operational guidelines for asset protection
zones recommend fire frequencies of between 4 and 10 years in dry forests and scrub, and the
exclusion of prescribed burning from the wet forests, alpine areas, and other fire-sensitive vegetation
communities [18]. The results presented here therefore do not represent the current management
approach to prescribed burning. Instead, we illustrate the potential impact of a range of scenarios of
fire frequency.

Fire frequency has a substantial impact on the future Potential Fire Activity (PFA) relative to the
impact of the changing climate over the coming decades. While the climate is projected to become
warmer and drier over time, leading to higher fire danger, fire frequency is the dominant driver
of future fire activity because of the feedback between fire and flammability in drier, fire-adapted
vegetation types. Frequent fire has the potential to lead to shifts in vegetation type, away from mesic,
fire-sensitive types, towards drier, more fire-adapted vegetation. The rate of change differs across the
vegetation types, with some fire-sensitive communities irreversibly impacted by even a single fire,
and requiring very long recovery times. For example, rainforest communities with conifers may never
recover after a fire, as Athrotaxis is an extremely slow growing and very long-lived tree that is killed by
fire. In such communities, there is a positive feedback where fires promote vegetation that is more
flammable, increasing the risk of fire. In contrast, fire-adapted vegetation such as dry eucalypt forests
recover relatively quickly after fire, and are only impacted by very frequent fires.

Vegetation types such as alpine and subalpine heathland and grasslands and rainforests are
considered “untreatable” and excluded from fuel management because their sensitivity to fire would
result in the loss of fire-sensitive species and long-term changes to their composition. All other
vegetation types are considered “treatable”, requiring consideration of prescribed burning to fulfil
operational requirements. The percentage of land that is treatable therefore has important implications
for resource allocation and planning. Fire intervals of less than 5 years maintain the highest proportion
of vegetation requiring fuel management across Tasmania. A drop in treatability over time can be
achieved either by maintaining very high frequencies (less than 3 years), which result in the shift to
the bare ground state of fire-sensitive vegetation types over time, or very long fire intervals (more
than 30 years), because in the absence of fire, vegetation transitions to wetter forest types in the
model. However, the latter is an unrealistic scenario requiring active fire suppression in the very
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long term. The challenge of suppressing fires even at relatively small scales is already becoming
evident in Tasmania, as shown by the impact of recent fires in The Tasmanian Wilderness World
Heritage Area. This area contains the core refugium of the paleo-endemic conifer Athrotaxis cupressoides
(A. cupressoides) D. Don, a species restricted to cool, wet climates and fire-free environments. Following
an extremely hot and dry summer in 2015/2016, a lightning storm ignited numerous fires which burnt
large stands of A. cupressoides [34,35]. Recovery is unlikely because of the species’ slow growth and
limited seedling establishment and the positive feedback between fire and flammability discussed
above. Fire suppression is likely to become increasingly difficult in the future as fire danger increases,
the fire season becomes longer [33], and the window available for prescribed burning narrows under
ongoing climate change [36].

We have presented results for the state of Tasmania, but similar assessments could be generated for
any subregion and will reflect the different vegetation types within the region of interest (for example,
see Supplementary Material, Figure S2.5, for results for each of the Bureau of Meteorology forecast
districts). The percentage of vegetation requiring fuel treatment is likely to differ across different
districts depending on the vegetation types present, as they follow different transition pathways.
Further exploration of the changes within a region, or particular forest, would be useful to inform
conversations about the range of possible futures under different fuel management strategies.

The pathway approach is a useful tool for assisting community adaptation, by illustrating the
potential impacts of a dryer and warmer future in combination with decisions seeking to manage
fire risk in the future. Change over time under different scenarios of fire frequency can be spatially
represented to show the shifts in vegetation type across the landscape and, hence, flammability.
Maps can be used to show the distribution of the different vegetation types across the landscape,
and how this changes at different fire intervals. The regions with the most fire-sensitive vegetation
types and, therefore, greatest potential for vegetation transitions can be highlighted in this way to
improve understanding of the tradeoffs between conservation, flammability, and fuel management.

The model involves a considerable simplification of the real world of vegetation and fire at the
landscape scale. Flammability and fire sensitivity, for instance, are categorized into four and five
classes, respectively. We have based these classes on available research in Tasmania, but any number
of classes could be incorporated. Recently logged wet eucalypt forest and rainforest, for example,
might be better represented by an additional flammability class, because the increased exposure of the
understorey to insolation and altered floristics leads to higher flammability compared to undisturbed
forests. More refined categories, based on understandings of the many fuel characteristics that influence
fire, could be incorporated to make the model more regionally specific.

There are several factors influencing fire activity that could be included in the model with further
development. Aspect could be incorporated to consider its influence on fire intensity and frequency,
through temperature and drying effects and differential fire spread. MODIS (Moderate Resolution
Imaging Spectroradiometer) canopy cover class could be used to distinguish different canopy cover
within the broad vegetation types and within mapping units (e.g., “forest” and “woodland” canopy
structure; recently logged or cleared vegetation). However, some factors such as forest growth under
elevated CO2 are unable to be projected into the future because of lack of knowledge or complex
interactions and feedbacks (summarized in [1]). Other improvements would require targeted empirical
research to increase understanding of fire intensity across vegetation types; improve accumulation
curves across a range of vegetation and geological types; and include variations in ignitions and
fire size, informed by fire history. These developments would better reflect the mosaic of burnt and
unburnt areas that is maintained by the fire agencies within the different management zones (e.g., asset
protection, ecological, and strategic management zones). Further work is also necessary to incorporate
changes to vegetation composition over time due to changing climate suitability. While we expect that
vegetation change will occur slowly over long timeframes in the forest types because of the longevity
of the dominant species, vegetation change may be more rapid in the alpine and subalpine regions,
where the suitable climate is projected to constrict over the coming decades as Tasmania becomes
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warmer and drier. Additionally, extreme events such as heatwaves and droughts may cause sudden
shifts in the vegetation in these regions, where the dominant species are less resilient to extremely
high temperatures and/or low moisture conditions [35]. Similarly, the distribution of vegetation types
in which structurally important species have particular climatic requirements (e.g., Athrotaxis) may
change over time.

The transitions in the model are based on the assumption of low to moderate fire intensity such
as might be applied in asset protection zones and in some areas within strategic management zones.
They do not capture the impact of very high-intensity, high-severity fires that can sometimes lead to
immediate change after a single fire. The occurrence of such fires is likely to increase in the future as
lightning ignitions and fire danger increase. Additionally, we have assumed that vegetation responses
will remain the same under future climate conditions, but this may not be the case as vegetation
becomes stressed by ongoing climate changes such as droughts. For example, dry eucalypt forests,
which in the past have recovered relatively quickly after fire, may become more vulnerable to transition
due to the cumulative effect of drought.

5. Conclusions

Fire frequency has a large impact on future fire activity relative to the impact of the changing
climate over the coming decades. Frequent fire has the potential to lead to shifts in vegetation type,
away from mesic, fire-sensitive types, towards drier, more fire-adapted vegetation. This leads to a
positive feedback between fire and flammability in drier, fire-adapted vegetation types. The rate of
change differs across vegetation types, leading to changes in vegetation structure and flammability
at the landscape scale. The pathway model consolidates current understanding in the field into
an interactive framework, enabling plausible futures to be explored. It could be used as a tool in
community adaptation, to frame potential futures and identify the consequences of decisions seeking
to manage fire risk in the future. Change over time, under different management regimes (frequency
of prescribed burning), can be spatially represented to show the shifts in vegetation types across
the landscape.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/9/4/210/s1.
Figure S2.1: The distribution of vegetation across Tasmania belonging to the flammability categories in TASVEG
3.0, Table S2.2. The vegetation pathways followed in the model, Figure S2.3: Fuel load versus time since fire in the
broad vegetation types, Table S2.3: The vegetation types in the model associated with each fuel accumulation
curve; Table S2.4, Flammability at different levels of Soil Dryness Index (SDI), Figure S2.5: Impact of fire interval
on Potential Future Fire Activity in the Bureau of Meteorology forecast districts.

Acknowledgments: This work was funded by the National Bushfire Mitigation—Tasmanian Grants Program
(NBMP). Rebecca Harris was supported in part by a Humboldt Research Fellowship. Jon Marsden-Smedley and
Dave Taylor provided guidance and data for fuel accumulation curves and vegetation attributes. Sandra Whight
and Paul Black supported the concept and gave valuable insights into the operational implications of prescribed
burning regimes in Tasmania. Jayne Balmer (Department of Primary Industries, Parks, Water and Environment)
gave ecological advice that helped in translating the TASVEG types into the model.

Author Contributions: R.M.B.H. and T.R. conceived and designed the approach and analyses; T.R., R.M.B.H. and
P.L. developed the model; R.M.B.H. and T.R. analyzed the data; all authors contributed to the concept and model
development; R.M.B.H. and T.R. wrote the paper, with contributions from P.F.-H., P.L. and N.L.B.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Harris, R.M.B.; Remenyi, T.; Williamson, G.; Bindoff, N.L.; Bowman, D. Climate–vegetation–fire interactions
and feedbacks: Major barrier or trivial detail in projecting the future of the earth system? Wiley Interdiscip.
Rev. Clim. Chang. 2016. [CrossRef]

273



Forests 2018, 9, 210

2. Fox-Hughes, P.; Harris, R.M.; Lee, G.; Grose, M.; Bindoff, N.L. Future fire danger climatology for Tasmania,
Australia, using a dynamically downscaled regional climate model. Int. J. Wildland Fire 2014, 23, 309–321.
[CrossRef]

3. Flannigan, M.; Cantin, A.S.; de Groot, W.J.; Wotton, M.; Newbery, A.; Gowman, L.M. Global wildland fire
season severity in the 21st century. For. Ecol. Manag. 2013, 294, 54–61. [CrossRef]

4. Liu, Y.Q.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag.
2010, 259, 685–697. [CrossRef]

5. Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western
us forest wildfire activity. Science 2006, 313, 940–943. [CrossRef] [PubMed]

6. Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.
Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015. [CrossRef]
[PubMed]

7. Johnston, F.; Bowman, D. Bushfire smoke: An exemplar of coupled human and natural systems. Geogr. Res.
2014, 52, 45–54. [CrossRef]

8. Haikerwal, A.; Reisen, F.; Sim, M.R.; Abramson, M.J.; Meyer, C.P.; Johnston, F.H.; Dennekamp, M. Impact of
smoke from prescribed burning: Is it a public health concern? J. Air Waste Manag. Assoc. 2015, 65, 592–598.
[CrossRef] [PubMed]

9. Bowman, D.M.J.S.; Murphy, B.P.; Neyland, D.L.J.; Williamson, G.J.; Prior, L.D. Abrupt fire regime change
may cause landscape-wide loss of mature obligate seeder forests. Glob. Chang. Biol. 2014, 20, 1008–1015.
[CrossRef] [PubMed]

10. Di Folco, M.B.; Kirkpatrick, J.B. Organic soils provide evidence of spatial variation in human-induced
vegetation change following European occupation of Tasmania. J. Biogeogr. 2013, 40, 197–205. [CrossRef]

11. Fletcher, M.S.; Thomas, I. A Holocene record of sea level, vegetation, people and fire from western Tasmania,
Australia. Holocene 2010, 20, 351–361. [CrossRef]

12. Fletcher, M.S.; Thomas, I. The origin and temporal development of an ancient cultural landscape. J. Biogeogr.
2010, 37, 2183–2196. [CrossRef]

13. Fernandes, P.M.; Botelho, H.S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J.
Wildland Fire 2003, 12, 117–128. [CrossRef]

14. Lindenmayer, D.B.; Hobbs, R.J.; Likens, G.E.; Krebs, C.J.; Banks, S.C. Newly discovered landscape traps
produce regime shifts in wet forests. Proc. Natl. Acad. Sci. USA 2011, 108, 15887–15891. [CrossRef] [PubMed]

15. Zylstra, P. The historical influence of fire on the flammability of subalpine Snowgum forest and woodland.
Vic. Nat. 2013, 130, 232–239.

16. Tasmanian Department of Primary Industries, Parks, Water and Environment. Tasmanian Vegetation
Monitoring and Mapping Program; TASVEG 3.0; Resource Management and Conservation Division,
Department of Primary Industries, Parks, Water and Environment: Hobart, Australia, 2013.

17. Harris, S.; Kitchener, A. From Forest to Fjaeldmark: Descriptions of Tasmania’s Vegetation; Department of Primary
Industries, Parks, Water and Environment, Printing Authority of Tasmania: Hobart, Australia, 2005.

18. Pyrke, A.F.; Marsden-Smedley, J.B. Fire-attributes categories, fire sensitivity, and flammability of Tasmanian
vegetation communities. TasForests 2005, 16, 35–46.

19. Gill, A.M.; Woinarski, J.C.Z.; York, A. Australia’s Biodiversity—Responses to Fire: Plants, Birds and Invertebrates;
Department of Environment and Heritage: Canberra, Australia, 1999; p. 206.

20. Noble, I.R.; Slatyer, R.O. The use of vital attributes to predict successional changes in plant communities
subject to recurrent disturbances. Vegetatio 1980, 43, 5–21. [CrossRef]

21. Hammill, K.; Penman, T.; Bradstock, R. Responses of resilience traits to gradients of temperature, rainfall
and fire frequency in fire-prone, Australian forests: Potential consequences of climate change. Plant Ecol.
2016, 217, 725–741. [CrossRef]

22. Cary, G.J.; Bradstock, R.A.; Gill, A.M.; Williams, R.J. Global change and fire regimes in Australia. In Flammable
Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World; Bradstock, R.A., Gill, A.M.,
Williams, R.J., Eds.; CSIRO Publishing: Clayton, Australia, 2012; pp. 149–169.

23. Bradstock, R.A.; Cary, G.J.; Davies, I.; Lindenmayer, D.B.; Price, O.F.; Williams, R.J. Wildfires, fuel
treatment and risk mitigation in Australian eucalypt forests: Insights from landscape-scale simulation.
J. Environ. Manag. 2012, 105, 66–75. [CrossRef] [PubMed]

274



Forests 2018, 9, 210

24. Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications.
Glob. Ecol. Biogeogr. 2010, 19, 145–158. [CrossRef]

25. Corney, S.P.; Katzfey, J.J.; McGregor, J.L.; Grose, M.R.; Bennett, J.C.; White, C.J.; Holz, G.K.; Gaynor, S.M.;
Bindoff, N.L. Climate Futures for Tasmania: Climate Modelling Technical Report; Antarctic Climate & Ecosystems
Cooperative Research Centre: Hobart, Australia, 2010.

26. Hutchinson, M.F. ANUCLIM; Version 6.1; Fenner School of Environment and Society, Australian National
University: Canberra, Australia, 2011.

27. Sands, P.J.; Landsberg, J.J. Parameterisation of 3-PG for plantation grown Eucalyptus globulus. For. Ecol. Manag.
2002, 163, 273–292. [CrossRef]

28. Olson, J.S. Energy storage and balance of producers and decomposers in ecological systems. Ecology 1963,
34, 322–331. [CrossRef]

29. Mount, A.B. The Derivation and Testing of a Soil Dryness Index Using Run-Off Data; Bulletin 4;
Forestry Commission: Hobart, Australia, 1972.

30. Marsden-Smedley, J.B. Planned Burning in Tasmania: Operational Guidelines and Review of Current Knowledge;
Fire Management Section, Parks and Wildlife Service, Department of Primary Industries, Parks, Water and
the Environment: Hobart, Australia, 2009.

31. Marsden-Smedley, J.B.; Rudman, T.; Pyrke, A.; Catchpole, W.R. Buttongrass moorland fire-behaviour
prediction and management. TasForests 1999, 11, 87–99.

32. McArthur, A.G. Fire behaviour in eucalypt forests. In Forestry and Timber Bureau Leaflet 107; Forestry and
Timber Bureau: Canberra, Australia, 1967.

33. Holz, A.; Wood, S.W.; Veblen, T.T.; Bowman, D.M.J.S. Effects of high-severity fire drove the population
collapse of the subalpine Tasmanian endemic conifer Athrotaxis cupressoides. Glob. Chang. Biol. 2015, 21,
445–458. [CrossRef] [PubMed]

34. Harris, R.M.B.; Beaumont, L.J.; Vance, T.R.; Tozer, C.; Remenyi, T.A.; Perkins-Kirkpatrick, S.E.; Mitchell, P.J.;
Nicotra, A.B.; McGregor, S.; Andrew, N.R.; et al. Biological responses to the press and pulse of climate trends
and extreme events. Nat. Clim. Chang. 2018, in press.

35. Fox-Hughes, P.; Harris, R.M.B.; Lee, G.; Jabour, J.; Grose, M.R.; Remenyi, T.A.; Bindoff, N.L. Climate Futures
for Tasmania Future Fire Danger: The Summary and the Technical Report; Antarctic Climate & Ecosystems
Cooperative Research Centre: Hobart, Australia, 2015.

36. Harris, R.M.B.; Remenyi, T.; Fox-Hughes, P.; Love, P.; Phillips, H.E.; Bindoff, N.L. An assessment of the
viability of prescribed burning as a management tool under a changing climate: a Tasmanian case study.
In Proceedings of the Bushfire and Natural Hazards CRC & AFAC Conference, Melbourne, Australia,
4 September 2017; Rumsewicz, M., Ed.; Bushfire and Natural Hazards CRC: Melbourne, Australia, 2017.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

275



Article

Composition and Structure of Forest Fire Refugia:
What Are the Ecosystem Legacies across
Burned Landscapes?

Garrett W. Meigs *and Meg A. Krawchuk

Department of Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall,
Corvallis, OR 97331, USA; meg.krawchuk@oregonstate.edu
* Correspondence: gmeigs@gmail.com; Tel.: +1-541-737-2244

Received: 13 April 2018; Accepted: 27 April 2018; Published: 2 May 2018

Abstract: Locations within forest fires that remain unburned or burn at low severity—known as
fire refugia—are important components of contemporary burn mosaics, but their composition and
structure at regional scales are poorly understood. Focusing on recent, large wildfires across the US
Pacific Northwest (Oregon and Washington), our research objectives are to (1) classify fire refugia
and burn severity based on relativized spectral change in Landsat time series; (2) quantify the
pre-fire composition and structure of mapped fire refugia; (3) in forested areas, assess the relative
abundance of fire refugia and other burn severity classes across forest composition and structure
types. We analyzed a random sample of 99 recent fires in forest-dominated landscapes from 2004 to
2015 that collectively encompassed 612,629 ha. Across the region, fire refugia extent was substantial
but variable from year to year, with an annual mean of 38% of fire extent and range of 15–60%.
Overall, 85% of total fire extent was forested, with the other 15% being non-forest. In comparison,
31% of fire refugia extent was non-forest prior to the most recent fire, highlighting that mapped
refugia do not necessarily contain tree-based ecosystem legacies. The most prevalent non-forest
cover types in refugia were vegetated: shrub (40%), herbaceous (33%), and crops (18%). In forested
areas, the relative abundance of fire refugia varied widely among pre-fire forest types (20–70%) and
structural conditions (23–55%). Consistent with fire regime theory, fire refugia and high burn severity
areas were inversely proportional. Our findings underscore that researchers, managers, and other
stakeholders should interpret burn severity maps through the lens of pre-fire land cover, especially
given the increasing importance of fire and fire refugia under global change.

Keywords: biological legacies; burn severity; disturbance; forest composition and structure; land
cover; US Pacific Northwest; pyrogeography; refugia; resilience; wildfire

1. Introduction

Wildland fire is a pervasive ecological disturbance process that interacts with and shapes
landscape patterns throughout the world. In forest ecosystems, large wildfire perimeters encompass a
variety of land cover types, including forest, non-forest, and unvegetated areas, and the interaction of
fuels, weather, and topography results in patchy burn severity mosaics that range from high severity
(i.e., large ecological change such as complete tree mortality) to low severity (i.e., little or no ecological
change) [1–3]. Land managers, scientists and policy makers increasingly rely on remotely sensed burn
severity maps to characterize and interpret these fire effects at landscape scales [4–6]. Fire refugia,
defined here following Krawchuk et al. [7] as places that burn less frequently or severely than the
surrounding landscape, have become a topic of increasing interest, particularly in the context of global
change and conservation of broader refugia [8–10]. Fire refugia represent ecosystem legacies that
can perform important ecological functions, such as protecting fire-sensitive flora and fauna and
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providing propagules for the regeneration of more severely burned locations (e.g., [11–14]). In this way,
the resistance of fire refugia may confer resilience to landscapes that will be increasingly important
given projections of increasing fire activity due to climate warming and land use [15–17]. Although
previous studies in western North American forests have used satellite imagery to quantify the
distribution and abundance of fire refugia [5,18,19] or their predictability [7], very little is known about
the composition and structure of these areas. Because forest-dominated landscapes can include diverse
forest and non-forest conditions, quantifying the variability of fire refugia across heterogeneous regions
is essential to evaluate assumptions regarding their ecological functions and to support ecosystem
management. Our study develops new approaches to quantify and characterize the composition and
structure of fire refugia at landscape and regional scales with detailed ecological resolution.

Studies to date typically characterize forest fire refugia with two basic approaches, either with
intensive field observations at a limited number of locations or across extensive landscapes and
regions without specific information on local conditions. Researchers have conducted field-based
assessments in different geographical settings, including Australia (e.g., [12,20,21]) and western North
America (e.g., [7–9,22]), typically with the goal of understanding conditions that give rise to fire refugia
over long time scales and for specific types of organisms or species. For example, Camp et al. [8]
used inventory plots to assess the composition and structure of forest sites that had not burned as
frequently or severely as adjacent forests in Washington, USA, associating refugia with late-successional
characteristics, including fire-intolerant species, old trees, multi-layered canopies, and downed coarse
wood. These refugia contained abundant fuel for a subsequent fire event, leading to marginally higher
overstory tree mortality in refugial than in non-refugial sites and demonstrating that late-successional
refugia are dynamic [9]. These and other local-scale studies (e.g., [23,24]) raise questions about the
persistence and sustainability of fire refugia under global change, but they are not designed to quantify
fire refugia composition and structure at broader scales.

In contrast to field-based studies, landscape and regional assessments have leveraged spatially and
temporally extensive satellite imagery to map and identify refugia locations within fire perimeters as
areas that remain unburned or burn with low severity. These locations, typically defined by low spectral
change between pre- and post-fire images, appear to be more abundant than previously thought
(e.g., 20% of fire perimeters [18]). However, these remotely mapped refugia likely include a variety
of forest and non-forest areas, with associated variation in ecosystem functions and management
significance [19]. Although forest composition and structure vary widely across landscapes and
regions (e.g., [25,26]), satellite-based studies typically have not characterized the types and structures
of forested and non-forested conditions within mapped fire refugia. Here, we focus on recent fire
events, using Landsat-based change detection and existing maps to identify fire refugia as areas
experiencing minimal spectral change within generally forested landscapes. We recognize that these
recent forest fire refugia represent only one characterization of refugia, but such areas are important to
forest and fire managers, many of whom utilize Landsat-based burn severity maps as a primary tool to
assess fire effects and implement post-fire management activities.

Forest ecosystems contain a variety of compositional and structural conditions that influence fire
behavior, fire effects (i.e., burn severity), and post-fire ecosystem responses at multiple spatiotemporal
scales. Forest composition is associated with fire regime attributes (i.e., fire frequency, burn severity)
that vary from frequent, low-severity fire to infrequent, high-severity fire [1,3]. Due to inherent
differences in fire tolerance, fire refugia are more likely to contain particular species, such as
thick-barked Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) and mature ponderosa pine (Pinus
ponderosa Lawson & C. Lawson) that can tolerate surface fires. Similarly, forest structure influences
fire behavior, burn severity, and the capacity to form refugia, for instance in open forests with limited
surface and ladder fuels and associated crown fire potential [1]. Structure also is important for
wildlife habitat and ecosystem resilience, and structural complexity is a vital attribute of natural forests
that both influences and emerges from disturbance dynamics [26,27]. Robust data on pre-fire forest
composition and structure are critical for understanding the ecosystem legacies [13] and ecological
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memory [28] associated with wildfires, but previous studies have not quantified these attributes within
fire refugia across heterogeneous forested regions.

In addition to trees, forest landscapes typically include non-forest vegetation and unvegetated
conditions within and among forested areas. Although they may represent a relatively small portion
of forest landscapes at any given time, non-forest areas—including grasslands, shrublands, alpine
zones, and unvegetated environments—directly and indirectly influence the patterns and processes
of tree-dominated areas [29,30]. As such, non-forest areas influence both the conceptualization and
management of forest fire refugia. Whereas unvegetated areas could provide fuel breaks adjacent
to forested refugia, non-forest vegetation could serve as a vector of surface fire within and among
forested areas (e.g., dry herbaceous vegetation). Non-forest vegetation also responds differently to fire
than forests, including lower absolute or relative biomass loss and more rapid regeneration [31].

From the perspective of satellite remote sensing, pre-fire biomass and post-fire vegetation growth
also are important factors influencing spectral change and associated burn severity maps. In forested
areas, open forests have less biomass and canopy cover to lose than closed-canopy forests, which
translates to lower capacity for absolute spectral change and highlights the value of relativized indices
that account for pre-fire spectral reflectance (e.g., RdNBR [32]). Low biomass and rapid post-fire
vegetation response in non-forested areas also may contribute to lower remotely sensed estimates of
burn severity in non-forested than in forested areas because locations with lower woody biomass tend
to exhibit lower absolute spectral differences that can attenuate rapidly [32–34]. In addition, despite
the key role that non-forested areas play in fire behavior and effects, standard burn severity mapping
approaches have been developed in forested areas [35,36]. For instance, in the western United States,
the Monitoring Trends in Burn Severity program (MTBS; https://mtbs.gov) maintains a widely used
fire perimeter and burn severity database. Importantly, although MTBS provides absolute, relative,
and classified burn severity maps, as well as pre- and post-fire Landsat imagery, the MTBS approach
does not directly account for different pre-fire land cover types, particularly non-forest areas. Moreover,
the MTBS classified burn severity maps are based on an absolute change metric, dNBR, rather than
relativized change. These limitations could lead to the misinterpretation of burn severity, especially
regarding the quantity and quality of forest fire refugia.

The goal of this study is to quantify and describe the composition and structure of contemporary
fire refugia across the US Pacific Northwest (Oregon and Washington, hereafter “PNW”). Increases in
wildfire activity and novel region-wide vegetation and disturbance maps provide an unprecedented
opportunity to investigate fire refugia across numerous fire events spanning a variety of pre-fire
conditions. The advent of Landsat time-series approaches for disturbance mapping across landscape
and regional scales (e.g., [37]) and the availability of annualized vegetation maps (e.g., [38]) make it
possible to address fundamental questions about the composition and structure of fire refugia while
also evaluating mapping tools for scientists, forest managers, and policy makers. By developing
and exploring classified burn severity maps similar to widely used databases (e.g., MTBS), we seek
to reveal conditions within mapped refugia that map users might otherwise overlook, even when
accounting for pre-fire variability with relativized spectral indices. The specific objectives of this study
are to:

1. Classify fire refugia and burn severity based on relativized spectral change in Landsat time series
and previously published tree mortality thresholds [6].

2. Quantify the pre-fire composition and structure of mapped fire refugia, including forested,
non-forested, and unvegetated conditions.

3. In forested areas, assess the relative abundance of fire refugia and other burn severity classes
across forest composition and structure types.
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2. Materials and Methods

2.1. Overview of Approach

We selected a random, representative sample of recent large fire events in forest-dominated
landscapes of the PNW. We then developed burn severity and fire refugia maps using Landsat time
series and relationships between relative spectral change and field-based estimates of tree mortality
published by Reilly et al. [6]. Next, we overlaid the burn severity maps with existing land cover and
vegetation maps representing pre-fire conditions, which also were developed in part with Landsat
imagery, thereby enabling a relatively fine-resolution analysis (30-m grain). Our primary focus was
to describe fire refugia at the low end of the burn severity gradient, but our third objective evaluates
refugia and other severity classes across variable forest compositional and structural conditions
(Figure 1). Although we do not assess individual fires in our quantitative analyses, we illustrate the
fine spatial patterning of our landscape maps—including refugia, burn severity, land cover, and forest
conditions—for a representative large fire, the Table Mountain Complex (Figures 2–4). This 2012 event
was part of the broader Wenatchee Complex studied by Kolden et al. [9].

 

Figure 1. Overview of key spatial datasets (black), processing steps (blue), and objectives (orange). See
Section 2 for fire selection criteria. Data sources and references: MTBS: https://mtbs.gov; LandTrendr:
Kennedy et al. [37]; RdNBR: Miller and Thode [32]; field-measured tree mortality: Reilly et al. [6]; GAP
land cover: https://gapanalysis.usgs.gov; GNN based on Ohmann et al. [38].

2.2. Study Area and Fires of Interest

Conifer forests are widespread across the PNW region, and their composition, structure, and
productivity vary across gradients of climate, topography, soil parent material, disturbance regime,
and management history [39–41] (Figures S1 and S2). Precipitation and temperature regimes differ
across forested ecoregions of the PNW, but a common climatic feature is low summer precipitation [39]
conducive to fire and other disturbances (e.g., [41,42]). From west to east, important conifer forest types
and tree species are encompassed by broad ecoregions (Figure 2, Supplemental Figure S1) [39,43,44].
Relatively moist forests occur primarily in the Coast Range and West Cascades and are dominated by
Douglas-fir and western hemlock (Tsuga heterophylla [Raf.] Sarg.). Subalpine forests occupy multiple
ecoregions, especially higher elevations in the Cascade Range and inland mountain ranges, featuring
subalpine fir (Abies lasiocarpa [Hook.] Nutt.), lodgepole pine (Pinus contorta Douglas ex Loudon), and
mountain hemlock (Tsuga mertensiana [Bong.] Carrière). Mixed-conifer forests occur in portions of all
ecoregions except for the Coast Range and feature grand fir (Abies grandis [Douglas ex D. Don] Lindl.),
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western larch (Larix occidentalis Nutt.), ponderosa pine, and Douglas-fir. Ponderosa pine forests and
woodlands and western juniper (Juniperus occidentalis Hook.) woodlands occur primarily in the East
Cascades and Blue Mountains. Broadleaf trees intermix with conifer forests in riparian areas and in the
mixed forests of the southwest portion of the region (e.g., Klamath Mountains; Figure 2, Supplemental
Figure S1).

Across the region, forested areas intermix with non-forest and unvegetated land cover types.
Non-forest vegetation types above treeline include alpine meadows, and non-forest vegetation types
below treeline include sagebrush-steppe shrublands and herbaceous vegetation (e.g., grasslands,
meadows). Important unvegetated conditions include barren areas, high alpine environments, open
water, and developed land [39,43].

In general, PNW forests occupy relatively remote, mountainous areas managed primarily by US
federal agencies for multiple resource objectives. These landscapes have experienced dramatic land-use
changes, including widespread logging, grazing, fire exclusion, and associated fuel accumulations [40].
In turn, land use and climate change have contributed to recent increases in the activity of fire and
other disturbances [40,42,45]. Given the widespread extent of similar geographic conditions and
anthropogenic pressures, PNW forests and their recent fire dynamics are broadly representative of
contemporary forest disturbance regimes in western North America.

Figure 2. Study area and fires of interest across Oregon and Washington. Pink polygons are the
randomly selected portions of large wildfires (≥400 ha) with ≥50% forest cover that burned only
once from 2004 to 2015 (n = 99). Study fires occurred primarily east of the Cascade Range. Dark blue
polygons are all MTBS fires that burned between 1984 and 2015 within generally forested ecoregions
(level three [44]). The orange perimeter indicates location of the Table Mountain Complex (Figures 3
and 4). Oregon and Washington encompass ca. 40 M ha total and 20 M ha of forest (light green areas
indicate forest cover [38]). Ecoregion abbreviations: NC: North Cascades; NR: Northern Rockies; CR:
Coast Range; BM: Blue Mountains; WC: West Cascades; EC: East Cascades; KM: Klamath Mountains.
We assess only the portions of ecoregions within Oregon and Washington.

We examined the distribution of fire refugia and their pre-fire composition and structure across
recent large fire events. We acquired a database of large fire perimeters (≥400 ha) from the MTBS
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archive (available online: https://mtbs.gov) and identified fires across Oregon and Washington with
the following criteria. We first selected fires with ≥50% forest cover by applying a regional forest mask
(30 m grain [38]). We then selected fires after 2003 due to the timing of available land cover maps to
assess pre-fire conditions (described below). Finally, to avoid the confounding effects of reburn we
retained only those portions of fire polygons that burned once since 1985, excluding locations burned
more than once. We also excluded burned fragments <400 ha that resulted from these geospatial
processing steps. Within this subset, we removed fire events that were on the edge of the PNW study
area (n = 6), were not classified as wildfires (n = 4), and had duplicate entries in the MTBS database
(n = 2). These criteria yielded 172 distinct fire events that occurred between 2004 and 2015, from which
we randomly selected 99 for this analysis (Figure 2, Supplemental Table S1). We manually reviewed
this random selection to identify scanline errors from the Landsat 7 sensor, which could introduce
errors into refugia maps, but none were apparent in our dataset.

2.3. Burn Severity and Fire Refugia Mapping

We mapped burn severity and fire refugia across the selected fires using regional mosaics of
Landsat spectral change, following methods developed by Meigs et al. [46] and Reilly et al. [6] to analyze
fire effects across numerous fires in heterogeneous conditions. Landsat imagery was pre-processed
(atmospheric correction, cloud masking) and processed using temporal segmentation according to
LandTrendr change detection algorithms, which are described in detail by Kennedy et al. [37]. Briefly,
LandTrendr segmentation identifies vegetation disturbance and recovery by distilling an often-noisy
annual time series into a simplified set of segments and vertices to capture the salient features of spectral
trajectories while omitting most false changes [37,45]. Rather than applying disturbance estimates
directly from LandTrendr outputs, we compiled annual Landsat time series of the normalized burn
ratio (NBR) spectral vegetation index, which combines near-infrared and mid-infrared wavelengths of
the Landsat TM/ETM+ sensor and is sensitive to forest vegetation change [32,37]. These NBR time
series were centered around the median date of the Landsat stacks (generally 1 August) at the pixel
scale, which reduces seasonal variability associated with phenology and sun angles. This process
resulted in annual mosaics of NBR covering the full study area, which we then combined with MTBS
fire perimeters to produce consistent burn severity maps across all study fires.

Specifically, for each fire perimeter, we computed the relative differenced normalized burn ratio
(RdNBR [32]) in two-year intervals to ensure pre- and post-fire coverage for all pixels within a given
fire event [46]. By capturing the relative change in dominant vegetation, RdNBR is appropriate
for assessing fire effects across numerous events spanning heterogeneous pre-fire conditions [32,47].
Although Landsat spectral indices such as RdNBR have inherent limitations and do not capture
very fine-scale fire effects and responses (e.g., tree charring, forest floor combustion, or post-fire
regeneration [48,49]), they provide a spatially and temporally consistent metric of burn severity for
landscape and regional analysis of fires since 1985. Moreover, the NBR index is at the core of many
current fire monitoring protocols (e.g., MTBS [35,36]), and our aim was to characterize areas that fire
researchers and managers might identify as fire refugia using these protocols and data.

After clipping the regional RdNBR mosaics within the fires of interest, our next step was to
classify the continuous RdNBR maps to specific burn severity categories based on previous field-based
estimates of tree mortality (Figure 1). Specifically, we used an equation developed by Reilly et al. [6]
that relates RdNBR to relative tree mortality observed at US federal forest inventory plots in the
Current Vegetation Survey across the PNW [50]:

y = 134.87 + 259.38x + 567.68x2 (1)

where y is continuous RdNBR and x is the percent basal area mortality estimated from changes in
live tree basal area before and after fire at 304 inventory locations. We designated five burn severity
classes corresponding to distinct ranges of basal area (BA) mortality. In addition to the low- (<25%
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BA mortality), moderate- (>25–75%), and high-severity (>75–100%) classes applied by Reilly et al. [6],
we added very low/unchanged (0–10% BA mortality) and very high-severity (>90–100%) classes to
further resolve the two ends of the severity gradient. See Reilly et al. [6] for further details on the burn
severity classification and field validation.

We defined fire refugia as all pixels within the very low/unchanged class. Recognizing the
challenges inherent in remote sensing of fire effects at the low end of the burn severity spectrum [18],
our goal was not to distinguish truly unburned areas. Rather, we assumed that pixels with ≥90%
estimated tree survival within the first year post-fire include both unburned and lightly burned
conditions that are difficult to distinguish remotely. Although these forests are not necessarily
unburned, they experienced less severe fire effects than the rest of the burned landscape [7].
Additionally, we recognize that this classification approach based on basal area does not translate
directly to locations without trees. Our mapped refugia represent locations with minimal spectral
change regardless of tree cover, however, and we distinguish non-forest areas with ancillary spatial
datasets (described below). Overall, these areas are conceptually and quantitatively similar to the
lowest-severity category in the classified burn severity maps from MTBS (“Unburned to low”; Figure 3),
which are based on absolute spectral change (dNBR) and do not integrate a forest mask.

Figure 3. Spatial patterns of burn severity mosaic, refugia, and non-forest areas across the 2012 Table
Mountain Complex. Fire location is indicated in Figure 1. Burn severity classes in this study (a,b,d,e)
are based on Landsat time series, RdNBR, and field-based tree mortality estimates (see Section 2).
MTBS severity classes (c,f) are based on dNBR protocols described by Eidenshink et al. [35] and exhibit
similar spatial patterns, particularly the lowest- and highest-severity classes. According to our severity
maps, non-forest conditions (non-forest mask) accounted for 31% of refugia extent across all fires and
10% of refugia extent across the Table Mountain Complex. Zoom maps (d–f) show how non-forest
conditions are more prevalent in some refugia areas. MTBS: Monitoring Trends in Burn Severity;
https://mtbs.gov.
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2.4. Geospatial Overlay Analysis

Our final analytical step was to overlay the classified burn severity maps with land cover and
vegetation data available for the study area (Figure 1). We assessed land cover types, including
forest vegetation, non-forest vegetation, and unvegetated conditions with spatial data from the Gap
Analysis Program (GAP; available online: https://gapanalysis.usgs.gov/). We used a map of terrestrial
ecological systems, which represent groups of biological communities that occur within landscapes
with similar ecological processes, substrates, and/or environmental gradients [51]. We combined the
level three ecological system types into a simplified set of land cover types based on the ecological
system descriptions and metadata (Table 1, Figure 4, Supplemental Table S2). This map reflects
conditions existing in the year 2001, when the first generation of the US National Land Cover Database
was developed, thereby providing information on land cover prior to our fires of interest.

Figure 4. Spatial patterns of pre-fire land cover (a,d), forest type (b,e), and forest structural condition
(c,f) across the 2012 Table Mountain Complex. Fire location is indicated in Figure 1. The 2003
GNN-based forest maps (b–e,f) illustrate more variability in forest type across this plateau landscape
than in forest structure, which was generally closed-canopy forest dominated by medium trees
(see Section 2 for classification details). Zoom maps (d–f) show how fine-grained variability of
pre-fire conditions. Data sources and references: GAP (Gap Analysis Program) land cover: https:
//gapanalysis.usgs.gov; GNN (gradient nearest-neighbor imputation) based on Ohmann et al. [38].
See Supplemental Figures S1 and S2 for distribution of forest type and structural condition across the
study area.

For forested areas identified with the GAP data, we assessed pre-fire (2003) forest composition and
structure using annualized maps derived from gradient nearest-neighbor imputation (GNN [38,52]).
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GNN maps integrate data from federal forest inventory plots (n ≈ 17,000), key spatial predictors,
and Landsat time series to impute plot-level attributes for all forested pixels across the PNW [38].
The GNN imputation is based on Euclidean distance in a multivariate space defined by the predictor
variables and derived from canonical correspondence analysis [53,54]. GNN maps include numerous
plot variables (available online: https://lemma.forestry.oregonstate.edu/data), and we selected a
subset of forest composition and structure variables for our analysis (Table 2). Similar to the GAP
land cover types, we combined GNN forest types into a more constrained set applicable to forest
vegetation across the PNW based on dominant tree species basal area (Table 3, Figure 4, Supplemental
Table S3, Supplemental Figure S1). We combined GNN forest structural conditions into five classes
based on live tree canopy cover and tree size (Figure 4, Supplemental Figure S2) [25,43]. Specifically,
the sparse and open forest structure classes had canopy cover <10% and 10–40%, respectively, and
closed forest structure classes had canopy cover >40% in three size classes based on dominant tree
quadratic mean diameter (small: <25 cm QMD, medium: 25–50 cm QMD, large: >50 cm QMD). QMD
is a standard metric of average tree size in forestry that gives greater weight to larger trees influencing
basal area [55].

We deliberately chose GNN attributes spanning a variety of compositional and structural
dimensions, recognizing that the GAP and GNN spatial datasets and variables have distinct strengths,
weaknesses, and sources of uncertainty. Because our goal was to describe pre-fire conditions within
mapped fire refugia, we focus primarily on relative rather than absolute differences among land cover
and forest conditions. We present results from analyses across all fires and years combined to provide
a regional perspective on conditions in fire refugia. For the Table Mountain Complex that we use as
an example to illustrate our concepts at a landscape event scale, we also show the standard MTBS
severity classes to compare with our burn severity maps, both with and without the 30 m grain forest
mask (Figure 3).

Table 1. Land cover types across study fires according to GAP analysis data.

Land Cover
Extent

(Total ha)
Extent

(% of Total)
Extent

(Refugia ha)
Extent

(% of Refugia)

Forest 519,391 84.8 157,386 69.4
Non-forest total 93,238 15.2 69,413 30.6

Non-forest vegetation 87,426 14.3 65,689 29.0
Alpine 3905 0.6 2784 1.2
Shrub 38,951 6.4 27,498 12.1
Herbaceous 31,398 5.1 22,926 10.1
Crops 13,172 2.2 12,481 5.5

Unvegetated 5812 0.9 3724 1.6
Water 439 0.1 326 0.1
Barren 2279 0.4 1689 0.7
Developed 3094 0.5 1709 0.8

Total 612,629 100.0 226,798 100.0

Notes: See Figure 5 for example of landscape spatial pattern and Figure 6 for distribution among burn severity
classes. Refugia areas are the lowest burn severity class (very low/unchanged).

Table 2. Gradient nearest-neighbor (GNN) variables included in spatial analysis.

Variable Units Description

Forest type categorical Forest type, which describes dominant tree species (based on
basal area) of current vegetation; simplified to general types (Table 3).

Structural condition categorical Structural condition based on size class and cover class (O’Neil et al. 2001)

Live tree basal area m2 ha−1 Basal area of live trees ≥2.5 cm DBH
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Table 2. Cont.

Variable Units Description

Live tree density stems ha−1 Density of live trees ≥2.5 cm DBH

Tree age years Basal area weighted stand age based on field recorded or
modeled ages of dominant and codominant trees

Quadratic mean diameter
of dominant trees cm

a Quadratic mean diameter (QMD) in centimeters of trees
whose heights are in the top 25% of all tree heights on the plot

Diameter diversity index H’
b Diameter diversity index (DDI): a measure of stand structural
complexity, based on tree densities in different diameter classes

Notes: GNN analysis imputes inventory plot data to forested pixels [38]. Full list of mapped variables available
online (https://lemma.forestry.oregonstate.edu/data/structure-maps). a QMD of the upper quartile indicates the
average size of dominant overstory trees. QMD can be calculated as the square root of the arithmetic mean of
squared diameters or based on basal area and tree number [55]. b DDI is based on the number of live trees in four
standardized tree size classes, and higher values correspond to higher levels of structural complexity.

Table 3. Forest types across study fires according to GNN data [38].

Forest Type
Extent

(Total ha)
Extent

(% of Forested Total)
Extent

(Refugia ha)
Extent

(% of Refugia)

Other 45,524 8.8 21,176 13.5
PSME-TSHE 91,234 17.6 25,980 16.5
Subalpine 133,311 25.7 26,207 16.7
Mixed-conifer 153,763 29.6 46,208 29.4
PIPO 79,818 15.4 26,786 17.0
JUOC 15,741 3.0 11,030 7.0
Forested total 519,391 100.0 157,387 100.0

Notes: See Figure 4 for landscape spatial pattern and Figure 7 for distribution among burn severity classes. Species
codes: PSME-TSHE = Douglas-fir-western hemlock; PIPO = ponderosa pine; JUOC = western juniper. Other species
include miscellaneous conifers (7.3%) deciduous hardwoods (1.5%).

3. Results

3.1. Classification of Fire Refugia and Burn Severity in Recent Forest Fires

The randomly selected fires occurred primarily east of the crest of the Cascade Range, consistent
with the spatial distribution of fires during the entire Landsat era (1984–2015) (Figure 2). Our random
subset of fires exhibited the same temporal pattern as the general population of large fires during the
study period (2004–2015) (Figure 5a). Total annual fire extent typically was below 50,000 ha but was
punctuated by two episodic fire years (2006, 2015; Figure 5a). The cumulative extent of the study fires,
which included only those locations that burned once, was 612,629 ha over the 12-year study period,
equivalent to a mean of 51,052 ha per year.

The burn severity classes we derived based on relative tree basal area mortality corresponded to
five ranges of RdNBR (Table 4). Overall, three burn severity classes accounted for the vast majority
of fire extent; very low/unchanged was 37%, moderate was 30%, and very high was 18% of total
extent (Table 4). Refugia areas (very low/unchanged severity class) were extensive but varied widely
from fire to fire and year to year (interannual mean: 38%; range: 15–60%) (Figure 5b). The spatial
distribution of refugia varied within fires, as illustrated by the Table Mountain Complex (Figure 3).
The Table Mountain example also shows how burn severity distributions were similar between our
Landsat-based maps and the standard classified severity maps from MTBS (Figure 3).
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Figure 5. (a) Temporal patterns of study fires (n = 99) and available fires matching study criteria
(n = 172). (b) Relative distribution of burn severity classes for study fires across all land cover types.
The study fires exhibited the same temporal pattern as the available fires (see spatial pattern in Figure 1).
The refugia class (very low/unchanged) was extensive but varied widely from year to year (mean ± SD:
38.1 ± 13.2%). Burn severity classes are based on the relationship between tree basal area mortality at
federal inventory plots and Landsat spectral change (RdNBR; Reilly et al. [6]).

Table 4. RdNBR values, tree mortality ranges from forest inventory data, and extent of severity classes
across study fires.

Burn Severity Class RdNBR Value
Basal Area

Mortality (%)
Extent (ha) Extent (%)

Very low/unchanged (refugia) ≤166.48 0–10 226,798 37
Low >166.48–235.20 >10–25 32,645 5
Moderate >235.20–648.73 >25–75 185,957 30
High >648.73–828.13 >75–90 58,287 10
Very high >828.13 90–100 108,943 18

Notes: See Section 2 for burn severity classification equation between RdNBR and basal area mortality (adapted
from Reilly et al. [6]).

3.2. Composition and Structure of Fire Refugia

Across the study fires, forests were the most extensive land cover type (Table 1, Figure 6). Total fire
extent was 85% forested and 15% non-forested (Table 1). In refugia areas, however, the non-forested
component was substantially higher (31%) (Table 1, Figure 6). Across all burn severity classes, the
most prevalent vegetated non-forest cover types were shrub (42%), herbaceous (34%), and crops (14%),
cumulatively representing 90% of non-forest areas (Figure 6). Within the refugia class, these cover
types exhibited a similar distribution, with shrub (40%), herbaceous (33%), and crops (18%) accounting
for 91% of non-forest areas (Figure 6). Unvegetated areas cumulatively represented 1.6% of refugia
areas and 6% of non-forest extent (3% developed [including roads], 2% barren, 0.5% water) (Table 1).
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Figure 6. Pre-fire land cover across study fires according to GAP analysis data (https://gapanalysis.
usgs.gov). Although these fires were predominantly forested (85%), a substantial portion of the refugia
class was non-forested (31%). In addition, most of the non-forest extent (74%) was in refugia areas, and
the most prevalent cover types in refugia were shrub (40%), herbaceous (33%), and crops (18%).

In forested areas, fire refugia extent varied with pre-fire forest composition. Mixed-conifer forests
in relatively dry parts of the region were the most extensive forest type and contained the most
refugia, covering 46,000 ha (Figure 7a). Refugia extent was similar in the Douglas-fir/western hemlock,
subalpine, ponderosa pine, and other forest types, with each forest type covering approximately
25,000 ha (Figure 7a). Western juniper woodland was the least extensive forest type and contained
the lowest refugia extent, covering 11,000 ha (Figure 7a). As demonstrated by the Table Mountain
landscape, pre-fire forest types were intermixed but changed with increasing elevation, with ponderosa
pine transitioning into mixed-conifer and subalpine forests (Figure 4b,e).

n

n

Figure 7. Forest composition of fire refugia in terms of extent of refugia (a) and relative distribution
of other burn severity classes (b). Mixed-conifer forests in relatively dry parts of the region were the
most extensive forest type and contained the most refugia (a). The percentage of refugia was lowest
in subalpine forests and highest in juniper woodlands (b). Pre-fire forest types are consolidated into
general forest types, ordered from west to east, and are based on live basal area of dominant tree species
according to 2003 GNN maps [38]. See Section 2 for details regarding burn severity and forest-type
classification and Figures 3 and 4 for landscape spatial patterns. We include non-forested areas for
reference but do not interpret the severity classes in direct comparison with the forested areas.

287



Forests 2018, 9, 243

Fire refugia extent also varied with pre-fire forest structure. Closed forests (>40% canopy
cover) dominated by medium trees (dominant tree QMD of 25–50 cm) contained the most refugia,
encompassing 53,000 ha (Figure 8a). Open forests also contained substantial refugia (44,000 ha),
followed by closed forests with small trees (27,000 ha), sparse forests (17,000 ha), and closed forests
with large trees (16,000 ha; Figure 8a). As illustrated by the Table Mountain landscape, forest structural
conditions varied with elevation but to a lesser degree than forest types (Figure 4c,f). Non-forest
areas contained a substantial number of locations identified as refugia based on spectral change alone,
representing 69,000 ha (Figures 7a and 8a), although such areas are qualitatively different from forest
fire refugia.

n

n

Figure 8. Forest structure of fire refugia in terms of extent of refugia (a) and relative distribution
of other burn severity classes (b). Closed forests (>40% canopy cover) dominated by medium trees
(dominant tree diameter 25–50 cm) were the most extensive structural class and contained the most
refugia (a). The percentage of refugia generally declined with increasing tree cover and size but then
increased in closed forests with large trees. Pre-fire structural conditions are based on live tree canopy
cover and size classes according to 2003 GNN maps [38]. Structure classes are arranged in increasing
order of tree cover and size. See Section 2 for details regarding burn severity and structure classification
and Figures 3 and 4 for landscape spatial patterns. We include non-forested areas for reference but do
not interpret the severity classes in direct comparison with the forested areas.

3.3. Fire Refugia and Burn Severity across Forest Composition and Structure Types

Fire refugia and the other burn severity classes were not evenly distributed among forest types,
and refugia were generally most abundant where high- and very high-severity fire were least abundant
(and vice versa; Figure 7b). The relative abundance of fire refugia ranged from 20% of fire extent in
subalpine forests to 70% in juniper woodlands (Figure 7b). Conversely, the relative abundance of
very high-severity fire ranged from 5% of fire extent in juniper woodlands to 38% in subalpine forests
(Figure 7b). The Douglas-fir/western hemlock, mixed-conifer, and ponderosa pine forests exhibited
very similar amounts of the lowest and highest burn severity classes, with refugia ranging from 28% to
34% and very high severity ranging from 11% to 16% of fire extent (Figure 7b).

As with forest composition, fire refugia and burn severity classes varied among forest structural
conditions (Figure 8b). In general, the relative abundance of refugia was lower in settings with
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moderate tree cover and size. Importantly, however, refugia abundance was higher in closed forests
with large trees than in closed forests with medium trees (Figure 8b). Refugia areas ranged from 23%
of fire extent in closed forests dominated by small trees to 55% in sparse forests (Figure 8b). In contrast,
very high-severity areas ranged from 11% of fire extent in sparse forests to 27% in closed forests
with small trees (Figure 8b). The other three forest structural conditions were intermediate in their
distributions of burn severity classes. Closed forests dominated by medium trees were similar to
closed forests with small trees, and closed forests with big trees were similar to open forests (Figure 8b).
For the continuous structural variables, refugia tended to have lower live tree basal area and density,
while very high-severity fire occurred in forests with higher live basal area and density (Table 5).
Similarly, refugia tended to exhibit lower pre-fire tree age, quadratic mean diameter (an indicator
of dominant tree size), and structural complexity (based on tree diameter distributions) than areas
experiencing very high burn severity (Table 5).

Table 5. GNN structure variables across study fires.

Burn Severity

Variable (Units) Statistic
Very

Low/Unchanged
(Refugia)

Low Moderate High Very High

Live tree basal area mean 16.63 25.60 24.98 26.91 32.49
(m2 ha−1) SD 19.17 19.00 18.05 17.98 18.52

Live tree density mean 589.96 904.37 951.25 1094.74 1385.24
(stems ha−1) SD 904.28 1014.74 1099.79 1230.42 1277.28

Tree age mean 80.98 108.15 109.02 112.68 123.21
(year) SD 72.29 63.84 60.37 58.17 56.44

Quadratic mean diameter mean 12.51 17.22 16.99 16.87 16.52
(QMD; cm) SD 11.11 9.83 9.33 8.92 8.43

Diameter diversity index mean 2.40 3.56 3.49 3.59 3.80
(DDI; H’) SD 2.29 2.08 1.95 1.87 1.82

Notes: See Table 3 for descriptions of GNN variables including QMD and DDI.

4. Discussion

4.1. Composition and Structure of Forest Fire Refugia across the US Pacific Northwest

This study elucidates substantial variability in the composition and structure of fire refugia across
forested ecosystems of the PNW study area, underscoring the need to account for pre-fire forest
and non-forest conditions when creating and interpreting burn severity maps. In many cases, our
analyses support the common intuition that fire refugia identified in classified severity maps (such as
MTBS) broadly capture forests that experience minimal fire effects. These forested fire refugia vary in
forest type and structural condition, demonstrating a range of forested conditions that will influence
the transmission of ecological memory from the pre- to post-fire environment (i.e., information and
material legacies [28]). However, non-forest vegetation accounted for a substantial component of
mapped refugia, highlighting the importance of these areas both for ecosystem functions and mapping
applications. Unvegetated conditions within mapped fire refugia were relatively rare in our study
fires, but they may contribute disproportionately to landscape fire patterns if they influence the
distribution of fire refugia in adjacent vegetated areas (e.g., by acting as fuel breaks). Overall, our
assessment illustrates that the ecological role of fire refugia depends on site-specific pre-fire conditions,
as well as the broader burn severity mosaic. As such, ecological interpretation of burn severity maps
generated according to Landsat spectral change requires users to leverage additional datasets, such
as the regional land cover and forest maps used here, to refine fire refugia assessments to specific
ecosystems of interest and to characterize ecosystem legacies more comprehensively.
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In addition to characterizing important variability of fire refugia, our study quantifies general
ranges of conditions where fire refugia occur across the PNW study area. For example, although the
extent and proportion of mapped refugia varied from year to year, refugia were widespread across
burned areas, averaging 38% of mapped fire extent annually. Indeed, refugia were relatively extensive
even in the forest type with the lowest percentage of refugia, subalpine fir. Although subalpine forests
typically are characterized by infrequent, high-severity fire, our analyses identify one fifth of subalpine
forests as unburned or low-severity refugia and one half experiencing <75% basal area mortality.
The prevalence of non-stand-replacing fire in the forest type with the most severe fire effects, coupled
with less extensive but notable high-severity conditions in the other forest types, supports increasing
recognition of the importance of mixed-severity fire regimes [3,29]. The substantial extent of fire
refugia across recent fires highlights that pre-fire conditions persist in many cases, despite concerns
about increasing fire activity [15,17,25]. In addition, because the percentage of fire refugia was lower
in forest compositional and structural conditions with a higher percentage of high-severity fire and
vice versa, our findings demonstrate relative differences in fire effects among forest types that are
consistent with expectations from fire history studies and fire regime theory [1,6,30].

As expected in these generally forested locations, forests were the dominant land cover type
overall (85%) and in refugia areas (69%). However, our study also indicates that the nature of post-fire
ecosystem legacies and potential functions of fire refugia depends on specific forest conditions in the
pre-fire landscape. For example, the post-fire trajectory of a refugia site with surviving dense, large trees
will be very different from a sparsely forested or unvegetated site. Locations with abundant overstory
trees likely will function as forest refugia with live tree legacies (i.e., seed sources [11]) and fauna
source populations [12]. These ecological functions are particularly important for refugia sites adjacent
to high-severity areas and in cases where drought conditions hinder seedling establishment [11,14].
Another key function for forested refugia is the provision of critical habitat for forest specialists both
during and following fire [12,20,23]. In western portions of the Pacific Northwest region, because
late-successional and old-growth forests provide nesting and roosting habitat for the Northern Spotted
Owl (Strix occidentalis caurina Merriam), fire refugia in closed canopy forest with large trees represent
an especially vital subset of refugia for this and other vulnerable species.

Although the majority of mapped refugia were forested prior to the most recent fires, non-forest
conditions represented 31% of refugia extent, a considerable component of burned landscapes
with distinct implications for forest ecosystems and fire dynamics. For example, locations with
non-forest vegetation prior to fire likely contain shrub and herbaceous communities that contribute
to heterogeneity in both the pre- and post-fire landscape, providing habitat for early-successional
species that might otherwise require stand-replacing disturbance. Non-forest vegetation also may
respond rapidly following fire [31,33], increasing surface fuel connectivity and potential exposure of
forest refugia to future fires, at least where herbaceous grasslands interface with forests. In contrast,
unvegetated non-forest conditions like rocky slopes in barren and alpine locations may protect adjacent
forested areas from fire via fuel breaks despite not harboring surviving trees themselves. The different
ways that non-forest cover types intermix, and potentially influence, forest fire refugia within generally
forested ecosystems highlights the need to account for the diversity of land cover types and spatial
complexity of burn severity mosaics in fire assessments.

4.2. Implications for Fire Refugia Research, Monitoring, and Management

This study describes previously undocumented variability in remotely mapped fire refugia across
a heterogeneous region and numerous fire events, suggesting several avenues for future research.
Finer-resolution analyses are possible in both forest and non-forest areas, including examination
of more specific forest types, forest structural conditions, or non-forest land cover types. Such
assessments could be particularly fruitful at sub-regional scales, especially where detailed pre-fire
field data are available within specific landscapes or land-management units (i.e., National Forests).
The landscape-scale maps of the Table Mountain Fire (Figures 3 and 4) illustrate important pixel- and
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stand-scale variation that future studies could integrate further with intensive field surveys (e.g., [8,9]).
In addition to assessing composition and structure as separate components of forest ecosystems,
future work could explore the interactions of composition and structure, identifying, for instance, the
structural conditions more conducive to fire refugia in forest types with the least amount of refugia.
Additional studies also could investigate the variability of post-fire forest and non-forest conditions in
order to document the influence of pre-fire heterogeneity on post-fire heterogeneity and ecosystem
responses, building on recent analyses of refugia spatial patterns. For example, Meddens et al. [19]
determined that refugia patch size varies with land cover type and topography (i.e., larger patch
size in flatter locations with sparse vegetation). Finally, subsequent work could focus on statistical
modeling of the environmental controls underpinning the predictability and persistence of fire refugia
(e.g., [7,24]), as well as how fire refugia might overlap with hydrological and climate refugia (e.g., [10]).
In anticipation of these prospects for further inquiry, the current study provides more detailed
ecological resolution than previous efforts for a regional sample of large fires spanning a broad
range of environmental settings. The opportunity to conduct this type of assessment will only increase
with ongoing improvements in fire [49], vegetation [52], and land cover [56] mapping.

Our findings have immediate applications for the development and interpretation of refugia
and burn severity maps. Specifically, this study underscores that the same estimate of spectral
change (or lack thereof) can mean very differ things in forested and non-forested areas with differing
composition and structure [32,34]. Categorical maps amplify this potential ambiguity because burn
severity classes necessarily include a range of change values. As such, map users should exercise
caution when interpreting burn severity products, particularly classified maps at the low end of the
severity gradient in environments with a substantial non-forest component. If one’s primary interest
is forest applications, rather than assuming that tree-based thresholds are applicable throughout fire
perimeters, a prudent approach would be to apply a robust forest mask and assess only those fire
events occurring after the forest mask imagery date (as in this study). This principle applies whether
the refugia maps are based on two-image Landsat change detection with dNBR (an absolute change
index, as in the MTBS classification) or Landsat time-series change detection with RdNBR (a relative
change index, as in our classification). A related implication of this finding is that current off-the-shelf
approaches (e.g., MTBS) overestimate the extent of forest fire refugia if an appropriate forest mask is
not incorporated (e.g., Figure 3).

Finally, this study has direct implications for fire and forest management in the PNW region
and other temperate forests with abundant wildfires. First, our findings suggest that land managers
explicitly consider the pre-fire variability of burned areas when developing and applying burn severity
maps, post-fire management activities, and ecosystem service assessments (e.g., [2]). The estimated
difference between conditions before and after fire—whether spectral or field-based—is only one piece
of the fire effects puzzle. The full picture of burn severity and ecosystem response to fire depends
on pre-fire conditions, short-term fire effects, and post-fire vegetation trajectories [4,31]. Second,
the substantial extent and variability of non-forest vegetation within fire refugia warrant special
management attention and coordination with non-forest specialists. Because we assessed only those
fire events with >50% forest cover, the prevalence of non-forest areas is higher across the broader
PNW [19] and western North America. Accordingly, monitoring and management activities should
integrate pre-fire land cover and other ancillary spatial data to characterize contemporary burn mosaics
more comprehensively. Third, the high variability within mapped refugia locations confirms the value
of developing clear terminology and conceptual frameworks for fire refugia [57], especially in the
context of broader discussions of refugia conservation [10].

5. Conclusions

As fire activity continues to increase due to changing climate and land use [15–17], the topic
of fire refugia will become increasingly important in ecosystems throughout the world. In the
Pacific Northwest, fire extent has increased dramatically in recent years, although the proportion of
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different burn severity classes has remained relatively consistent [6,19]. This study develops a new
approach to map and describe forest fire refugia and overlays those refugia with readily available land
cover and vegetation maps, illustrating that not all fire refugia are equivalent. The variability and
potential interactions of land cover types, forest types, and forest structural conditions demonstrate
the importance of understanding the full range of pre-fire conditions in burned areas. Our findings
also underscore that burn severity map users should be careful in their assumptions when identifying
potential forest fire refugia with satellite imagery because non-forest and sparsely forested areas
can represent a considerable percentage of locations experiencing minimal spectral change, which
could result in the overestimation of functional forest fire refugia. Future research, monitoring, and
management activities could further elucidate the patterns and ecological functions of fire refugia,
as well as strategies to increase the capacity of refugia to enhance forest resistance and resilience in
fire-prone landscapes.
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Abstract: Spruce budworm, Choristoneura fumiferana (Clem.), defoliation has been shown to affect the
occurrence of crown fire in Ontario, highlighting the need to better understand the driving factors
of this effect on forest structure, including changes in fuel loading, type and position. Here, we
investigate five boreal mixedwood sites within four zones that experienced different durations of
continuous defoliation by spruce budworm in northeastern Ontario. Duration of defoliation had
significant effects on vertical stand components, namely, host overstory to host understory crown
overlap, host overstory and host understory crown to downed woody debris overlap, and downed
woody debris height and quantity. Vertical stand components tended to increase with the duration of
continuous defoliation, with the highest vertical fuel continuity occurring after 16 years of continuous
defoliation. Such increases in the vertical spatial continuity of fuels may be a key reason for the greater
percentage of area burned in those forests which have recently sustained a spruce budworm outbreak.

Keywords: spruce budworm defoliation; vertical fuel continuity; crown fire; forest fire management;
forest structure; natural disturbance; insect outbreak; boreal mixedwood forest; interaction

1. Introduction

The spruce budworm, Choristoneura fumiferana (Clem.), periodically erupts into large-scale
outbreaks during which its favoured host species, balsam fir (Abies balsamea), and to a lesser extent
white spruce (Picea glauca) and black spruce (Picea mariana), are defoliated and killed [1]. This insect is
a major biotic disturbance throughout the boreal forest in the province of Ontario, Canada. During
its last major outbreak (1977–1987), the spruce budworm defoliated roughly 20 million hectares in
Ontario [1] and depleted an average of 35 million cubic meters of host tree wood volume annually
in Canada [2]. Research points to a large-scale outbreak cycle of variable length averaging about
35 years [3] and lasting between five and fifteen years [2]. Historical records showed that in Ontario
the last major outbreak’s peak in defoliated area occurred around 1980 [1].

Severe and repeated spruce budworm defoliation is a major stress on forest stands [4] and can
begin the process of stand breakdown. Defoliation usually begins at the top of the tree and becomes
more extensive as budworm populations grow, with severity a function of the number of larvae feeding
on the individual tree [5]. Several years of defoliation can remove the majority of foliage from crown
branches [5], initially causing growth reduction, but eventually leading to tree crown mortality termed
“top-kill” [5]. If only a few years of defoliation occur, a tree may completely recover; however, after
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five years of severe defoliation, full-tree mortality is likely to begin [6]. Partially eaten needles of live
trees and needles from dying trees may be held in the tree crown by silk produced by budworms for
feeding shelters. Reduced structural integrity in a dying or dead tree at first leaves the crown and
branches susceptible to breakage from environmental stressors such as wind [7], gradually extending
to the entire bole. After this, broken tree components may begin to accumulate suspended in the lower
canopy or on the forest floor. The finer diameter elements of this suspended biomass are referred to as
ladder fuels (i.e., biomass found above fuel accumulated on the forest floor and below the overstory
crown) due to their ability to carry fire vertically into and above the overstory canopy [8]. As tree
mortality and windthrow occur, canopy gaps allow previously suppressed trees to reach the canopy.
The resulting canopy form will vary in initial composition, and in mixedwood forests a multilevel
canopy can be expected [7]. Variable tree mortality rates among spruce budworm host tree species [5]
provide a vertical distribution of biomass in differential amounts and stages of decomposition [9].
High levels of tree mortality, top-kill, and an abundance of dead leaf material in the canopy and on
the ground represent the drastic shifts in distribution of flammable fuel types and loads that result
from defoliation.

Changes in forest structure and the build-up of downed woody debris have been postulated
to affect forest fire hazard [10], and historical records show the likelihood of large (>200 ha) fires
to be greater during the short ‘window of opportunity’ following spruce budworm defoliation [11].
Study suggests that the potential for crown fire is likely greatest five to eight years following complete
spruce budworm-caused stand mortality, largely due to stand breakdown and the accumulation
of surface fuel [10]. After spring flush, the transition of surface fire to crown fire is inhibited by
the moist deciduous and herbaceous vegetation layer up to four to five years after stand mortality,
after which surface fuel accumulation overcomes this inhibition, making the height of surface fuels
with respect to the herbaceous vegetation layer important. Previous work has shown that crown
fire occurs disproportionately more often three to nine years following the end of spruce budworm
defoliation in Ontario’s boreal forest, and that there is clear geographic variation in this ‘window of
opportunity’: Fire begins later and lasts longer in western than in eastern parts of the region, with the
difference being attributed to drier climates in the West [11]. The effect of a drier climate likely impacts
fuel accumulation and decomposition directly, but may also operate indirectly on spruce budworm
population dynamics and host tree composition (i.e., greater ratio of white spruce to balsam fir in the
western compared to the eastern region). Subsequent analysis has shown that lagged spruce budworm
defoliation (8–10 years) increases the probability of fire ignition, confirming previous conclusions [12].

Vertical fuel continuity describes the vertical spatial distribution of fuels within a stand. Limited
attention has been placed on understanding the vertical position of fuels within the fuel ladder and
surface stratums, as well as on how the amount and position of those fuels change, with respect to the
duration of spruce budworm defoliation. Smaller vertical gaps between surface, ladder, and crown
fuels indicate a more vertically continuous fuel. An understanding of such structural changes due
to spruce budworm defoliation at the stand-level may point to one of the key driving factors behind
landscape-scale observations [11,13], and help highlight the areas where risk of a large forest fire is
elevated due to spruce budworm defoliation.

In Ontario, historical fire records show that the vast majority of forest fires burn relatively small
areas. Stocks (2018, personal communication) deduced that most of these small fires burn along the
surface and only rarely establish themselves in the crown. While relatively few forest fires involve the
crown in a substantial way, those few fires that do cause the vast majority of the total area burned [14].
Studies suggest that vertical fuel continuity is an important factor in allowing what began as a surface
fire to establish itself in the crown [10,15].

Here, we focus on factors that may contribute to the spruce budworm–crown fire interaction at
the stand level. Specifically, we begin to quantify how an increase in duration of defoliation by spruce
budworm alters fuel loads and leads to the re-arrangement of fuels in ways that can impact a stand’s
propensity to support a crown fire.
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2. Materials and Methods

2.1. Study Area

The study took place in a forested area over 150 km to the northeast of Warren, Ontario (i.e.,
referred to as ‘Warren’), identified based on the duration of past spruce budworm defoliation and
general forest characteristics. Spruce budworm defoliation was established using the Forest Insect and
Disease Survey (FIDS) of the Canadian Forest Service (CFS) and the OMNR, which provided aerial
mapping of moderate–severe defoliation between 1941 and 2009. Moderate–severe defoliation was
considered here to be the loss of 40–100% of new foliage [16].

From the aerially mapped dataset, four zones of continuous, moderate–severe spruce budworm
defoliation were identified, corresponding to zero (i.e., no mapped defoliation), four (2004–2007),
eight (2000–2007), and sixteen (1993–2008) years. Each zone of defoliation was a minimum of 30 km
from the next. The previous defoliation event experienced by each zone occurred from 1973 to 1984,
respectively nineteen, fifteen, and eight years prior to the defoliation identified in the most recent zones
of continuous defoliation. Forest characteristics were established using Forest Resource Inventory
(FRI) data provided by the Ontario Ministry of Natural Resources (OMNR) (Table 1). These data
were collected in 1989 (three years prior to the commencement of the most recent period of spruce
budworm defoliation), and showed the vegetation type to be boreal mixedwood composed of host
(i.e., balsam fir, white spruce, black spruce) and non-host (i.e., sugar maple (Acer saccharum), trembling
aspen (Populus tremuloides), white cedar (Thuja occidentalis), white birch (Betula papyrifera) and yellow
birch (Betula alleghaniensis)) trees. According to the FRI data, mean dominant (or co-dominant) tree
age of the stands selected in the defoliation zones ranged from 68 to 111 years and from 12 to 18 m in
height. Mean host composition ranged from 30% to 50%.

2.2. Site Selection

Earlier work [11] focused on the time lag between the end of spruce budworm defoliation and
the subsequent occurrence of a large fire in that area, without regard to the length of the defoliation
period. Here, we chose zones that had been continuously defoliated for various lengths of time in
order to measure the effect of defoliation duration on subsequent fuel characteristics that influence a
stand’s ability to sustain a crown fire. Within each defoliation zone (i.e., areas defoliated continuously
for zero, four, eight, and sixteen years according to the FIDS defoliation maps), five sites representing
independent stands were randomly selected for data collection. These sites were measured in July
2011. We ensured that each of the sites had a minimum host tree composition of 20%, and dominant
or co-dominant tree age of 50 years as defined by the FRI data collected from the study area in 1989
(Table 1). The sites also fell within Ontario’s Intensive Fire Management Zone, and did not show
signs of recent fire. We included five more sites per zone to estimate the frequencies with which
dead, top-killed, and topped trees occurred. These sites were measured in May 2011. Latitudinal and
longitudinal coordinates were recorded (Table 1) using a handheld global positioning system (GPS)
with an accuracy varying according to signal quality (i.e., error < 15 m). Coordinates corresponded to
a randomly selected point at 0 m on a 30-m transect that ran as a North–South transect, and was used
for data collection.
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2.3. Data Collection

For the sites measured in each defoliation zone, forest structural data were collected from three
points along a 30-m transect (0 m, 15 m, 30 m). Sampling methods followed those previously
established [17] and used the point-centered quarter method [18] to inventory host overstory and
understory trees. Species type (i.e., non-host, balsam fir, white spruce, black spruce) was also identified.
The five sites measured in July were the basis for all analyses with the exception of the inventory of the
state of trees. An additional five sites per defoliation zone, those measured in May, were included for
that analysis. The vertical forest characteristics measured near Warren, and discussed throughout this
study, are presented in Figure 1.

 

Figure 1. Schematic representation of vertical forest characteristics in boreal forest defoliated by spruce
budworm. Represented are host overstory and understory crown base height (CBH), host understory
height, top-kill, crown breakage, dead crown base height (DCBH), downed woody debris height
(DWDH), suspended woody debris (SWD) and related vertical spacing. Note: The length of top-kill (T)
was not measured in this study.

Data collected for all host trees included: the distance from the transect reference point, diameter
at breast height (DBH), height (H), live crown base height (LCBH), dead crown base height (DCBH),
and crown base height (CBH). Distance from the transect and DBH were measured for host overstory
trees having a DBH ≥ 3.0 cm. Height was measured using a clinometer for the overstory tree in the first
quadrant at each point, and all other tree heights were visually estimated by reference to the measured
tree. LCBH was defined here as the lowest height of live foliage and DCBH as the lowest height of dead
branches, dead foliage, and lichen visually estimated to sustain vertical fire propagation. Both LCBH
and DCBH were measured using a tape if possible, or otherwise visually estimated. Visual estimation
of base heights was used when the tape had reached the horizontal plane of the base height from an
unobstructed location, in instances when there was a vertical obstruction. In this study, we define
crown base height (CBH) as a combination of live and dead crown heights, where live crown base
heights were included for live trees, and dead crown base heights for dead trees.

The status of host overstory trees was also assessed. Defoliation was visually estimated as the
percentage per branch of absent needles compared to the undefoliated state, then averaged for the
entire tree. While this gives a robust estimate of crown foliar fuel load, it differs from the FIDS’ method
of measurement (i.e., percentage of new foliage lost), and may provide a higher estimate of defoliation.
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The health of each tree was assessed following an existing classification system [19] and categorized as
either: (i) “Affected” including all dead trees (i.e., stages 3, 4, 6, 7), topped trees (i.e., stage 2), and trees
experiencing top-kill (i.e., stage 2); (ii) “Dead” including all dead (i.e., stages 3, 4, 6, 7) and topped
trees (i.e., stage 2); and (iii) “Top-kill” trees including only those experiencing top-kill (i.e., stage 2).
The categories were not mutually exclusive. The occurrence of suspended woody debris (SWD), fallen
branches or upper stems caught in lower stand branches, was recorded for each host tree at the five
sites per defoliation zone measured in July.

Measurement of the surface region was important to understand the lower section of the vertical
fuel continuum. Downed woody debris height (DWDH) and the maximum height of the herbaceous
plant matter were measured at 3-m intervals along the first 15 m of each 30-m transect. DWDH was
defined here as the height above ground of the highest branch, bole or foliage that had fallen to the
ground. A count of downed woody debris with a diameter of 7.0 cm or greater that crossed the transect
was recorded following the line-intersect method [20]. Pieces assessed as sound (i.e., class 1,2) were
recorded [19].

2.4. Statistical Methods

The experimental design was stratified, with balanced, random sampling within strata. Data
analysis involved comparison of mean forest structural characteristics among treatment groups (i.e.,
defoliation zones) to determine if any significant differences existed. A one-way analysis of variance
(ANOVA) and then a Tukey’s post-hoc test were used to compare differences in means for the following
variables: host overstory tree composition and dominant tree age obtained from FRI data. Yet some
variables were not normally distributed and did not have equal variance. For these variables (i.e.,
stand density, defoliation extent, occurrence of affected trees, occurrence of suspended woody debris,
down woody debris height, vertical forest structure, and the overlap of key forest components) a
non-parametric one-way comparison of means was performed using the Kruskal-Wallis rank sum test.
A post-hoc, pairwise comparison using the Wilcoxon rank sum test was used to test for differences
among means. To describe the occurrence of a trend categorically, contingency tables were created and
tested with a Fisher’s exact test (labelled as “Fisher’s test”).

Linear regression was used to test for any significant trend with increased duration of defoliation.
Dependent variables tested by regression described vertical forest structure and the overlap of key
forest components. These dependent variables were normally distributed and of equal variance, and
included: (a) host overstory to host understory crown overlap (host overstory CBH − host understory
H); (b) host overstory and host understory crown to downed woody debris overlap (host overstory CBH
− host understory H + host understory CBH − DWDH); (c) host overstory to downed woody debris
overlap (host overstory CBH − DWDH); and d) host understory to downed woody debris overlap
(host understory DCBH − DWDH). The independent variable was years of continuous defoliation.

3. Results

3.1. Forest Characteristics and Defoliation Duration

FRI data collected in 1989 showed general stand characteristics for the study sites, three years
prior to the start of the most recent period of spruce budworm defoliation. Host overstory species
composition did not significantly differ among defoliation zones (F3,16 = 1.149, p = 0.640). However,
sites that later endured four years of continuous defoliation consisted of a significantly lower
composition of balsam fir (Kruskal-Wallis H: 10.480, df: 3, n: 5, p = 0.013) than those that endured
sixteen years. The zone of four years of continuous defoliation was also significantly greater in age
than zones of eight and sixteen years of continuous defoliation (Kruskal-Wallis H: 15.387, df: 3, n: 5,
p = 0.002 and Wilcoxon rank sum test; p < 0.05). Stocking did not significantly differ among defoliation
zones (Kruskal-Wallis H: 4.075, df : 3, n: 5, p = 0.253). Dominant tree height prior to sixteen years of
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continuous defoliation was significantly less than eight years (F3,16 = 3.255, p = 0.049 and Tukey’s
post-hoc test; p < 0.05).

Post-defoliation, stands were of similar density and dominated by host tree species (Table 2). Mean
stand density and associated standard error of the mean (SEM) was 3321 stems/ha ± 103 stems/ha
with a minimum of 50% host overstory composition. While the balsam fir component of host overstory
trees varied among defoliation zones (Kruskal-Wallis H: 8.368, df: 7, p = 0.039), the overall density of
balsam fir trees in each defoliation zone was not significantly different and averaged 1680 stems/ha ±
371 stems/ha (SEM). Independent (i.e., July) and pooled (i.e., May and July) stand densities were not
significantly different (Kruskal-Wallis H: 6.69, df: 7, p = 0.46). Host understory trees were primarily
balsam fir and to a lesser extent, white spruce. Mean host understory density was 903 (±174) stems
per hectare, 2348 (±1947) stems per hectare, 1844 (±425) stems per hectare and 3624 (±854) stems per
hectare in the zones of zero, four, eight and sixteen years of continuous defoliation, respectively.

The severity of spruce budworm defoliation and impact to stand structure tended to increase with
duration of defoliation. Defoliation was greater in zones of four, eight and sixteen years of continuous
defoliation than zero years (18% ± 3% SEM), with 50% ± 4% SEM, 52% ± 5% SEM, 63% ± 4% SEM
respectively (Kruskal-Wallis H: 71.930, df: 3, n: 60, p < 0.001 and Wilcoxon rank sum test; p < 0.05) with
zone sixteen showing the greatest defoliation (Wilcoxon rank sum test; p < 0.05). The occurrence of
trees showing symptoms of spruce budworm defoliation (i.e., affected trees) tended to increase to eight
years of continuous defoliation (Figure 2) and was significantly greater than after zero and four years
(Kruskal-Wallis H: 22.194, df: 3, n: 10, p < 0.001 and Wilcoxon rank sum test; p < 0.05). The percentage
of dead and topped trees followed a similar trend (Dead Kruskal-Wallis H: 21.305, df: 3, n: 10, p <
0.001, Wilcoxon rank sum test; p < 0.05 and Topped Kruskal-Wallis H: 20.929, df: 3, n: 10, p < 0.001 and
Wilcoxon rank sum test; p < 0.05). Top-kill peaked after sixteen years of continuous defoliation, and
was significantly greater than after zero and four years (Kruskal-Wallis H: 11.98, df: 3, n: 10, p < 0.01
and Wilcoxon rank sum test; p < 0.05).

Table 2. Overstory tree (DBH ≥ 3 cm) density and composition in zones of boreal mixedwood forest
continuously defoliated by spruce budworm for zero, four, eight and sixteen years from 1993–2008
near Warren, Ontario. Forest characteristics were measured at five sites within each defoliation zone in
May 2011. The same measurements were repeated at independent sites in July 2011. The pooled data
(i.e., ten sites per defoliation zone) are shown separately from the data collected in July 2011. Standard
error of the mean is represented by SEM. Host trees include balsam fir, white spruce and black spruce.

Continuous Defoliation n Density (Stems/ha) Composition (%)

(Years) (# of Sites) Overall SEM
Host SEM

Balsam
Fir

SEM

(of Total) (of Total) (of Host) (of Host)

Data from July 2011
0 5 3142 ±702 72 ±31 93 ±3
4 5 2664 ±412 51 ±29 57 ±12
8 5 2847 ±337 94 ±24 48 ±16

16 5 4630 ±280 90 ±40 67 ±18
Pooled data from May

and July 2011
0 10 3203 ±720 72 ±37 - -
4 10 3242 ±744 59 ±33 - -
8 10 2895 ±392 94 ±53 - -

16 10 3793 ±1056 87 ±48 - -

A spike in suspended and downed woody debris reflected the occurrence of dead and topped
trees. The quantity of suspended woody debris after sixteen years was significantly different from all
other years in both the host overstory and host understory (Overstory Kruskal-Wallis H: 9.78, df: 3,
n: 5, p = 0.02, Wilcoxon rank sum test; p < 0.05 and Understory Kruskal-Wallis H: 11.95, df: 3, n: 5,
p < 0.01, Wilcoxon rank sum test; p < 0.05). The height of downed woody debris was significantly
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greater after eight and sixteen years than zero years (Kruskal-Wallis H: 22.169, df: 3, n: 25, p < 0.001,
Wilcoxon rank sum test; p < 0.05; Figure 3) and surpassed the height of the herbaceous layer after four
and eight years (Kruskal-Wallis H: 11.22, df: 3, n: 25, p = 0.01, Wilcoxon rank sum test; p < 0.05).

Figure 2. Mean percentage of host overstory trees (n = 10) with given trait by years of continuous spruce
budworm defoliation from 1993–2008 in boreal mixedwood forest near Warren, Ontario: (a) Affected
(all dead trees, topped trees and trees experiencing top-kill); (b) Dead (all dead trees); (c) Topped (all
topped trees); and (d) Top-kill. Among treatments, means with the same letters were not significantly
different (Wilcoxon rank sum test; p < 0.05). Error bars show standard error of the mean.
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Figure 3. Mean surface biomass height by years of continuous spruce budworm defoliation from
1993–2008 in boreal mixedwood forest near Warren, Ontario: (a) Downed woody debris height (DWDH;
n = 25); (b) Herbaceous height (n = 25); (c) Difference between DWDH and herbaceous height (n = 25);
and (d) Downed woody debris (DWD) occurrence ≥ 7.0 cm (n = 5). Means with the same letters among
treatments were not significantly different (Wilcoxon rank sum test; p < 0.05). Error bars show standard
error of the mean.

3.2. Vertical Fuel Continuity

Aspects of vertical forest structure responded to variation in defoliation duration (Figure 4).
Defoliation duration significantly predicted the observed decrease in host overstory height (R2 = 0.33,
F3,17 = 8.84, p < 0.01) and diameter at breast height (R2 = 0.30, F3,17 = 7.81, p = 0.01). After eight and
sixteen years, top height and crown base height were significantly lower than after zero and four years
(Kruskal-Wallis H: 21.469, df: 3, n: 60, p < 0.001, Wilcoxon rank sum test; p < 0.05 and Kruskal-Wallis
H: 24.351, df: 3, n: 60, p < 0.001, Wilcoxon rank sum test; p < 0.05, respectively). There was no significant
difference in host understory heights.
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Figure 4. Linear regression of host overstory tree structure (dependent variables) by years of continuous
spruce budworm defoliation (independent variable) from 1993–2008 in boreal mixedwood forest near
Warren, Ontario: (a) Host tree height (Ht); and (b) Diameter at breast height (DBH). Linear regression
showed years of continuous defoliation significantly predicted host tree height (R2 = 0.33, F3,17 = 8.84,
p < 0.01) and diameter at breast height (R2 = 0.30, F3,17 = 7.81, p = 0.01). The equations of the regression
lines were Ht = −0.29 (Continuous defoliation) +13.00 and DBH = −0.33 (Continuous defoliation)
+14.41, respectively. The coefficient estimates with SEM for host tree height and diameter at breast
height were −0.29 ± 0.10, 13.00 ± 0.89 and −0.33 ± 0.12, 14.41 ± 1.07, respectively.

Vertical fuel continuity among defoliation zones was assessed by determining the overlap of key
stand components (Figure 5). The gap between host overstory and host understory crowns decreased
with increasing years of defoliation such that after sixteen years of continuous defoliation, the vertical
components overlapped. Overlap of host overstory and host understory crowns (i.e., the ladder region)
occurred in all sites (Fisher’s test p < 0.01) and in 49 of 60 quadrants (Fisher’s test p < 0.001) after sixteen
years. The gap between host tree crowns and downed woody debris was smaller after eight and sixteen
years of continuous defoliation than zero and four years for both the host overstory (Kruskal-Wallis
H: 38.003, df: 3, n: 60, p < 0.001, Wilcoxon rank sum test; p < 0.05) and host understory (Kruskal-Wallis
H: 19.951, df: 3, n: 60, p < 0.001, Wilcoxon rank sum test; p < 0.05). Host understory dead crowns
overlapped downed woody debris height after eight and sixteen years of defoliation (Kruskal-Wallis
H: 122.202, df: 3, n: 60, p < 0.001, Wilcoxon rank sum test; p < 0.05). These results were supported by
regression analysis (Table 3 and Figure 6).
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Figure 5. Vertical forest structure showing mean top height (top of crown component; n = 60), crown
base height (bottom of crown component and top of trunk component; n = 60), downed woody debris
height (DWDH; n = 25) by years of continuous spruce budworm defoliation from 1993–2008 in boreal
mixedwood forest near Warren, Ontario for host overstory (O) trees, host understory (U) trees and
downed woody debris (DWD). Among treatments, means with the same letters were not significantly
different (Wilcoxon rank sum test; p < 0.05). Error bars show standard error of the mean. Note: Eight to
sixteen years on x-axis is eight years.

Figure 6. Cont.
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Figure 6. The distance between selected vertical stand components (dependent variables) by years of
continuous spruce budworm defoliation (independent variable) from 1993–2008 in boreal mixedwood
forest near Warren, Ontario: (a) Host overstory crown and downed woody debris (Overstory CBH −
DWDH); (b) Host overstory crown, host understory crown and downed woody debris (Overstory CBH
− Understory H + Understory CBH − DWDH); (c) Host overstory and understory crowns (Overstory
CBH − Understory H); and (d) Host understory dead crown and downed woody debris (Understory
DCBH − DWDH). For all four categories of number of years of continuous defoliation, n = 5.

4. Discussion

4.1. Forest Characteristics and Defoliation Duration

Tree mortality can be expected to begin after four to five years of moderate–severe spruce
budworm defoliation, but will vary with forest composition and age [6]. After the onset of spruce
budworm defoliation, stressed trees begin to experience crown breakage and windthrow, and the
amount of freshly fallen, woody debris begins to accumulate above normal background levels [10].
We observed such accumulation of downed woody debris as the frequency of stressed, dying and dead
trees increased with the duration of defoliation. This suggests that spruce budworm defoliation drove
stand breakdown.

The accumulation of downed woody debris has implications for surface fire intensity. In our
study, downed woody debris with a diameter ≥ 7.0 cm was used as a surrogate for understanding,
in a relative sense, the amount of finer branch woody debris present (i.e., the material < 1.0 cm in
diameter that would be consumed in flaming) for each defoliation zone. The build-up of downed
woody debris in the larger size class (i.e., ≥7.0 cm) with the duration of defoliation suggests a greater
presence of fuels consumed in flaming. Such an increase in available surface fuel loads would increase
surface fire intensity [15]. However, it is important to be cautious here as smaller-diameter fuels may
accumulate faster and decompose sooner than larger diameter fuels. As has been shown, the rapid
decomposition of finer branch woody debris may limit any increase in the likelihood of fire despite the
gradual accumulation of larger-diameter fuels following spruce budworm-caused stand mortality in
wet regions of eastern Canada [21]. Thus, varying rates of decomposition can limit the accuracy of this
relative comparison.

As a result of crown breakage and mortality, downed woody debris increased in both quantity
and height with the duration of defoliation. After eight years of defoliation, downed woody debris
height surpassed that of the herbaceous layer. This is important because the high-moisture leaves of
the herbaceous layer may have a dampening effect on crown fire initiation. In a previous study, such a
phenomenon was suggested as a possible contributing factor in the limited crowning observed during
summer months for spruce budworm-defoliated stands [10]. However, when downed woody debris
surpasses the herbaceous layer, as we observed, the dampening effect may be overcome.
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The increase in suspended woody debris with the increase in the duration of continuous
defoliation may also be attributed to the stand degradation caused by defoliation. Dispersing spruce
budworm moths have been found to vertically drop from the horizontal air column [22]. Therefore,
trees that reach higher into the canopy may be easy targets for oviposition by dispersing moths,
making the upper canopy a likely site of oviposition. The abundance of eggs and the close proximity
to present-year needles [23] may also make the upper canopy a favored feeding area for larvae. The
preference for spruce budworm to defoliate mature, and taller, host trees [5] may have opened the
canopy through defoliation, crown breakage, and the mortality of taller trees. Such an opening could
promote the recruitment of immature, shade-tolerant spruce and balsam fir that were suppressed in
the understory prior to disturbance [24,25], and explain the dense layer of immature host overstory
trees (3–9 cm in DBH) and host understory trees (3624 stems per hectare) observed after 16 years of
continuous defoliation. This layer may have also offered greater opportunity for the suspension of
woody debris with a net-like effect as crown breakage progressed. The spike in suspended woody
debris after 16 years of defoliation may also have been due to the greater composition of younger
balsam fir and white spruce initially present, whose branches may have caught the falling trees, crowns,
and branches of the mature generation that stood above.

4.2. Vertical Fuel Continuity

The accumulation of biomass in the surface and ladder fuel regions of a forest has implications for
the transfer of fire from the surface to the crown region [15]. Greater fuel loads on the surface support
higher energy surface fires, and consequently longer flames that are able to reach higher and approach
the canopy [15]. While the increase in fuel quantity may have an even greater effect on fire behaviour,
fuels above the surface help propagate surface flames upward towards the canopy, but at relatively
lower energy levels. A continuous connection of fuel from the surface to the ladder to the crown region
of a forest would therefore facilitate the climb of lower energy flames. Where overlaps occur (e.g., the
host understory dead crown sat below the high point of downed woody debris), continuity will be
enhanced, and where gaps occur (e.g., the host understory dead crown sat above the high point of
downed woody debris), continuity will be reduced.

Fuel continuity increased with the duration of continuous defoliation. After 16 years, host
overstory crowns overlapped host understory crowns, and host understory dead crowns overlapped
downed woody debris. The reduced tendency for individual trees to shed their lowest branches
as stands open and the recruitment of younger trees into the developing overstory gaps as crown
breakage progresses may have contributed to the reduction in both host overstory height and crown
base height. The defoliation of larger host trees likely deposited increased downed woody debris in
close proximity and likely increased the probability that under these trees the downed woody debris
height was greater than the height of the herbaceous layer. The combined effect here would suggest
an increase in the probability that a surface fire would reach the crown of the larger host trees where
additional continuity exists.

Previous study has found that large fires (>200 ha) were more likely to occur during a window
of opportunity three to nine years following the cessation of spruce budworm defoliation, without
regard to the length of the defoliation period [11]. The data in our study were gathered four and
three years following the end of defoliation periods lasting zero, four, eight and sixteen years, which
aligns closely with the beginning of the proposed ‘window of opportunity’ [11]. The increase in
the parameters measured (i.e., vertical continuity) with progressive annual defoliation suggests that
consideration of defoliation length may provide further resolution to these findings. More specifically,
stand breakdown, surface fuel accumulation and vertical continuity were greater after sixteen years
than four years of continuous defoliation. While the likelihood of large fires may increase three
years after any length of defoliation, the likelihood of large fires occurring within the window of
opportunity may be greater if the period of defoliation is longer. Determining the impact of the
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parameters measured here on the likelihood that a surface fire will transition to a crown fire presents a
valuable area of further investigation.

4.3. Limitations

This was an unplanned ‘silvicultural experiment’. We were unable to direct where and when the
treatment (i.e., budworm defoliation) was applied, so some initial zone differences are to be expected.
We were also unable to measure the same stands/trees prior to and after defoliation (over the 20-year
period from 1989 to 2011), and therefore we cannot be certain that the changes in structure were due
only to spruce budworm defoliation, and not also to, for example, site quality or host tree age. We
believe that using the FRI data for our initial measurement of pre-defoliation (1989) site quality and
stand age amplified any apparent differences among the zones, and that the difference would have
been much less if we were able to make pre-defoliation measurements in 1989.

The scope of this study was to compare differences in forest structure among defoliation zones,
while also limiting the variation of forest characteristics prior to defoliation. Hence, the primary
criterion used to select the sample sites was ‘years of moderate–severe continuous defoliation’,
according to the FIDS defoliation maps. The five sites selected within each zone of continuous
defoliation were otherwise randomly selected with several constraints including: a minimum host tree
composition of 20% and a minimum dominant or co-dominant tree age of 50 years, as defined by the
FRI data collected in 1989.

The FRI is an effective tool to describe general stand characteristics. For example, described
metrics (e.g., stand height and age) pertain to the dominant and co-dominant trees of the leading
species in the stand, averaged over the stand. However, in the boreal mixedwood forest investigated
here, host trees were not necessarily the dominant or co-dominant species, and the structural metrics
in Table 1 do not necessarily describe the structural characteristics of the host trees in the stand (i.e.,
those trees defoliated by spruce budworm). Nonetheless, the FRI data were still used to estimate
stands that were similar in structure prior to defoliation because, given the resources of this study,
it was not feasible to measure the forest structure of sites in both 1989 (pre-defoliation) and 2011
(post-defoliation), nor ensure those sites would endure spruce budworm defoliation. Given that it
was not possible to measure the same sites before and after defoliation, it could be true that to some
extent the observed differences among defoliation zones (e.g., stand height and vertical fuel continuity)
existed prior to defoliation. This may suggest, for example, that vertical fuel continuity, as shown in
Figures 4–6, is greater in stands that later experience longer durations of defoliation.

It has long been recognized that spruce budworm preferentially attacks over-mature, dominant
and co-dominant host trees and that, consequently, outbreaks can have major impacts on stand ages
and tree heights of the host species [26]. In fact, our measurements suggest structural changes that
would reduce tree height and stand age. Differences in stand structure were particularly evident in
sites defoliated continuously for eight and sixteen years compared to those defoliated for zero and
four years. For example, significant differences were found in the occurrence of top-killed, topped
and dead host overstory trees, host overstory tree height, and downed woody debris height. These
characteristics are related in that as the tallest trees die or lose their tops after top-kill, stand height
declines and downed woody debris increases. Given such observations, we believe that the duration
of spruce budworm defoliation does increase stand breakdown and vertical fuel continuity, as detailed
in this study.

5. Conclusions

Vertical fuel continuity increased with the duration of defoliation. Further investigation into
the changes in vertical forest structure by continuous spruce budworm defoliation, specifically those
associated with crown fire initiation and spread probability, will advance a more mechanistic and
causal understanding of the process underlying the patterns revealed by landscape-scale analyses
of the interaction between spruce budworm and crown fire [11,13]. Surface, ladder, and crown fuel
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properties measured in this study should be compared with those of other studies (i.e., [10]), and if
possible, combined with an estimate of the impact of vertical fuel continuity on crown fire. This will
provide further insight into landscape-scale trends regarding the likelihood of large fires in forest
following spruce budworm defoliation [11,13].
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Abstract: Amazonia is home to more than half of the world’s remaining tropical forests, playing
a key role as reservoirs of carbon and biodiversity. However, whether at a slower or faster
pace, continued deforestation causes forest fragmentation in this region. Thus, understanding
the relationship between forest fragmentation and fire incidence and intensity in this region is critical.
Here, we use MODIS Active Fire Product (MCD14ML, Collection 6) as a proxy of forest fire incidence
and intensity (measured as Fire Radiative Power—FRP), and the Brazilian official Land-use and
Land-cover Map to understand the relationship among deforestation, fragmentation, and forest fire
on a deforestation frontier in the Brazilian Amazonia. Our results showed that forest fire incidence
and intensity vary with levels of habitat loss and forest fragmentation. About 95% of active fires and
the most intense ones (FRP > 500 megawatts) were found in the first kilometre from the edges in
forest areas. Changes made in 2012 in the Brazilian main law regulating the conservation of forests
within private properties reduced the obligation to recover illegally deforested areas, thus allowing
for the maintenance of fragmented areas in the Brazilian Amazonia. Our results reinforce the need to
guarantee low levels of fragmentation in the Brazilian Amazonia in order to avoid the degradation of
its forests by fire and the related carbon emissions.

Keywords: remote sensing; MODIS; Amazonian forests; Brazilian Forest Code; edge effects

1. Introduction

Tropical forests are globally important reservoirs of carbon (C) and biodiversity [1–3]. Vegetation in
this region stores between 350–600 Pg C [3–7], while the atmosphere stores about 750 Pg C [8].
The loss of these C stocks due to deforestation and forest degradation is estimated to be approximately
1.1 Pg C·year−1 [9–11]. Amazonia, specifically, is home to more than half of the world’s remaining
rainforest areas [12]. However, in the Brazilian Amazonia, intense land-use and land-cover changes
and forest degradation threaten the forest structure, biodiversity, and ecological functions [13].

The intense occupation of Brazilian Amazonia from the 70s [14], aiming to expand agricultural
and livestock activities and to increase the wood supply, besides a general lack of enforcement of
environmental laws, caused the dramatic increase of deforestation rates, reaching a peak of 27,772 km2

in 2004 [15,16]. After 2005, a steep decrease in deforestation rates was observed, which can be attributed
to a combination of factors, including governmental enforcement of environmental laws, restrictions
on access to credit, expansion of protected areas, and civil society interventions in the soy and beef
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supply chains [16]. Nonetheless, the deforestation rate increased markedly in 2015 and 2016 [15]
(24% and 27% in relation to the previous year, respectively), raising concerns that the recent weakening
of environmental-protection policies could be already reversing the Brazilian progress in reducing the
Amazonian forest destruction.

Whether at a slower or faster pace, continued deforestation cumulatively causes forest habitat
loss, altering habitat configuration, such as the change in spatial arrangement of the remaining
habitat through forest fragmentation. Metrics of habitat configuration, such as the number and
mean size of forest patches and edge length covary with habitat amount. Understanding these
relationships is important to correctly interpret the effects of habitat fragmentation on tropical
forests [17]. Following Farhig (2003) [18], the mean patch size of remaining forests is expected
to linearly decrease with the reduction in habitat amount, while both the number of patches and
the total edge are expected to rise up to a certain threshold of habitat loss and then decrease with
increasing deforestation.

Forest edges resulting from landscape fragmentation are highly fire-prone due to increased
dryness, higher fuel load compared to forest interior and proximity to ignition sources from adjacent
management areas [19–24]. Fragmentation and its resulting edge effects may act synergistically
with the ongoing large-scale changes in climate and fire regimes, threatening the Amazonian forest
ecological integrity [13,25].

Much of the literature on the effects of habitat loss and changes in habitat configuration has focused
on biodiversity maintenance and population persistence. Studies concerning the effect of habitat loss
and configuration on forest fires incidence and intensity at the landscape scale are rare in the Brazilian
Amazonia, especially in active deforestation frontiers, where the interactions between deforestation,
forest fragmentation and fire are evident. In other regions of the Amazon Basin, some authors have
demonstrated a positive response of fire incidence and intensity to increased fragmentation and forest
edges in the landscape [20–22,26,27].

In Brazil, the Forest Code (Federal Law 12.727/2012) is the main national law that is regulating
the conservation of forests within private properties [28]. This law determines that, within the Amazon
Biome, at least 80% of each rural property should not be deforested in order to ensure the sustainable
use of natural resources, assisting in the conservation and rehabilitation of ecological processes,
promoting the conservation of biodiversity, as well as the shelter and the protection of wildlife and
native flora. The question of whether such a high level of habitat maintenance is necessary to reduce
fire incidence in the region, however, has not been directly addressed yet.

To fill this gap, we relate, for the first time, habitat configuration metrics with fire incidence and
intensity in an active Brazilian Amazonia deforestation frontier, aiming to identify the relationships
between forest fragmentation and fire on the landscape scale. To achieve this, we address the following
question: What is the relationship between habitat loss and measures of habitat configuration, and their
implications for fire incidence and intensity in a central Amazonian landscape?

2. Study Area

Our study site is located in the northern region of Novo Progresso municipality, State of Pará,
Central Brazilian Amazonia, with an area of 30,000 km2 (3 × 106 ha) (Figure 1), which approximately
corresponds to the area of Belgium. This region is known as a frontier of deforestation because of high
rates of deforestation in the last 10 years. The vegetation is predominantly composed of the Dense
Ombrophilous Forest, with trees that can reach heights up to 50 m [29].

The initial occupation of this area was associated with governmental settlement projects and the
construction of road infrastructure, mainly the construction of BR-163 highway [30]. During the 70s
and 80s, a spontaneous colonization phenomenon occurred in the region, which was characterized
by the occupation of land by small subsistence farmers and gold miners [30]. There are three main
deforestation patterns that are present in the study area (i) fishbone, associated with settlements,
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(ii) rectangular patches, related to large rural properties, and (iii) stem of the rose pattern that is
associated with mining areas, mainly in BR-163 [31].

Figure 1. Location map of the study area. On the main map, in green are the old-growth and secondary
forest areas, in magenta the productive lands and in purple the burned areas. Composition of Landsat
8 images (Operational Land Imager (OLI) sensor) for the dry season of the year 2014 (RGB composite:
Shortwave Infrared 1 in Red, Near Infrared in Green and Red in Blue).

3. Datasets

3.1. Forest Cover Map

Land-use and land-cover data were obtained from the Amazonia Land-use Land-cover Monitoring
Project (TerraClass Project/INPE) [32]. We used data for the year 2014, which corresponds to the last
year of available mapping.

The TerraClass Project data are the result of a combination of deforestation data from the Brazilian
Amazonia Deforestation Monitoring Project (PRODES/INPE) [15] and the land use classification based
on orbital images from Landsat, Terra/Aqua, and SPOT-5 satellites.

We regrouped the original classes of the TerraClass Project into two new classes: Forest Cover and
Deforested Areas (Table 1). In order to eliminate natural edges in the analyses, we jointed the areas of
Cerrado (Brazilian Savannas) and water bodies to the Forest Cover class.
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Table 1. Regroups of the original classes of the Amazonia Land-use Land-cover Monitoring Project
(TerraClass Project) to obtain the forest cover map.

Original Classes New Classes

Forest, Secondary Forest, Cerrado (Brazilian Savanna) and Hydrography Forest Cover

Annual Crops, Urban area, Deforestation in 2014, Mining, Mosaic of Uses, Others, Pasture
with exposed soil, Herbaceous Pastures, Shrubby Pasture and Regeneration with Pasture Deforested Areas

3.2. Active Fire Data

Active fire data were obtained for the period between January and December 2014 from the Fire
Information for Resource Management System (FIRMS). These data are derived from the MODIS
Active Fire Product (MCD14ML, Collection 6) [33], adjusted to 1 km of spatial resolution. To generate
the product, a contextual algorithm compares the daily data of the medium and thermal infrared
bands with reference data (without thermal anomalies). Subsequently, false detections are rejected by
examining the brightness temperature of the neighbouring pixels [34].

Fire Radiative Power (FRP) values are considered to be an indicator of fire intensity (given in
Megawatts or MW) and they are commonly related to the amount of biomass that was consumed
during the fire, where the higher the FRP value, the greater is the amount of biomass consumed [35].

During 2014, the number of detected active fires (N = 35,873) in Pará State was near the average
from 1999 to 2017 (N = 32,602) [36] and the year presented a normal climatology (Figure S1) [37].

4. Methods

4.1. Landscape, Fire Incidence and Fire Intensity Metrics

Firstly, we use the forest cover map to calculate landscape metrics using the LecoS plug-in
(version 2.0.7, Landscape Ecology Statistics, University of Évora, Évora, Portugal) [38] implemented in
the QGIS software (version 2.18, Long-term Release (LTR), QGIS Development Team, https://qgis.org/
en/site/) [39]. These metrics and its modifications are commonly used in the literature for analysis that
is related to forest fires [26,40] and are based from the Fragstats software (University of Massachusetts,
Amherst, MA, USA) [41].

For our analysis, we used 300 grid cells of 10 km by 10 km. This spatial resolution satisfactorily
captures the different patterns of fragmentation in our study area. According to Saito et al. [42] the size
of the cells do not statistically affect the results of the landscape metrics, and the user then chooses the
size of the cells based on the phenomenon and scale analysed. The following metrics were adopted
(Table 2): (1) Habitat Loss (percentage of deforestation), (2) Edges Proportion, (3) Number of Forest
Patches, and (4) Mean Forest Patch Area.

Then, for each cell, two metrics were calculated for the active fire data. The first metric was
the Fire Density (FD, as a proxy of fire incidence), which corresponds to the cumulative number of
active fires in 2014 that occurred within forest areas in each cell divided by the total forest in that cell.
The second metric was the FRP Mean (as a proxy of fire intensity), which was calculated by averaging
the FRP values of active fires that were falling within the forest areas in each cell.
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Table 2. Landscape metrics used and their respective descriptions.

Landscape Metric Abbreviation Equation Description

Habitat Loss HL ∑n
j=1 aij

A × 100

The sum of all deforested areas within a cell,
divided by total cell area, and multiplied by
100 (to convert to a percentage). The final unit
is given in percentage (%). Where aij is the area
(km2) of patch ij, and A is total cell area (km2).

Edges Proportion EP ∑n
k=1 ejk

∑n
j=1 aij

The sum of the lengths of all forest edge
segments within a cell, divided by total area of
all forest patches. The final unit is given in
kilometres of edge per square kilometres of
forest (km·km−2). Where eik is the total length
(km) of edge in patch i, and aij is the area (km2)
of patch ij.

Number of Forest Patches NFP ni The number of forest patches within a cell (ni).

Mean Forest Patch Area MFPA ∑n
j=1 aij

ni

The mean area of all forest patches in each cell.
The final unit is given in square kilometres
(km2). Where aij is the area (km2) of patch ij,
and ni is the total of patches within a cell.

4.2. Statistical Analyzes

To evaluate the relationship among the variables (Fire Density, FRP Mean, and landscape metrics),
we fitted curves using LOESS Regression (Locally Weighted Scatterplot Smoothing—LOESS), which is
a form of local regression model [43,44]. This method is a non-parametric strategy for fitting a
smooth curve to data, where noisy data values, sparse data points, or weak interrelationships interfere
with your ability to see a line of best fit [45]. We used the span 0.75 (default setting) in LOESS
Regression analyses.

In order to verify the existence of significant differences in the incidence and the intensity of
fire as a function of the landscape metrics, we used the Kruskal-Wallis non-parametric test. This test
is equivalent to Analysis of Variance (ANOVA), which compares three or more groups to test the
hypothesis that they have the same distribution [46–48]. To identify how the analysed variables
differ, a paired posthoc test was performed. To perform the posthoc test, we use the Fisher’s least
significant difference criterion with Bonferroni adjustment methods correction [49]. For all of the tests,
the significance level of 95% (p-value < 0.05) was adopted.

We use the R software (version 3.4.4, https://www.r-project.org/) for all analysis [50]. For LOESS
Regression, we use the “loess” native function [51]. In the Kruskal-Wallis test, we use the “agricolae”
package [52].

We also separated and quantified active fires and the respective FRP values at three edge distances
(1 km, 2 km, and greater than 2 km), both within forest areas (hereafter referred as edge of forest cover)
and out of forest areas (hereafter referred as edge of deforested areas). Additionally, we calculated
the percentage of active fires per FRP intervals, as suggested by Armenteras et al. [26]: ≤50 MW,
50 to ≤500 MW, 500 to ≤1000 MW, and >1000 MW.

5. Results

5.1. Relationship between Habitat Loss and Measures of Habitat Configuration

Our results showed that the analysed landscape metrics exhibited different relationships with
habitat loss (HL, Figure 2). The number of forest patches (NFP), as well as its variance, increases with
HL until it reaches 70%, which is the maximum level of deforestation within a grid cell that is found in
the study area (Figure 2a). The mean forest patch area (MFPA) decreases sharply between 0 and 10%
of HL and continues to decrease smoothly from about 10% to 70% of HL, with a lower variance in the
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larger HL values (Figure 2b). Similarly to NFP, EP and its variance increase with HL, mostly from 20%
of HL onwards (Figure 2c).

Figure 2. Landscape metrics as a function of Habitat Loss (HL): (a) relationship between Habitat Loss
and Number of Forest Patches (NFP); (b) relationship between Habitat Loss and Mean of Forest Patches
Areas (MFPA); and, (c) relationship between Habitat Loss and Edges Proportion (EP). Shaded areas
represent 95% confidence intervals. The missing confidence intervals in some regions of the graphs are
the result of the dispersion in the data at the upper end of the distribution.

The Kruskal-Wallis (KW) test showed that the NFP (KW = 196.04; p-value < 0.05; Figure S2a) and
the EP (KW = 205.07; p-value < 0.05; Figure S2c) were significantly lower only in the interval between
0–20% of HL, while the MFPA (KW = 201.38; p-value < 0.05; Figure S2b) was significantly higher in the
same interval.

5.2. Relationship between Habitat Configuration and Fire Incidence and Intensity

Fire density (FD) increased with habitat loss (HL), with greater variability in the higher levels
of deforestation (Figure 3a). Furthermore, the FD increased until NFP reaches ~35 per grid cell, and
then stabilized (Figure 3b). The FD decreased sharply up to 25 km2 of MFPA, tending to zero after that.
On the other hand, the FD increased up to 5 km·km−2 of EP, after which it plateaus.
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Figure 3. Fire Density (FD) as a function of (a) Habitat Loss (HL); (b) Number of Forest Patches (NFP);
(c) Mean Forest Patches areas (MFPA); and, (d) Edges Proportion (EP). Shaded areas represent 95%
confidence intervals. The missing confidence intervals in some regions of the graphs are the result of
the dispersion in the data at the upper end of the distribution.

The Kruskal-Wallis (KW) test showed that FD was significantly lower only in the interval
between 0–10% of the HL (KW = 191.76; p-value < 0.05; Figure S3a), between 0–10 NFP (KW = 180.68;
p-value < 0.05; Figure S3b), between 90–100 km2 of MFPA (KW = 224.86; p-value < 0.05; Figure S3c),
and finally, between 0–1 km·km−2 of EP (KW = 166.82; p-value < 0.05; Figure S3d).

The fragmentation effect on the fire intensity, as measured by the Mean FRP, is presented in
Figure 4. The Mean FRP increased until ~35% of HL and then decreased until the higher registered
levels of HL (Figure 4a). The Mean FRP increased with the increase in the NFP up to 25, but decreased
smoothly from about 25 to 80 forest patches (Figure 4b). A tendency of decrease in the Mean FRP was
registered as the MFPA increases up to 50 km2. On the other hand, the Mean FRP increased with the
increase of the EP up to 3 km·m−2, with a subsequent decrease up to 7.5 km·km−2.

The Kruskal-Wallis test indicated that forest fire intensity (measured as mean FRP) was
significantly lower at the lowest levels of fragmentation: 0–10% of HL (KW = 162.90; p-value < 0.05;
Figure S4a), between 0–10 NFP (KW = 145.49; p-value < 0.05; Figure S4b), between 90–100 km2 of
MFPA (KW = 204.28; p-value < 0.05; Figure S4c) and between 0–1 km·km−2 of EP (KW = 121.89;
p-value < 0.05; Figure S4d).
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Figure 4. Mean Fire Radiative Power (FRP) as a function of (a) Habitat Loss; (b) Number of Forest
Patches (NFP); (c) Mean of Forest Patches Areas (MFPA); and, (d) Edges Proportion (EP). Shaded areas
represent 95% confidence intervals. The missing confidence intervals in some regions of the graphs are
the result of the dispersion in the data at the upper end of the distribution.

Most of the active fires detected were located within 1 km from the forest edges (Table 3),
corresponding to 95% and 98% of fires occurring in forest and deforested areas, respectively.

Table 3. Total of active fires per edge distance.

Class Cover Edge Distance Total Number of Active Fires % of the Total

Forest Cover
>3 km 10 0.62
2 km 66 4.07
1 km 1546 95.31

Deforested Areas
1 km 2477 98.92
2 km 27 1.08

>3 km * 0 0

* No active fires were observed.

Most active fires were classified as low intensity (FRP less than 50 MW), representing between
70% and 90% of the total of active fires analysed for each edge distance (Table 4). Between 10 and 28%
of the total active fires were in the 50–500 MW intensity category. The few observed higher intensities
of active fires (FRP greater than 500 MW) were located in the first kilometre from the forest edges
only. Corroborating the previous evidence, the Kruskal-Wallis test showed a significant difference
between the FRP values for the different edge distances in the forest areas (KW = 6.95; p-value < 0.05;
Figure S5a), where the highest FRP values were only observed in the first kilometre from the forest
edges. For the deforested areas, no significant difference was observed (KW = 2.99; p-value > 0.05;
Figure S5b).
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Table 4. Percentage of Fire Radiative Power (FRP) per edges distance interval and fire intensity class.

Class Cover Edge Distance
Class of FRP (%)

<50 MW 50–500 MW 500–1000 MW >1000 MW

Forest Cover
>3 km 90.00 10.00 0 0
2 km 75.76 24.24 0 0
1 km 70.63 28.01 0.97 0.39

Deforested Areas
1 km 74.44 24.34 0.93 0.28
2 km 74.07 25.93 0 0

>3 km * 0 0 0 0

* No active fires were observed.

6. Discussion

6.1. Relationship between Habitat Loss and Measures of Habitat Configuration

Due to the complexity of anthropic actions in the Amazon region, deforestation occurs in different
patterns, resulting in different spatial configurations of patches and forest edges [18,31,53]. Here,
we show that in Central Amazonia, the NFP increases as deforestation progresses to levels that are up
to 70% of HL. The increasing number of forest patches and its variability with increasing habitat loss is
similar to the one found by Oliveira Filho and Metzger [54] for the “fishbone” fragmentation pattern.
This relationship was also found by Villard and Metzger [17] in simulated landscapes. Although the
maximum HL that was observed in our study area was 70%, the NFP should necessarily decrease at
some point as deforestation approaches the 100% level. According to the literature review that was
carried out by Fahrig [18], the number of forest patches is expected to increase up to a certain degree
of deforestation (~80% of habitat loss), and decrease in the lower levels of habitat amount.

The non-linear relationship between the MFPA and HL that was found in our study area differed
from the one that was previously presented by Fahrig [18] in a global study (meta-analysis) for real
landscapes. However, the pattern found here is similar to that documented by Oliveira Filho and
Metzger [54] in real and simulated landscapes in the Brazilian Amazonia. According to Oliveira Filho
and Metzger [54], this response pattern is usually associated with the “fishbone” fragmentation pattern
and small settlements, as they produce small patches that are close to each other, which is similar to
our study area.

The theoretical model proposed by Fahrig [18] describes a significant increase in the total edges
up to 50% of habitat removal level, tending progressively to zero after this threshold. However, in our
study area, there was no reduction in EP up to at least 70% of HL, indicating a greater inflection point
than that observed by Fahrig [18]. The same pattern was observed by Numata et al. [55] when analysing
the forest fragmentation in old deforestation frontiers in the state of Rondônia (Brazilian Amazonia)
with different patterns and levels of deforestation, and by Laurance et al. [56] when simulating the
deforestation scenario for the same state. This pattern occurs over time as the habitat loss progresses to
intermediate levels, increasing the number of forest patches, and consequently the density of forest
edges. On the other hand, when forest removal approaches 100%, the number of forest patches and
total area are reduced dramatically, resulting in a lower edge density in the landscape [18,57].

6.2. Relationship between Habitat Configuration and Fire Incidence and Intensity

Our results suggest that the landscape structure partly explains the variation of fire incidence and
intensity in forest areas, which is similar to the results that were found by Armenteras et al. [25] in the
Colombian Amazon. More fragmented landscapes, with smaller patches and a greater proportion of
edges, tend to be more vulnerable to fire than landscapes with continuous and intact forests. The effect
of fragmentation on the incidence and intensity of fire that was observed here is likely a result of
changes in the original structural configuration of the forest, which changes the mass and energy
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balance. Fragmented forests tend to be drier than a continuous forest cover, due to the lower humidity
retention, higher temperature, and the greater exposure to dry air masses and winds [58]. This dry
condition causes a higher tree mortality (generally large trees) [59], resulting in a large amount of fuel
load available (dead biomass), which increases the susceptibility of forest to fire [60].

Although fragmentation makes forests more susceptible to fire, the occurrence of fire is
conditioned to the presence of ignition sources. In Amazonia, these sources are mostly associated with
the escape of fire from newly deforested areas (Appendix A, Figure A1b), or from the management
of agricultural and pasture areas (Figure A1c) [23,61,62]. This explains the observed variation in
fire occurrence and intensity at different levels of landscape fragmentation in our results. This issue
becomes even clearer when we observe that over than 95% of the active fires that occurred in the
first kilometre from the edge, in both forested and deforested areas, indicating the escape of fires into
forests. We verified that fire penetrates forest areas up to a distance of 3 km, which corroborates other
studies that were carried out in the Amazon region [20,22,26,27,63]. All active fires of higher intensity
(FRP above 500 MW) occurred in the first kilometre in the forest areas, with a significant difference
when compared to the other edge distances. This can be explained by the greater amount of fuel
available, due to the high rate of trees mortality that is closer to the forest edges [59].

The great variability in the incidence and intensity of fire observed at different levels of
fragmentation in our results are likely related to the combined existence of ignition sources and
fuel availability in the landscape. Conversely, it is important to note that our results are based on a
year that is considered to be normal from the point of view of the amount of rainfall (Figure S1b).
Thus, the effects of fragmentation on fire incidence and intensity can be more significant during
drought years [25,37], thus increasing carbon emissions into the atmosphere [37,64]. This scenario
is worrying since the occurrence of extreme droughts events have become increasingly frequent in
Amazonia, and fire occurrence is predicted to increase in the region due to climate and land use change
synergies [65–67].

6.3. Implications of the Effect of Fragmentation on Fire Occurrence in Amazonia for the Brazilian Forest Code

Land use regulation is a critical component of forest governance and conservation strategies [68].
In Brazil, the Brazilian Forest Code (BFC) is the main law for regulating land use with the objective of
conserving native vegetation. Two instruments of this legislation are highlighted, the first is the Legal
Reserve (LR), which requires the maintenance of at least 80% of intact forest areas on private properties
in the Amazon biome; and, the other is the Permanent Preservation Area (PPA), which includes both
Riparian Preservation Areas (RPA) that protect riverside forest buffers and Hilltop Preservation Areas
in high elevations and steep slopes [69].

Our results showed that forest removal values limited by 20% guarantee a smaller number of
patches (0–20 patches per 100 km−2) with larger average areas (90–100 km2) and a lower proportion of
forest edges (0–2 km·km−2) in relation to higher levels of habitat loss. This HL threshold coincides
with values where the incidence and intensity of fire are significantly smaller when compared to the
other levels of HL. The susceptibility of the landscape to forest fires clearly increases with greater HL.
Therefore, maintaining native vegetation in at least 80% of the rural properties area, as prescribed in
the LR definition for the Amazon biome, allow for low levels of fire incidence, even if the ignition
sources are present. Regions with a lower proportion of forest cover are clearly more susceptible to
forest degradation due to fire, unless appropriate prevention and management techniques are applied.

In 2012, the BFC was reviewed, and based on our results we argue that some of the current BFC
rules for LR and PPA areas can contribute to increasing fire incidence and intensity in the Amazon
region, since they substituted some instruments established in the previous version of the law. The most
worrying from a conservation point of view is that “small” properties (from 40 ha to 440 ha depending
on the region) were exempted from recovering areas of LR that were deforested illegally before
2008. Furthermore, the vegetation of PPA within a property is now considered to be part of the LR,
while before the law’s modification, the PPA and the LR areas were computed separately, as they serve
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to different conservation purposes. Additionally, the requirements for the restoration of PPA and the
maintenance of LR were reduced. The LR requirement for 80% intact forest was reduced to 50% when
(1) the proportion of conservation areas and indigenous territories within Amazonian municipalities
is equal to or higher than 50% or (2) conservation areas and indigenous territories represent 65% of
the state territory. These legal modifications together reduced the country’s “forest debt” by 58% [69],
which may allow for the maintenance of the fragmentation of Amazonian landscapes, keeping them
susceptible to the occurrence of fire, as we demonstrated in our results.

Another legal modification allowed the rural owner who has forest liabilities to compensate for it
in other properties that were located anywhere in the same biome. Given the vast extent of Brazilian
biomes, this implies that an owner may compensate for an illegally deforested area by restoring another
over 3000 km away. Such restoration effort, if undertaken in a region where forest cover is already
well preserved, would not recover the landscape structure and local environmental services where it is
needed most. Thus, the displacement of restoration efforts from highly fragmented to more preserved
areas would make the former regions more susceptible to the incidence of fire.

According to the BFC, economic exploitation is allowed in the LR areas, including the collection of
non-timber forest products (fruits, vines, leaves, and seeds) and the commercial and non-commercial
selective extraction of wood. The sustainable economic exploitation of the forest is important for
the rural owner as a source of income, thus avoiding the deforestation of the LR areas. However,
good forest management practices should be applied. Selective logging can increase the forest
susceptibility to fire [70] due the canopy damage [71–74], which allows for the penetration of solar
radiation, raising the temperature, and decreasing the humidity within the forest. These microclimate
changes that are associated with the greater amount of dead biomass are caused mainly by the logging
operations [75], thus resulting in more severe fires [76,77].

This whole context is worrisome since the main sources of fire ignition in the Amazonia are related
to the management of adjacent agricultural and livestock areas. The flexibilization of the Forest Code
in comparison to its predecessor allowed for the maintenance of extensive fragmented areas, mainly
in the region of the deforestation arc, where there are intense anthropic activities [53], and therefore
abundant ignition sources.

7. Conclusions

We conclude that the susceptibility of the landscape to forest fires increases at the beginning
of the deforestation process. In general, our results reinforce the need to guarantee low levels of
fragmentation in the Brazilian Amazonia in order to avoid the degradation of its forests by fire and the
related carbon emissions [37,64]. Future work could examine whether the relations that were found
here are kept or modified during extreme drought events.

The reduction of forest liabilities resulting from the last modification of the forest code increases
the probability of occurrence of forest degradation by fire since it allows the existence of areas with
less than 80% of forest cover, contributing to the maintenance of high levels of fragmentation.

We anticipate that forest degradation by fire will continue to increase in the region, especially in
light of the mentioned environmental law relaxation and its synergistic effects with climate change.
All of this can affect efforts to Reduce Emissions from Deforestation and Forest Degradation (REDD).
Therefore, actions to prevent and manage forest fires are necessary, mostly for the properties where
forest liabilities exist and are compensated in other regions.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/9/6/305/s1,
Figure S1: (a) Seasonal rainfall pattern (the vertical black lines are the standard deviations). (b) Normalized
rainfall anomalies (1998-2014), Figure S2: Boxplot of the habitat loss (HL) intervals for the number of forest
patches, mean of forest patches areas and edges proportion. Figure S3: Boxplot of the fire density for the habitat
loss intervals, number of forest patches, mean of forest patches areas and edges proportion. Figure S4: Boxplot of
the Fire Radiative Power (FRP) for the habitat loss intervals number of forest patches, mean of forest patches areas
and edges proportion. Figure S5: Boxplot of Fire Radiative Power (FRP) for different distances from the edges in
forest areas and in deforested areas.
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Appendix A

 

Figure A1. Graphic summary of the main results found in this paper. (a) Intact forest, with controlled
microclimate, less penetration of solar radiation and action of the winds; (b) Deforested forest, resulting
in a changed microclimate (higher temperature and lower humidity due to greater penetrability of
solar radiation and wind action) and higher mortality rate of trees near the edges, resulting in a greater
amount of available fuel material; (c) Fragmented forest, more susceptible to the occurrence of fire
(more intense near the forest edge) due to the edge effect and fire escape from the agriculture and
livestock management areas.
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